(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6207732
(24)【登録日】2017年9月15日
(45)【発行日】2017年10月4日
(54)【発明の名称】産業用負荷の変動に起因するねじれ振動の振幅を低減するための静止形励磁システムを備えたタービン発電機の軸を制御する方法およびシステム
(51)【国際特許分類】
H02P 9/04 20060101AFI20170925BHJP
H02P 103/20 20150101ALN20170925BHJP
【FI】
H02P9/04 E
H02P103:20
【請求項の数】8
【全頁数】11
(21)【出願番号】特願2016-523753(P2016-523753)
(86)(22)【出願日】2014年6月2日
(65)【公表番号】特表2016-525862(P2016-525862A)
(43)【公表日】2016年8月25日
(86)【国際出願番号】US2014040435
(87)【国際公開番号】WO2014209542
(87)【国際公開日】20141231
【審査請求日】2016年2月25日
(31)【優先権主張番号】13/926,147
(32)【優先日】2013年6月25日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】599078705
【氏名又は名称】シーメンス エナジー インコーポレイテッド
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100099483
【弁理士】
【氏名又は名称】久野 琢也
(72)【発明者】
【氏名】ジョゼフ デイヴィッド ハーリー
(72)【発明者】
【氏名】ピーター ジョン クレイトン
【審査官】
尾家 英樹
(56)【参考文献】
【文献】
特開昭55−160998(JP,A)
【文献】
特開平07−031198(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 9/00− 9/48
(57)【特許請求の範囲】
【請求項1】
静止形励磁システムを備えたタービン発電機の軸を制御する方法であって、
前記軸は、予め定められた速度で第1の回転方向に駆動され、該方法は、
前記軸のねじれ振動を検出するステップと、
前記ねじれ振動に基づき制御信号を算出するステップと、
前記制御信号を利用して、前記静止形励磁システムにより前記タービン発電機から取り出される電力量を制御するステップと、
前記軸の回転速度を測定するステップとを含み、
前記ねじれ振動は、前記測定された回転速度と前記予め定められた速度との間の差に対応する第1の振幅を含み、
前記ねじれ振動は、第1の部分と第2の部分とを含み、
前記第1の部分は、第1の期間にわたり持続し、前記第1の回転方向に対応し、
前記第2の部分は、第2の期間にわたり持続し、前記第1の回転方向とは逆の第2の回転方向に対応し、
前記ねじれ振動は、前記第1の期間と前記第2の期間の和の逆数に対応する周波数を有し、
前記第1の振幅に基づき、前記制御信号の第2の振幅を決定するステップと、
前記制御信号を、前記第2の振幅と、前記第1の期間中の第1の極性とによって、前記静止形励磁システムに適用するステップと、
前記制御信号を、前記第2の振幅と、前記第1の極性とは逆極性である前記第2の期間中の第2の極性とによって、前記静止形励磁システムに適用するステップと
を含む、
ことを特徴とする、
静止形励磁システムを備えたタービン発電機の軸を制御する方法。
【請求項2】
前記制御信号によって前記静止形励磁システムは、前記第1の期間中に前記タービン発電機から取り出される電力量を増加する、
請求項1記載の方法。
【請求項3】
前記制御信号によって前記静止形励磁システムは、前記第2の期間中に前記タービン発電機から取り出される電力量を低減する、
請求項1記載の方法。
【請求項4】
前記制御信号を、前記静止形励磁システムの自動電圧調整器に注入するステップをさらに含む、
請求項1記載の方法。
【請求項5】
静止形励磁システムを備えたタービン発電機の軸を制御するシステムであって、
前記軸は、予め定められた速度で第1の回転方向に駆動され、前記システムは、
速度センサから速度信号を受け取り、該速度信号に基づき、前記軸のねじれ振動に対応するねじれ振動信号を検出するように構成された検波器と、
制御可能な利得を有し、前記ねじれ振動信号に基づき制御信号を発生するように構成された信号発生器と、
前記制御信号を受け取り、該制御信号に基づいて、前記静止形励磁システムにより前記タービン発電機から取り出される電力量を制御するように構成された自動電圧調整器と
を含み、
前記速度センサは、前記軸の回転速度を測定するように構成されており、
前記ねじれ振動信号は、前記測定された回転速度と前記予め定められた速度との差に対応する第1の振幅を含み、
前記ねじれ振動信号は、第1の部分と第2の部分とを含み、
前記第1の部分は、第1の期間にわたり持続し、前記第1の回転方向に対応し、
前記第2の部分は、第2の期間にわたり持続し、前記第1の回転方向とは逆の第2の回転方向に対応し、
前記ねじれ振動信号は、前記第1の期間と前記第2の期間の和の逆数に対応する周波数を有し、
増幅器の利得が、前記第1の振幅に基づき前記制御信号の第2の振幅が発生するように調整され、
前記制御信号は、前記第2の振幅と、前記第1の期間中の第1の極性とによって、前記自動電圧調整器に供給され、
前記制御信号は、前記第2の振幅と、前記第1の極性とは逆極性である前記第2の期間中の第2の極性とによって、前記自動電圧調整器に供給される、
静止形励磁システムを備えたタービン発電機の軸を制御するシステム。
【請求項6】
前記制御信号によって前記静止形励磁システムは、前記第1の期間中に前記タービン発電機から取り出される電力量を増加する、
請求項5記載のシステム。
【請求項7】
前記制御信号によって前記静止形励磁システムは、前記第2の期間中に前記タービン発電機から取り出される電力量を低減する、
請求項5記載のシステム。
【請求項8】
前記制御信号を、別個に形成された他の電圧制御信号と合成するように構成された合成器がさらに設けられている、
請求項5記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発電施設の分野に関するものであり、さらに詳しくは、発電施設のねじれ振動に関するものである。
【背景技術】
【0002】
タービン発電機は、機械運動を電力に変換するために回転軸を備えている。この場合、発電機と結合された変動負荷によって、軸にねじれ振動が誘発される可能性がある。変動負荷(例えば電気アーク炉など)に起因して、発電機の電力に急速な過渡状態が引き起こされる可能性があり、このような過渡状態の作用により、発電機の回転軸に様々なレベルのねじれ振動が誘発されるおそれがある。このような過渡状態が発生するタイミングによって場合によっては、本来であれば小さい振動であるのに、それらの小さい振動が強められて、かなり大きい振幅のねじれ振動が形成されてしまう可能性もある。このようなねじれ振動を減衰させるために、これまで様々なアプローチが試みられてきた。それらのアプローチにおいてこれまで行われてきたのは、発電機により給電される負荷のフィルタリングおよびレベル調整であり、それによって負荷が何らかの過渡状態にあるときの振幅を低減し、同様にそのような過渡状態の反復性も減らそうというものであった。
【発明の概要】
【課題を解決するための手段】
【0003】
本発明の1つの観点は、静止形励磁システムを備えたタービン発電機の軸を制御するシステムに関するものであり、この場合、軸は、予め定められた速度で第1の回転方向に駆動される。このシステムは検波器を備えており、この検波器は、速度センサから速度信号を受け取り、速度信号に基づき、軸のねじれ振動に対応するねじれ振動信号を検出するように構成されている。さらにこのシステムは、制御可能な利得を有する増幅器および自動電圧調整器も備えている。この場合、増幅器は、ねじれ振動信号に基づき制御信号を発生するように構成されており、自動電圧調整器は、制御信号を受け取り、この制御信号に基づいて、静止形励磁システムによりタービン発電機から取り出される電力量を制御するように構成されている。
【0004】
本発明の別の観点は、静止形励磁システムを備えたタービン発電機の軸を制御する方法に関するものであり、この場合、軸は、予め定められた速度で第1の回転方向に駆動される。この方法には、軸のねじれ振動を検出するステップと、ねじれ振動に基づき制御信号を算出するステップと、この制御信号を利用して、静止形励磁システムによりタービン発電機から取り出される電力量を制御するステップとが含まれている。
【0005】
本明細書に続いて最後に特許請求の範囲が記載されており、これは本発明を明確に表すものであり、その権利範囲をはっきりと主張しているが、添付の図面を参照した以下の説明からも、本発明の理解が深まるであろう。なお、図中、同様の部材には同じ参照符号が付されている。
【図面の簡単な説明】
【0006】
【
図1A】従来技術によるタービン発電機用の静止形励磁システムの一例を示す図
【
図1B】本発明の基本原理に従って構成されたタービン発電機を示す図
【
図1C】本発明の基本原理に従い、補助制御信号を静止形励磁システムにどのように注入できるのかを概念的に示すブロック図
【
図2A】本発明の基本原理による静止形励磁制御システムの信号波形の一例を示す図
【
図2B】本発明の基本原理による静止形励磁制御システムの信号波形の一例を示す図
【
図3】本発明の基本原理による静止形励磁システムを制御するための方法の一例を示すフローチャート
【発明を実施するための形態】
【0007】
有利な実施形態に関する以下の詳細な説明では、それらの実施形態の一部を成す添付の図面を参照するが、図面には、限定のためではなく例示のために、本発明を実施可能な特別な有利な実施形態が示されている。なお、他の実施形態を採用してもよいし、本発明の着想および範囲を逸脱することなく、変更を加えることができるのは自明である。
【0008】
永久磁石ではなく界磁コイルを利用する発電機においては、機器を動作可能にするために界磁コイルに電流を流しておかなければならない。界磁コイルが給電されないと、電動機の回転子であればまったく回転できないのに対し、発電機の回転子であれば回転可能であるが、その際に何ら有効な電気エネルギーも発生させない。
図1Aには、従来技術による静止形励磁システムの一例が示されている。この場合、発電機には、発電機回転界磁102と、定置された発電機固定子104とが含まれている。周知のとおり発電機は、発生させた電力を送電網101へ供給するために3線バス106によって接続されている。
【0009】
発電機の現在の動作状況を表すことができるよう、発電機により発生された電力の電圧と電流を、サンプリングまたはセンシングすることができる。発生された電圧と電流は、慣用の自動電圧調整器(AVR)回路112によってもすぐに利用することはできず、したがって電流および電圧のための変成器108を利用して、バス106からの信号を自動電圧調整器112によって、利用しやすい信号に低減することができる。
【0010】
3線バス106には、変圧器110を介して静止形励磁機116も接続されており、これによって励磁機116に電力を供給することができる。
図1Aに一例として示した回路の場合、励磁機116には、6個のサイリスタ118によるサイリスタブリッジが含まれており、これは励磁機変圧器110および発電機界磁102と接続されている。自動電圧調整器112は、サイリスタ118を駆動する直流制御信号120を供給する。制御信号120の値に基づき、励磁機出力電圧122が発電機界磁102へ供給される。
【0011】
周知のように電圧調整器112は、発電機の動作特性を変更して理想的な動作パラメータがいっそう厳密に再現されるように、制御信号120を発生させるために設計されている。当業者であれば自明であるように、
図1Aの回路は、タービン発電機のために(ここで用いられる)静止形励磁機または「静止形励磁システム」の基本原理を示すための一例にすぎず、機能的に等価の他の回路によって同じ結果を達成することができる。
【0012】
本発明の観点は、タービン発電機における静止形励磁システムの補助制御を行う方法および装置に関するものである。この補助制御は、産業用負荷の変動に起因して回転子に誘発されるねじれ振動が安定化されるよう、励磁機出力電圧を調整するために、軸のねじれ振動またはねじれ発振、回転子の測定からのフィードバック信号を利用することができる。
【0013】
このフィードバック信号を、タービン発電機の回転子の瞬時速度を測定する1つまたは複数の速度センサから生じさせることができる。補助制御信号を発生させるために、このフィードバック信号を検波して、ねじれ速度または変位信号を発生させ、これを適切なフィルタ、位相シフト機能および増幅により処理して送出することができる。その後、この補助制御信号を、静止形励磁システムの電圧調整器に注入して、発電機界磁の瞬時電力を制御することができる。
【0014】
図1Bには、本発明の基本原理に従って構成されたタービン発電機が示されている。タービン発電機は、機械運動を電力に変換するために回転軸を備えている。この場合、発電機と結合された変動負荷162によって、軸にねじれ振動が誘発される可能性がある。本発明の基本原理によれば、軸が回転する速度を測定することによって、この種のねじれ振動を検出することができる。
【0015】
図1Bを参照しながら説明すると、静止形励磁システム154は、発電機150から電力152を取り出すことができる。取り出される電力152の量を、電圧調整器156によって自動的に制御することができる。電圧調整器156は、変圧器(VT)146および変流器(CT)148から入力を受け取ることができ、これによって静止形励磁システム154のための電圧制御信号が、発電機150の現在の動作状況に基づき決定される。
【0016】
上述のように、発電機150の回転軸の回転速度を測定するために、速度センサ158を利用することができる。たとえば、歯付きホイールまたは切り込み付きホイールを回転軸に結合することができ、それによって軸が回転したときにホイールも同様に回転するようになる。この場合、ホイ―ルを回転軸とじかに結合してもよいし、種々のギアまたはリンク機構を介してホイールを回転軸と間接的に結合してもよい。ホイールの歯またはノッチの通過を検出する1つまたは複数の速度センサを、ホイールに付加することができる。このような検出をたとえば、ノッチまたは歯とホイールの他の部分との視覚的な相違を認識する光学センサを利用して実現することができる。当業者であれば自明であるように、本発明の範囲を逸脱することなく、軸の回転速度を測定するために数多くの択一的な技術を利用することができる。
【0017】
センサ158が発生する速度センサ信号を、ねじれ検波器160によって検波し、ねじれ速度信号161を抽出することができる。軸は既知の方向に既知の速度(たとえば3600RPMまたは1800RPM)で駆動されるので、ねじれ振動が発生していなければ、検出されたノッチまたは歯によって、既知の理想的な速度値が発生することになる。ところが、ねじれ振動が発生し、それが駆動方向とは逆方向であると、測定された軸速度は予期された理想値よりも小さくなる。同様に、ねじれ振動が駆動方向と同じ方向であれば、測定された軸速度は予期された理想値よりも大きくなる。したがって、速度センサ158により測定された速度信号に基づき、ねじれ速度信号161を算出することができ、これによって軸速度が予期された速度値からどの程度逸脱しているのかが表され、振動の周波数も表される。ついで、このねじれ速度信号161を利用して、発電機150の静止形励磁システム154のための補助制御信号165を発生させることができる。詳しくは、ねじれ振動を打ち消すことによりシステムの動作を安定化させるために、静止形励磁システム154を制御することができる。
【0018】
図1Bに示されているように、望ましい周波数帯域だけを通過させるために、ねじれ速度信号161を、バンドパスフィルタ164を通過させて送出することができる。たとえば、2極の60Hz発電機の場合、分数調波信号(たとえば5Hz〜20Hz)を適切な周波数範囲とすることができる。4極の発電システムの場合、上述の同じ周波数でもよいし、または別の分数調波信号の周波数を対象としてもよい。望ましくないノイズおよびその他の非ねじれ成分を、バンドパスフィルタ164によってフィルタリングもしくは阻止することができる。フィルタリングされた信号163を、その後、位相補償回路網および増幅器166を通過させ、補助制御信号165を発生させることができる。増幅器166の利得は、所定の振幅の速度変化(すなわちねじれ速度信号161)から適切な振幅の制御信号165が発生して、静止形励磁システム154に望ましい作用がもたらされるように、設計されている。位相補償回路網166は、出力される制御信号165の位相が入力されたフィルタリング信号163の位相とマッチするように、設計されている。当業者であれば自明であるように、本発明の範囲を逸脱することなく上述の成果を達成するために、種々の様々な増幅器および補償回路、ソフトウェア、またはディジタル信号プロセッサを実装することができる。
【0019】
その後、静止形励磁機の出力電圧制御にすでに用いられている通常の制御信号に、補助制御信号165を加えることによって、結果として得られた補助制御信号165を静止形励磁システム154に導入することができる。
【0020】
図1Cには、本発明の基本原理に従い、補助制御信号を静止形励磁システムにどのようにして注入できるのかを概念的に示すブロック図が示されている。
図1Bに示した破線のブロック168内の複数の要素は、
図1Cでは単一のブロック要素168としてまとめられている。ブロック168は補助制御信号165を発生し、この信号を加算器184によって、電圧調整器156からの制御信号181と合成することができる。このようにして合成された制御信号186を利用して、発電機界磁190に印加される界磁電圧188を発生させるために、静止形励磁システム154の挙動を制御することができる。
【0021】
当業者であれば自明であるように、信号165と181を合成するために、本発明の範囲を逸脱することなく、数多くの様々な手法が考えられる。具体的には、制御信号が発電機の電圧制御に不利な作用を及ぼさないように、または発電機端子電圧または無効電力にバイアスがかからないように、制御信号を標準的な発電機電圧制御ループ内に注入することができる。
【0022】
動作中、静止形励磁システム154によって出力される界磁電圧の増加および減少は、発電機から取り出される静止形励磁システムの電力量の増減に比例する。定常状態において静止形励磁システムは、予め求められた動作電圧を発生し、発電機から予め定められた電力量を取り出す。したがって、静止形励磁システムにより供給された電圧が、その定常状態の動作電圧から増加または低減すると、発電機から取り出される電力がそれぞれ増加または低減する作用が及ぼされることになる。静止形励磁システムにより発電機から取り出される電力が増加すると、回転中の発電機の軸に対し、軸駆動方向での軸の回転に抵抗するドラッグ作用がはたらく。静止形励磁システムによって取り出される電力が減少すると、ドラッグ作用が小さくなり、その結果、軸駆動方向において軸回転速度が増加する。
【0023】
図2Aおよび
図2Bには、本発明の基本原理による静止形励磁制御システムの信号波形の一例が示されている。
図2Aにおいて縦軸202は、回転中の発電機の測定された軸速度と、と予期された軸速度との差を表す。横軸204は時間を表し、信号163が周期”t”206を有することを示している。信号163(
図1B参照)を、バンドパスフィルタ164によりフィルタリングされた信号とすることができる。信号163は、正の振幅値の部分212を有しており、この部分は、発電機軸が軸駆動方向と同じ回転方向で振動していることを表している。これに対し領域214において信号163によって表されているのは、軸が軸駆動方向とは逆の回転方向で振動していることである。領域212と214は、ゼロクロス点216でつながっている。これらの振動の周波数と振幅は、「振幅」210と「周期t」206というパラメータによって取得される。
【0024】
位相補償および利得回路166は、信号163を受信して、
図2Bに示されているような適切な出力信号165を発生させることができる。上述のように、信号163が領域212にあるときには、静止形励磁システム154によって取り出される電力を増加させることにより、発電機の軸にドラッグをかけることができる。この増加は、制御信号165の第1部分222によって表されている。軸が予期された速度よりもゆっくり回転している場合(たとえば部分214)、静止形励磁システムの電圧によって取り出される電力を低減して、軸の回転速度を効果的に増加させることができる。
【0025】
制御信号165の振幅230を、実験を通して経験的に導出してもよいし、および/または、実装されている任意の特定の静止形励回路について、制御信号165のレベルと、発電機の軸回転速度に結果として及ぼされる作用との間における相関関係を求めるためのテストを通して、導出してもよい。したがって、回転中の軸に望ましい作用を及ぼす制御信号165を発生させることができるよう、増幅器の利得を設定することができる。制御信号165のタイミングは、
図2Aに示されているゼロクロス点216から算出可能な振動周波数をベースとする。たとえば10Hzの回転振動であれば、
図2Aの信号163の場合、0.1秒の周期となる。この周期のうち一方の半周期(すなわち0.05秒)の間、軸は予期された速度よりも速く回転し、つまりこのとき制御信号165は正の振幅を有する。この周期のうち他方の半周期の間、軸は予期された速度よりも遅く回転し、制御信号165は負の振幅を有する。位相補償回路166によって、制御信号165の位相に基づき、発生中の回転振動を打ち消すような静止形励磁システム154の電圧が確実に発生するようになる。
【0026】
当業者であれば自明であるように、本発明の範囲を逸脱することなく、フィードバックおよび制御システムを様々な方式で設計することができる。たとえば、制御信号の極性を既述の極性とは逆にしてもよく、その場合には、やはり望ましい方向(すなわちねじれ振動とは反対方向)で軸の回転を生じさせるように、回路を設計する。
【0027】
このようにして、既存の電力設備にすでに設けられている静止形励磁システムのコンポーネントの利点を生かす手法によって、ねじれ振動の安定化を達成することができる。付加的なコンポーネントがあるとすれば、検知および処理を行う低電力の機器である。そして電力施設のオペレータは、産業用負荷の顧客に頼ってその顧客のプロセスまたは施設を変更してもらうことなく、発電所内で内部的にねじれ振動の制御を実施することができる。
【0028】
図3には、本発明の基本原理による静止形励磁システムを制御するための方法の一例を示すフローチャートが示されている。ステップ302において、発電機の軸の瞬時回転速度が検出される。上述のように、どのくらいの速さで軸が回転しているのかを求めるために、様々な方法やセンサを利用することができる。軸の速度がサンプリングされるレートは、発生しそうなねじれ振動の周波数範囲に依存する。たとえばこの範囲として、約5〜20Hzの範囲のねじれ振動を挙げることができる。この周波数範囲内のねじれ振動の場合には、ミリ秒ごとに速度を読み出せばよい。
【0029】
ステップ304において、軸速度が検波されてねじれ振動信号が形成され、この信号において、振幅とねじれ振動周波数を検出することができる。この場合、発電機の軸は、予め求められた速度で第1の回転方向に駆動されている。したがって、測定された軸速度と予め求められた速度との差によって、軸がどの程度ねじれ振動しているのかが表される。振動の第1部分において、軸の駆動方向と同じ方向に軸がねじれ、振動の第2部分において、駆動されている状態とは反対の方向に軸がねじれる。測定された軸速度と予め求められた軸速度との差の大きさによって、ねじれ振動の振幅が表される。振動の方向がどれくらい速く変化するするのかによって、ねじれ振動の周波数が表される。このためステップ304において、これら2つの値(すなわち振幅と周波数)を求めることができる。少なくとも1つの実施形態によれば、ねじれ振動の振幅と周波数を明示的に計算しなくてもよい。その場合であれば制御信号を、理想的な軸回転速度からの瞬時速度の偏差に基づくようにすればよい。この実施例では、瞬時速度の偏差の値(すなわち
図1Bの信号161)がサンプリングされ、ついでその信号をバンドパスフィルタ処理(または位相シフトしてフィルタリング)することができる。その後、フィルタリングされた信号サンプルを適切な大きさで増幅して、制御信号(すなわち
図1Bの信号165)を発生させることができ、この信号が電圧調整器(すなわち
図1Bの156)にフィードバックされる。換言すれば、ねじれ速度の明示的な増幅が計算されるわけではなく、フィルタリングされた信号値がどのような値になろうとも、予め定められた利得で増幅される。このようにして、検出された瞬時速度の偏差に基づいて、制御信号が固有の特性によって、適正な極性、適正な振幅および適正な周波数で適用される。
【0030】
ステップ306において、ねじれ振動の振幅に基づき制御信号の振幅が決定される。たとえば制御信号を、瞬時速度の偏差に基づくものとしてもよいし、または、1つのねじれ振動の1つの半周期中に測定された最大振幅に基づくものとしてもよい。上述のように増幅器(または同様の回路)は、発電機の軸を適正な方向および望ましい速度で回転させるようにする制御信号を発生させる利得を有するように、構成されている。ステップ308において、ねじれ振動の周波数を用いて、適切な長さの期間にわたり制御信号を適用する。すでに述べたように、ねじれ振動の1周期が0.1秒であれば、一方の極性でその周期の一方の半周期にわたって、ついで逆の極性でその周期の他方の半周期にわたって、制御信号を適用することができる。ねじれ振動に起因して、軸が駆動される速度よりも速く軸が回転させられているならば、制御信号によって、静止形励磁システムが発電機から取り出す電力を増加させる。これによって実際には、軸が駆動されている状態とは逆方向で軸が回転させられるようになる(すなわち軸が減速する)。ねじれ振動に起因して、軸が駆動される速度よりも遅く軸が回転させられているならば、制御信号によって、静止形励磁システムが発電機から取り出す電力を減少させる。これによって実際には、軸が駆動されている状態と同じ方向で軸が回転させられるようになる(すなわち軸が加速する)。
【0031】
これまで本発明の特別な実施形態について例示して説明してきたけれども、当業者に自明のとおり、本発明の着想および範囲を逸脱することなく、それらとは異なる様々な変更や変形を行うことができる。したがって添付の特許請求の範囲おいては、本発明の範囲内にあるそのような変更や変形すべてをカバーすることを意図している。