(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0013】
次に、本発明の実施形態について説明する。なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
【0014】
したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
【0015】
(1)移動体通信システムの全体概略構成
図1は、本実施形態に係る移動体通信システム1の全体概略構成図である。
図1に示すように、移動体通信システム1は、基地局100及び移動局200A, 200Bを含む。
【0016】
基地局100は、移動局200A, 200Bに向けて、具体的にはセルC1内に向けて無線信号を送信する。また、基地局100は、移動局200A, 200Bから無線信号を受信する。本実施形態において、基地局100は送信装置を構成し、移動局200A, 200Bは受信装置を構成する。
【0017】
移動局200Aは、セルC1内に位置するが基地局100からの無線信号のパスロスが大きいセルC1のセル端に位置する。移動局200Bは、セルC1内の中央に位置する。このため、基地局100からの無線信号のパスロスは、移動局200Aにおけるパスロスよりも小さい。
【0018】
本実施形態では、基地局100と移動局200A, 200Bとは、互いに直交する複数の直交信号と、互いに直交しない複数の非直交信号とが含まれた無線信号をセルC1に位置する移動局200A, 200Bに向けて送信する。すなわち、移動体通信システム1では、直交信号を用いた複数の移動局との同時通信を実現する直交マルチアクセスと、非直交信号を用いた複数の移動局との同時通信を実現する非直交マルチアクセスとが併用(以下、ハイブリッド直交/非直交マルチアクセス)される。
【0019】
図2(a)〜(c)は、直交マルチアクセス、非直交マルチアクセス、及びハイブリッド直交/非直交マルチアクセスの無線リソースの割当イメージを示す。
図2(a)に示すように、直交マルチアクセスでは、周波数領域/時間領域/空間領域における帯域において、各移動局(ユーザ)に割り当てられる無線リソースが重複しない。このため、直交マルチアクセスでは、原則的には、他の移動局に割り当てられる無線リソースによる干渉を除去する必要がない。直交マルチアクセスは、3GPPにおいて標準化されているLong Term Evolution(LTE)でも用いられている。
【0020】
図2(b)に示すように、非直交マルチアクセスでは、当該帯域において、各移動局に割り当てられる無線リソースが重複する。このため、移動局は、すべてのマルチアクセス干渉を信号処理により除去する必要がある。具体的な信号処理については、上述した非特許文献1に記載された技術を用いることができる。
【0021】
図2(c)に示すように、ハイブリッド直交/非直交マルチアクセスでは、当該帯域において、各移動局に割り当てられる無線リソースが一部重複する。このため、移動局は、無線リソースの多重数に応じて、規定された数以下のマルチアクセス干渉を除去すればよい。
【0022】
本実施形態では、ハイブリッド直交/非直交マルチアクセスを導入することによって、マルチアクセス干渉の除去に伴う信号処理負荷を低減するとともに、移動局が除去すべきマルチアクセス干渉の数を認識できるような無線インターフェースが規定される。
【0023】
(2)機能ブロック構成
次に、移動体通信システム1の機能ブロック構成について説明する。
図3は、基地局100の送信部の機能ブロック構成図である。
図4は、移動局200Aの受信部の機能ブロック構成図である。
【0024】
(2.1)
図3に示すように、基地局100の送信部は、符号化/データ変調部110、基地局スケジューラ120、ハイブリッド直交/非直交多重部130、制御信号生成部140、制御信号リソース割当部150及び物理チャネル多重部160を備える。
【0025】
符号化/データ変調部110は、所定のユーザ(ユーザk)毎に、送信データの分割、チャネルコーディング/データ変調、送信電力設定、及びリソースブロック割当を実行する。
【0026】
また、符号化/データ変調部110は、移動局200A, 200Bにおけるマルチアクセス干渉のキャンセルに用いられる参照信号、具体的には、復調用の参照信号(Demodulation-RS、以下DM-RS)を移動局200A, 200Bに向けて送信する。本実施形態において、符号化/データ変調部110は、参照信号送信部を構成する。
【0027】
また、符号化/データ変調部110は、当該参照信号の取得に用いられる制御情報を移動局200A, 200Bに向けて送信する。本実施形態において、符号化/データ変調部110は、制御情報送信部を構成する。
【0028】
基地局スケジューラ120は、移動局200A, 200BからのCircuit State Information(CSI)のフィードバックや、基地局100〜移動局200A, 200B間のパスロスなどに基づいて、符号化/データ変調部110、ハイブリッド直交/非直交多重部130及び制御信号生成部140を制御する。
【0029】
特に、本実施形態では、基地局スケジューラ120は、非直交信号として多重される信号の複数の移動局(例えば、移動局200A, 200B)それぞれまでのパスロスに基づいて、当該パスロスの差が大きくなるように非直交信号として多重される信号を、当該複数の移動局にスケジューリングする。
【0030】
図5は、基地局100における非直交信号への移動局のスケジューリングの一例を示す。
図5に示す例では、最大4ユーザ(移動局)が多重される非直交信号が用いられる。
図5に示すように、非直交信号では、複数の信号が直交せず、つまり、周波数領域または時間領域において同一の無線リソースブロックが割り当てられている。
【0031】
本実施形態では、パスロスが小さい移動局宛ての信号から、パスロスが大きい移動局宛ての信号が、非直交信号として順次多重される。パスロスが小さい移動局宛ての信号は、所望のSNRを確保するための送信電力が小さくてよいため、
図5の縦軸(送信電力)方向において占める割合が小さい。一方、パスロスが大きい移動局宛ての信号は、所望のSNRを確保するための送信電力が大きいため、
図5の縦軸(送信電力)方向において占める割合が大きくなっている。
【0032】
このような非直交信号が用いられる場合、例えば、パスロスが2番目に小さいユーザ(移動局)は、当該ユーザよりもパスロスが大きい2つの移動局に割り当てられた信号からの干渉を除去する必要がある(図中の説明を参照)。
【0033】
なお、
図5に示す例では、周波数領域及び時間領域において、異なる無線リソースブロックが割り当てられる、つまり、複数の信号が互いに直交する直交信号も用いられており、直交信号間では、上述したような干渉は生じないため、移動局は、当該干渉を除去する必要はない。
【0034】
ハイブリッド直交/非直交多重部130は、直交信号及び非直交信号を多重する。具体的には、ハイブリッド直交/非直交多重部130は、基地局スケジューラ120からの制御に基づいて、複数の符号化/データ変調部110から出力された信号(無線リソースブロック)を多重する。この結果、
図5に示したように多重された信号が生成される。
【0035】
制御信号生成部140は、移動局200A, 200Bに報知される各種の制御信号を生成する。特に、本実施形態では、非直交信号として多重される信号の最大数は、基地局100及び移動局200A, 200Bにおいて既知(例えば、4多重)である。制御信号生成部140は、移動局が他の移動局(他装置)宛ての無線信号を復調及びキャンセルするために必要な制御信号を生成する。
【0036】
制御信号生成部140は、例えば、移動局が他の移動局(他装置)宛ての無線信号を復調及びキャンセルするため、以下のような制御情報または参照信号を含む信号を生成することができる。
【0037】
(a) ユーザ(移動局)が除去すべきマルチアクセス干渉の数を示す情報(0または1を含む)
(b) ユーザ(移動局)がマルチアクセス干渉の除去に必要な他のユーザの状態(割当無線リソースブロック、変調方式、チャネル符号化率など)を示す情報
(c) ユーザ(移動局)におけるコヒーレント復調に必要な参照信号
(d) ハイブリッド直交/非直交マルチアクセスの無線リソースブロック割り当てに必要な情報(トランスポートブロック、無線リソースブロックの定義、送信電力制御、フィードバック制御信号など)
制御信号生成部140は、上述した(a)〜(d)の何れか、または複数を組み合わせた制御信号を生成してもよい。制御信号生成部140は、生成した制御信号を制御信号リソース割当部150及び物理チャネル多重部160を介して、移動局200A, 200Bに送信する。本実施形態において、制御信号生成部140は、制御信号送信部を構成する。なお、本実施形態に係る制御信号の詳細については、後述する。
【0038】
制御信号リソース割当部150は、制御信号生成部140から出力された制御信号に無線リソースブロックを割り当てる。
【0039】
物理チャネル多重部160は、ハイブリッド直交/非直交多重部130から出力されたベースバンド信号、及び制御信号リソース割当部150から出力された制御信号を物理チャネルに多重する。物理チャネル多重部160から出力された信号は、IFFTが施されるとともに、Cyclic Prefix(CP)が追加されて送信アンテナから移動局200A, 200Bに向けて送信される。本実施形態は、ハイブリッド直交/非直交多重部130及び物理チャネル多重部160によって、直交信号と非直交信号とをセルC1内に位置する複数の移動局(受信装置)に向けて送信する無線信号送信部が構成される。
【0040】
(2.2)移動局200A
図4に示すように、移動局200Aは、物理チャネル分離部210、データ復調/復号部220、目的ユーザ制御信号検出部230及び干渉ユーザ制御信号検出部240を備える。なお、移動局200Bも移動局200Aと同様の機能ブロック構成を有する。
【0041】
物理チャネル分離部210は、基地局100から送信された無線信号を受信し、当該無線信号に含まれる物理チャネルを分離する。上述したように、物理チャネル分離部210が受信する無線信号には、直交信号と非直交信号とが含まれる。分離された物理チャネルは、データ復調/復号部220、目的ユーザ制御信号検出部230及び干渉ユーザ制御信号検出部240に出力される。本実施形態において、物理チャネル分離部210は、無線信号受信部を構成する。
【0042】
また、物理チャネル分離部210は、目的ユーザ制御信号検出部230によるマルチアクセス干渉のキャンセルに用いられる参照信号(DM-RS)を受信する。本実施形態において、物理チャネル分離部210は、参照信号受信部を構成する。
【0043】
データ復調/復号部220は、複数設けられる。具体的には、データ復調/復号部220は、非直交信号として多重される信号(ユーザ)の数に応じて、干渉ユーザ用及び目的ユーザ用が設けられる。本実施形態では、最大4ユーザが多重されるため、データ復調/復号部220も4つ設けられることが好ましい。
【0044】
データ復調/復号部220は、無線リソースブロック抽出、干渉キャンセラ、チャネル推定、復調復号及び復号データの連結を実行する。
【0045】
特に、本実施形態では、データ復調/復号部220の干渉キャンセラは、受信した無線信号に含まれる直交信号(例えば、上述した制御情報や参照信号)を用いて、複数の非直交信号の中から、他の移動局(受信装置)宛ての無線信号を復調及びキャンセルすることによって、移動局200A宛ての非直交信号を抽出する。
【0046】
具体的には、干渉キャンセラは、受信した非直交信号の中から、所定の信号処理による信号分離によって自装置宛ての信号を抽出し、他の受信装置宛ての信号による干渉をキャンセルする。干渉キャンセラは、多重される非直交信号の最大数が既知(本実施形態では、4多重)であるため、既知である非直交信号の最大数を超えない範囲で、他の受信装置宛ての無線信号を復調及びキャンセルする。なお、干渉のキャンセル方法については後述する。
【0047】
目的ユーザ制御信号検出部230は、目的ユーザ、つまり自装置(移動局200A)宛ての制御信号を検出する。目的ユーザ制御信号検出部230は、検出した制御信号をデータ復調/復号部220(目的ユーザ用)に提供する。制御信号としては、上述したような(a)〜(d)の何れかまたは組み合わせが用いられる。
【0048】
干渉ユーザ制御信号検出部240は、干渉ユーザ、つまり、他装置(例えば、移動局200B)宛ての制御信号を検出する。干渉ユーザ制御信号検出部240は、目的ユーザ制御信号検出部230と同様に、検出した制御信号をデータ復調/復号部220(干渉ユーザ用)に提供する。
【0049】
ここで、データ復調/復号部220の干渉キャンセラおける信号処理について簡単に説明する。まず、
図1に示したように、移動局200AがセルC1のセル端に位置する場合、干渉キャンセラは、セルC1内の中央に位置する移動局200Bの信号を除去できないため、データ復調/復号部220は、そのまま復調/復号を実行する。具体的には、ユーザ1における信号処理は、以下のような計算式に基づいて説明することができる。
【数1】
【0050】
ここで、ユーザ1はセルC1のセル端に位置する移動局200Aを示し、ユーザ2はセルC1内の中央に位置する移動局200Bを示す。P
1及びP
2は、ユーザ1及びユーザ2の送信電力である。h
1及びh
2は、ユーザ1及びユーザ2のチャネル利得である。
【0051】
このように、移動局(ユーザ1)がセル端に位置する場合、受信信号(R
1)には、セル中央に位置する移動局(ユーザ2)との干渉が含まれるが、ユーザ2と比較してSNRが悪いため、ユーザ2からの干渉を除去することができない。そこで、ユーザ1は、ユーザ2の信号を除去することなく、そのまま復調/復号を実行する。
【0052】
一方、ユーザ2における信号処理は、以下のような計算式に基づいて説明することができる。
【数2】
【0053】
このように、移動局(ユーザ2)がセル中央に位置する場合、受信信号(R
2)には、セル端に位置する移動局(ユーザ1)との干渉が含まれるが、ユーザ1と比較してSNRが良いため、ユーザ1の信号を一旦復号することによって除去し、当該信号を除去した後、ユーザ2の信号の復調/復号を実行する。
【0054】
なお、このような信号処理は、上述した非特許文献1に記載されている方法と同様である。
【0055】
(3)参照信号の構成
次に、本実施形態において用いられる参照信号(DM-RS)の構成例について説明する。具体的には、DM-RSの多重方法及びDM-RSの構成例について説明する。
【0056】
(3.1)参照信号の多重方法
図6は、参照信号(DM-RS)の多重方法の説明図である。
図6に示すように、DM-RSは、同一無線リソース(時間領域/周波数領域)のブロックに、複数のユーザ(移動局)が非直交多重される場合に用いられる。DM-RSは、非直交信号に割り当てられている無線リソースブロックと同一の無線リソースブロックに多重される。例えば、
図6に示すように、ユーザ1〜3が非直交多重される場合、DM-RSは、ユーザ1〜3が多重される非直交信号と同一の無線リソースブロック(図中のブロック1)に多重される。
【0057】
また、無線リソースのブロック2及びブロック3のように、少なくとも1ユーザ向けの信号が無線リソースブロックにスケジューリング多重される場合、つまり、当該信号が無線リソースブロックに多重される場合、DM-RSは、当該無線リソースブロックに多重される。
【0058】
したがって、無線リソースのブロック4のように、ユーザが多重されない無線リソースブロックには、DM-RSを多重しなくてもよい。
【0059】
(3.2)参照信号の構成例
図7(a)〜(d)は、参照信号(DM-RS)の構成例1〜4を示す。
図7(a)〜(d)に示すDM-RSの構成例は、上述したように、同一の無線リソース(時間領域/周波数領域)のブロックに複数のユーザ(以下、非直交ユーザ群)が非直交多重される場合に適用し得る。
【0060】
図7(a)に示す構成例1では、非直交ユーザ群内において、共通のDM-RSが適用される。つまり、基地局100の符号化/データ変調部110(参照信号送信部)は、同一の無線リソースブロックに多重される複数のユーザ向けの信号間において共通である参照信号を送信する。
【0061】
構成例1の場合、干渉のキャンセルに用いるチャネル推定をユーザ(ユーザ1〜3)群内で共通とすることができ、チャネル推定精度の確保には都合がよく、オーバヘッドも少ない。一方、共通のDM-RSが適用されるため、ユーザ毎のデータの復調において、非直交ユーザ群内のユーザ間の送信電力比が必要となる。
【0062】
図7(b)に示す構成例2では、非直交ユーザ群内において、ユーザ個別のDM-RSが適用される。つまり、符号化/データ変調部110は、同一の無線リソースブロックに多重される複数の信号それぞれに個別な複数の参照信号を送信する。
図7(b)に示す例では、ユーザ1〜3が非直交多重されるため、ユーザ1〜3それぞれに対応する個別のDM-RSが送信される。ユーザ1〜3に対応する3つのDM-RS、つまり複数の参照信号は、直交多重される。
【0063】
構成例2の場合、符号化/データ変調部110は複数の受信装置(移動局200A, 200B)に含まれる所定の受信装置(例えば、移動局200A)向けの参照信号リソースと、他の受信装置(移動局200B)向けの参照信号リソースとを示す制御情報を移動局200Aに送信する。具体的には、移動局200A向けの参照信号リソースの時間領域・周波数領域及び直交符号を示す情報と、移動局200B向けの参照信号のPuncture及びRate matchingについての情報とを移動局200Aに送信する。
【0064】
構成例2の場合、個別のDM-RSが用いられるため、非直交ユーザ群内のユーザ間の送信電力比は不要だが、構成例1と比較すると、オーバヘッドが増えるとともに、チャネル推定精度が低下する。
【0065】
図7(c)に示す構成例3では、構成例2と同様に、ユーザ個別のDM-RSが適用される。但し、複数のDM-RSは、直交多重ではなく、符号多重される。
【0066】
構成例2の場合、符号化/データ変調部110は複数の受信装置(移動局200A, 200B)に含まれる所定の受信装置(例えば、移動局200A)向けの信号系列と、干渉キャンセルの対象となる他の受信装置(移動局200B)向けの信号系列とを示す制御情報を移動局200Aに送信する。具体的には、移動局200A向けの参照信号に用いられるスクランブル符号を示す情報と、移動局200B向けの参照信号に用いられるスクランブル符号とを移動局200Aに送信する。
【0067】
構成例3の場合、構成例2と同様に、非直交ユーザ群内のユーザ間の送信電力比は不要である。また、構成例2と比較すると、オーバヘッドが少ない。一方、互いのDM-RSが非直交であるため、符号間干渉の影響によりチャネル推定精度が大きく低下する。
【0068】
図7(d)に示す構成例4では、構成例2と同様に、ユーザ個別のDM-RSが適用される。但し、複数のDM-RSは、完全な直交多重ではなく、直交多重と非直交多重とを組み合わせた方法で多重される。具体的には、干渉キャンセル対象となるユーザとは直交し、干渉キャンセル対象としないユーザとは直交しない構成を適用する。
図7(d)の場合、ユーザ1用のDM-RSは、ユーザ2及びユーザ3用のDM-RSと直交するが、ユーザ2用のDM-RSは、ユーザ3用のDM-RSのみと直交する。つまり、複数のDM-RS(参照信号)は、無線信号の復調及びキャンセルの対象とする他の受信装置とは互いに直交し、無線信号の復調及びキャンセルの対象としない他の受信装置とは互いに直交しないように構成される。
【0069】
構成例4の場合、符号化/データ変調部110は複数の受信装置(移動局200A, 200B)に含まれる所定の受信装置(例えば、移動局200A)向けの参照信号リソースと、干渉キャンセルの対象となる他の受信装置(移動局200B)向けの参照信号リソースとを示す制御情報を移動局200Aに送信する。具体的には、移動局200A向けの参照信号リソースの時間領域・周波数領域及び直交符号を示す情報と、干渉キャンセルの対象となる移動局200B向けの参照信号のPuncture及びRate matchingについての情報とを移動局200Aに送信する。
【0070】
構成例4の場合、構成例2と同様に、非直交ユーザ群内のユーザ間の送信電力比は不要である。また、構成例2および3と比較すると、チャネル推定精度およびオーバヘッドの観点からバランスがよい構成である。
【0071】
また、構成例2〜構成例4では、受信装置(移動局)における干渉キャンセル対象のユーザ数に応じた複数のレベルと、参照信号とを対応付けてもよい。このようなレベルとの対応付けにより、制御ビット数を増やさずに参照信号の取得に用いられる制御情報を受信装置に通知することができる。また、構成例3及び構成例4の場合、当該レベルと、無線リソースブロックの位置とを対応付けるようにしてもよい。
【0072】
以上説明したDM-RSの構成例1〜4の特徴を表1に示す。
【表1】
【0073】
(4)作用・効果の例
本実施形態に係る移動体通信システム1によれば、非直交信号によるマルチアクセス干渉のキャンセルに、参照信号(DM-RS)が用いられる。また、DM-RSは、非直交信号に割り当てられている無線リソースブロックと同一の無線リソースブロックに多重される。さらに、DM-RSは、少なくとも1つのユーザ向けの信号が無線リソースブロックにスケジューリングされる場合のみ、当該無線リソースブロックに多重される。
【0074】
このため、移動局200A, 200Bは、受信したDM-RSを用いることによって、マルチアクセス干渉を容易かつ速やかに除去できる。すなわち、移動体通信システム1によれば、ハイブリッド直交/非直交マルチアクセスを導入する場合において、移動局コスト上昇や処理遅延を抑制し得る。
【0075】
また、表1に示したように、DM-RSの構成例1は、チャネル推定精度の確保が容易であり、オーバヘッドが少ない特徴を有する。構成例2〜構成例4は、ユーザ毎のデータの復調において、非直交ユーザ群内のユーザ間の送信電力比が不要となる特徴を有する。さらに、構成例3は、構成例1と同様にオーバヘッドが少ない特徴を有する(但し、構成例1や構成例2のようなチャネル推定精度は望めない)。一方、構成例4は、構成例2および3と比較すると、チャネル推定精度およびオーバヘッドの観点からバランスがよい構成である。
【0076】
(5)その他の実施形態
上述したように、本発明の一実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態が明らかとなろう。
【0077】
例えば、上述した本発明の実施形態では、基地局100から移動局200A, 200Bへの下り方向における例について説明したが、本発明は、上り方向に適用してもよい。また、本発明は、基地局と移動局との間に限らず、基地局間の無線通信に適用してもよい。
【0078】
さらに、上述した実施形態では、ハイブリッド直交/非直交マルチアクセスが導入されている場合を例として説明したが、本発明の適用範囲は、ハイブリッド直交/非直交マルチアクセスに限定されるものではなく、非直交マルチアクセスが用いられている移動体通信システムに適用できることは勿論である。
【0079】
このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。