(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6208210
(24)【登録日】2017年9月15日
(45)【発行日】2017年10月4日
(54)【発明の名称】プログラマブル電気コンバータのためのシステム及び方法
(51)【国際特許分類】
H02K 19/10 20060101AFI20170925BHJP
H02K 19/36 20060101ALI20170925BHJP
H02K 19/22 20060101ALI20170925BHJP
【FI】
H02K19/10 Z
H02K19/36 D
H02K19/22
【請求項の数】10
【全頁数】16
(21)【出願番号】特願2015-503619(P2015-503619)
(86)(22)【出願日】2013年3月28日
(65)【公表番号】特表2015-512608(P2015-512608A)
(43)【公表日】2015年4月27日
(86)【国際出願番号】US2013034495
(87)【国際公開番号】WO2013149088
(87)【国際公開日】20131003
【審査請求日】2016年3月25日
(31)【優先権主張番号】13/842,953
(32)【優先日】2013年3月15日
(33)【優先権主張国】US
(31)【優先権主張番号】61/617,018
(32)【優先日】2012年3月28日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】514244376
【氏名又は名称】リー, ランダル
(74)【代理人】
【識別番号】100109726
【弁理士】
【氏名又は名称】園田 吉隆
(74)【代理人】
【識別番号】100101199
【弁理士】
【氏名又は名称】小林 義教
(72)【発明者】
【氏名】リー, ランダル
【審査官】
池田 貴俊
(56)【参考文献】
【文献】
特開昭49−113112(JP,A)
【文献】
特開2001−275321(JP,A)
【文献】
特開2007−259575(JP,A)
【文献】
特開2003−199306(JP,A)
【文献】
特開昭54−071310(JP,A)
【文献】
特開2005−348512(JP,A)
【文献】
特開平02−036759(JP,A)
【文献】
国際公開第2011/077599(WO,A1)
【文献】
米国特許出願公開第2003/0127931(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 19/10
H02K 19/22
H02K 19/36
(57)【特許請求の範囲】
【請求項1】
第1の側及び第2の側を有しかつ複数のアーマチュアコイルを含むアーマチュアであって、各アーマチュアコイルに2本のアクティブレグ及び2本のアーマチュアリードが結合された、アーマチュアと、
前記アーマチュアの前記第1の側に隣接して設けられかつ前記アーマチュアに対して可動なロータであって、各々がN極及びS極を含む複数の一時的磁場が印加されるよう動作可能な着磁材料を含むロータと、
前記アーマチュアの前記第2の側に隣接して及び前記ロータに近接して設けられた複数の界磁コイルセルであって、前記アーマチュアが前記ロータと複数の界磁コイルセルとの間に介在しており、前記複数の界磁コイルセルは、電力を受けて励磁され磁場を生成して前記ロータに前記複数の一時的磁場を印加するよう動作可能である、複数の界磁コイルセルと、
前記複数の界磁コイルセルの前記励磁を制御するために前記複数の界磁コイルセルに結合された制御回路構成であって、前記ロータに印加される前記複数の一時的磁場を動的に制御するために前記複数の界磁コイルセルの一又は複数を選択的に励磁するよう動作可能な制御回路構成であり、複数の制御回路を含み、前記複数の制御回路のうちの一の制御回路が前記複数の界磁コイルセルのうちの各界磁コイルセルに結合して各界磁コイルセルを独立に制御可能にする、制御回路構成と
を含むプログラマブル電気装置であって、
前記ロータの前記アーマチュアに対する運動は、前記複数の一時的磁場の一又は複数に、前記複数のアーマチュアコイルの一又は複数において電位を生成させ、
前記複数のアーマチュアコイルの一又は複数を流れる電流は、前記複数の一時的磁場の一又は複数に磁力を付与する磁場を造り出し、前記ロータを前記アーマチュアに対して運動させる、
プログラマブル電気装置。
【請求項2】
前記制御回路構成は、前記ロータに印加される前記複数の一時的磁場を動的に制御するために、前記複数の界磁コイルセルを選択的に励磁することにより前記ロータ上で発揮される前記磁力の大きさを変動させるよう動作可能である、請求項1に記載のプログラマブル電気装置。
【請求項3】
前記アーマチュアリードにDC電力が供給され連続的にパルスされて前記アーマチュアに回転磁場が生み出され、かつ、DC電力が前記複数の界磁コイルセルに供給されて前記複数の一時的磁場の一又は複数が前記ロータに印加される場合、前記アーマチュア及び前記ロータはDCモータとして動作可能であり、前記回転磁場は前記磁力を前記複数の一時的磁場の一又は複数に発揮して前記ロータを前記アーマチュアに対して運動させる、請求項1に記載のプログラマブル電気装置。
【請求項4】
前記ロータに入力が印加されて前記ロータを前記アーマチュアに対して運動させ、かつ、DC電源が前記複数の界磁コイルセルの一又は複数に結合されて前記複数の一時的磁場を前記ロータに印加するとき、前記アーマチュア及び前記ロータはDC発電機として動作可能であり、前記ロータの前記アーマチュアに対する前記運動は前記複数のアーマチュアコイルにおいてDC電位を生み出す、請求項1に記載のプログラマブル電気装置。
【請求項5】
前記DC電位は前記界磁コイルセルに印加される前記電流の振幅、前記界磁コイルセルのデューティサイクルの周波数及び時間、並びに前記ロータの前記アーマチュアに対する前記運動の速度により制御される、請求項4に記載のプログラマブル電気装置。
【請求項6】
前記DC電位が第1の方向に生み出されその後第2の方向に生み出されて、前記アーマチュアコイルの前記アーマチュアリードでAC電位が生み出されるような期間にわたって前記複数の一時的磁場は持続する、請求項4に記載のプログラマブル電気装置。
【請求項7】
前記ロータに入力が印加されて前記ロータを前記アーマチュアに対して運動させ、かつ、DC電源が前記複数の界磁コイルセルの一又は複数に結合されて前記複数の一時的磁場を前記ロータに印加するとき、前記アーマチュア及び前記ロータはAC発電機として動作可能であり、前記DC電力により前記ロータに第1の方向に印加される前記複数の一時的磁場の極性を、前記DC電力を第2の方向に印加することにより切り替えることができるよう、前記界磁コイルセルに供給される前記DC電力は双方向であり、
前記ロータの前記アーマチュアに対する前記運動、及び、前記ロータに印加される前記複数の一時的磁場の前記極性の前記切り替えは、前記複数のアーマチュアコイルにAC電位を生み出す、請求項1に記載のプログラマブル電気装置。
【請求項8】
前記ロータに隣接した一又は複数のアーマチュアコイルを有する第2のアーマチュアであって、前記ロータの第2のアーマチュアに対する運動が、前記複数の一時的磁場の一又は複数に、前記第2のアーマチュアのアーマチュアコイルの一又は複数において電位を生成させる、第2のアーマチュア
をさらに含む、請求項1に記載のプログラマブル電気装置。
【請求項9】
前記ロータの前記アーマチュアに対する前記運動は線形である、請求項1に記載のプログラマブル電気装置。
【請求項10】
多重動作モードで動作可能なプログラマブル電気装置において一時的磁場を利用する方法であって、
表面に着磁材料を有するロータを提供することと、
前記ロータに近接して設けられるアーマチュアと複数の界磁コイルセルとを提供することであって、前記アーマチュアは前記ロータと前記複数の界磁コイルセルとの間に介在する複数のアーマチュアコイルを有し、前記アーマチュアコイルの各々には2本のアクティブレグと2本のアーマチュアリードとが結合される、提供することと、
制御回路構成であって、複数の制御回路を含み、前記複数の制御回路のうちの一の制御回路が前記複数の界磁コイルセルのうちの各界磁コイルセルに結合して各界磁コイルセルを独立に制御可能にする、制御回路構成に前記複数の界磁コイルセルを結合することと、
前記複数の界磁コイルセル内に磁場を生成するため前記複数の界磁コイルセルの一又は複数を選択的に励磁することにより、前記ロータに複数の一時的磁場を印加することであって、前記一時的磁場はN極及びS極を含む、印加することと、
前記複数の一時的磁場に、前記複数のアーマチュアコイルの少なくとも1つにおいて電位を生成させるため、前記ロータを前記アーマチュアに対して第1の動作モードで運動させることと、
第2の動作モードで前記複数のアーマチュアコイル内に磁場を生成し、前記複数の一時的磁場に磁力を付与して前記ロータを前記アーマチュアに対して運動させるために、前記複数のアーマチュアコイルの前記少なくとも1つに電力を印加することと
を含む方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本開示は、その内容が参照されることにより全体的に本出願に明示的に組み入れられる、2012年3月28日出願の「SYSTEM AND METHOD FOR A PROGRAMMABLE ELECTRIC CONVERTER」と題する米国仮特許出願第61/617,471号の優先権を主張する。本開示はまた、その内容が参照されることにより全体的に本出願に明示的に組み入れられる、2013年3月15日出願の「SYSTEM AND METHOD FOR A PROGRAMMABLE ELECTRIC CONVERTER」と題する米国特許出願第13/842,953号の優先権も主張する。
【0002】
本発明は概して電気コンバータの分野に関し、より詳細にはプログラマブル電気コンバータに関するが、これに限定するものではない。
【背景技術】
【0003】
電磁式機械は発電機としてもしくはモータとして、又は同時にこれら2つとして使用されてきた。電磁式機械の動作は、機械の駆動に使用されるエネルギのタイプによって及び機械の動作から得られるエネルギのタイプによって決定される。例えば、電気エネルギが機械に送られ機械エネルギが機械から取り除かれる場合、機械はモータとして動作する。同様に、機械エネルギが機械に送られ電気エネルギが機械から取り除かれる場合、機械は発電機として作用する。電気エネルギを機械に送り、機械から電気エネルギと機械エネルギとの両方を取り除くことによるなどして、機械がモータ及び発電機の両方として作用する場合もあり得る。
【0004】
一般的に、電磁式機械はロータ及びステータを含むのが通常であり、これらコンポーネントの一又は両方は電気的に誘導される磁極を有する。磁極から発せられる磁束線は回転運動にエネルギを与える又はその近傍に設けられた導体において電流を誘起する働きをする。このような電磁式装置は、円の外周に配置され一般的に静止したC型磁石を含み、C型磁石の開口部を介して連通する円の外周に配置された複数のコイルを有する。
【0005】
永久磁石を介してコイルを回転させるために外部トルク力などの機械エネルギが中央シャフトに印加された場合、機械は発電機として動作する。発電機モードで動作する際、外部トルク源によってシャフトを(次いでこれによりロータ及び磁石を)回転させ、磁石と巻線との相互作用により、スロット内の巻線をループする磁束が生じる。ロータが回転するにつれ、ステータ構造の磁束は変化し、変化する磁束によって巻線に電圧が生成され、結果として、電気的装置への電力供給に使用される又は後で使用するために保存される出力電流となる。モータモードで動作する際、外部電源からの電圧がステータ巻線に印加され、これが巻線を流れる電流を引き起こし、結果として、歯部とバックアイアンとにより形成される磁気回路に生じる磁束となる。電流が適切な方式で巻線に供給されると、ロータは回転させられてこれにより有用なトルクを生み出す。このような機械の動作はよく知られている。
【0006】
従来技術の電磁式機械は、これらの有用性を何らかの形で限定してしまう様々な制約に悩まされてきた。例えば、発電機として動作する永久磁石電磁式機械の周波数及び電圧は、ロータの速度変動によってしか変動させることができず、ロータの回転が独立制御できない状況下ではこれら発電機の有用性を制限している。
【0007】
電流の高速変化はモータ磁界のインダクタンスにより妨げられるため、整流子タイプのモータは高周波ACではうまく動作しない。整流子タイプのユニバーサルモータは50Hz及び60Hzの家庭用機器にはよく見られるが、これらは1kW未満の小型モータであることが多い。誘導モータは50から60Hz程度の周波数ではうまく動作することが知られているが、例えば133Hzの周波数ではうまく動作しない。誘導モータの磁界の磁極数と交流電流の周波数と回転速度との間には固定的な関係が存在し、したがってある基準速度は周波数の選択を限定する(この逆も当てはまる)。
【0008】
低速レシプロエンジンにより動作する発電機は、例えば高速蒸気タービンにより動作する発電機よりも、所与の数の磁極に対し低い周波数を生み出す。非常に低速の原動機速度のために、高周波ACを提供するのに十分な極を伴う発電機を製造することは、コスト高となるであろう。さらに、低速では、2つの発電機を同じ速度へと同期させる方が容易であることが判明した。低速エンジンの速度を上げる方法としてはベルト駆動が通常であったが、非常に大きい定格(数千キロワット)でこれらは高価かつ非効率であり、不安定であった。高速機械のより安定した回転速度により、回転変流器の整流子の満足のいく動作が可能であった。式:n=(120*f)/pを使用してRPMの同期速度Nが算出され、ここでfはヘルツの周波数でありPは極数である。
【0009】
したがって、一般的に電磁式機械の制御性の改善が望まれる。これに伴い、従来技術の上述の及び他の限界に対処する、改善された電磁式機械を提供する必要がある。
【発明の概要】
【0010】
本発明によれば、プログラマブル電気コンバータのためのシステム及び方法が提供される。
【0011】
本発明の一態様によれば、一又は複数のアーマチュアに対して可動なロータに一時的磁場を印加するため、独立して制御される界磁コイルを使用する電気コンバータが提供される。
【0012】
上述の要約は、本発明の実施形態の各々又は全ての態様を表すことを意図していない。特定の実施形態は記載された利点の一又はいくつかを含み得るが含まないこともあり得る。
【0013】
本発明による方法及び装置は、後述の「発明を実施するための形態」を下記の添付図面と組み合わせて参照することにより、完全に理解されるであろう。
【図面の簡単な説明】
【0014】
【
図1】プログラマブル電気コンバータの一実施形態の側断面図である。
【
図2】
図1のプログラマブル電気コンバータの、回転軸に垂直な断面図を示す。
【
図3】
図1のプログラマブル電気コンバータの分解斜視図を示す。
【
図4】
図1のプログラマブル電気コンバータの界磁コイルセルの斜視図を示す。
【
図5】
図4の界磁コイルセルの別の実施形態を示し、界磁コイルセルに統合されたアーマチュアコイルを示す。
【
図6】
図1のプログラマブル電気コンバータの、ロータの一実施形態の斜視図である。
【
図8】
図1のプログラマブル電気コンバータの、ロータの異なる実施形態の図である。
【
図9】
図1のプログラマブル電気コンバータの一実施形態で、アーマチュアアセンブリがどのように真空バリアとして使用され得るかを示す。
【
図10】
図1のプログラマブル電気コンバータのフレームを形成するエンドプレート及びスペーサの斜視図である。
【
図11】
図1のプログラマブル電気コンバータのアーマチュアアセンブリの斜視図である。
【
図12】マルチディスクプログラマブル電気コンバータの一実施形態の部分的な分解図である。
【
図13】マルチディスクプログラマブル電気コンバータの一実施形態を示す。
【
図14A】マルチディスクプログラマブル電気コンバータに使用するインダクタを有する、回路基板の一実施形態の図である。
【
図15】動作中のマルチディスクプログラマブル電気コンバータの一実施形態の図解である。
【
図16】リニアプログラマブル電気コンバータの一実施形態の分解図である。
【発明を実施するための形態】
【0015】
図1から
図3には、プログラマブル電気コンバータ100の一実施形態が示されている。図示の実施形態で、ロータ101は、軸受キャップ106を通って延びる1本のシャフトの回転軸の両側に突出部を有し、両側に設けられたエンドプレート105を介して回転可能に定位置に固定され、かつ軸受アセンブリ(103、104、106、109)を有する。ロータの外周上にはロータ101内に磁場110を誘導するための複数のCコア界磁コイルセル108が設けられ、ロータ101と界磁コイルセル108との間にアーマチュア107が設けられる。
【0016】
幾つかの実施形態で、プログラマブル電気コンバータ100のロータ101の回転軸は水平軸又は垂直軸上にある。動作中、一又は複数のアーマチュア107に対して回転可能な円筒形ロータ101に一時的磁場110を印加するために、プログラマブル電気コンバータ100の界磁コイルセル108は独立して制御可能である。各アーマチュア107は複数のアーマチュアコイルを含み、各アーマチュアコイルは、これに結合された2つのアクティブレグ及び2つのアーマチュアリード111を有する。アーマチュアリード111の一又は複数は、各アーマチュア107を一又は複数の位相へと構成するよう、電気的に結合される。図示の実施形態で、アーマチュア107は合計で8つのコイルを含み、すなわち16本のアクティブレグを含む。しかしながら、アーマチュア107には任意の数のアーマチュアコイルを使用してよい。
【0017】
図示の実施形態で、C型の独立制御される界磁コイルセル108は各々、2つの磁極面を有し、界磁コイルセル108はロータ101の外周に設けられる。図示のように、各磁極面がアーマチュア107のアーマチュアコイルのアクティブレグと整列するよう、各界磁コイルセル108はアーマチュア107に整列される。動作中、界磁コイルセル108に印加された電流は、各々がN極及びS極を有する複数の一時的磁場110(
図2には1つのみ示す)をロータ101に付与する。界磁コイルセル108に印加される電流の方向は、ロータ101に印加される磁場の方向を決定する。動作の第1のモードでは、アーマチュア107に対するロータ101の運動により電位が生成され、ロータ101における複数の一時的磁場110は、アーマチュア107のアーマチュアコイルにおいてDC電位を生み出す。一時的磁場110のN極がアーマチュアコイルのアクティブレグの1本に印加され、同時に一時的磁場110のS極がアーマチュアコイルの別のアクティブレグに印加されるとき、電流は第1の方向でアーマチュアコイルを通って流れる。アーマチュアコイルのアクティブレグの各々に印加される磁場の方向を切り替えることにより、電流の向きを切り替えることができる。一時的磁場110の強度が減退し所望の出力電圧を下回ると、界磁コイルセル108は再パルスされ、さらなる一時的磁場110を付与する。ロータ101への磁場110の磁気印加は一時的なものであり、印加時間は、とりわけロータ101の磁気特性による。
【0018】
動作中、ロータ110のあるエリアに印加される磁場110は一時的であり、必要に応じ増強又は書き換え可能である。ロータ101への磁場110の強さと向きとを選択的に制御できることにより、どのアーマチュアをいつ駆動するかの制御が可能であり、ロータ101の極数を一極(同極)から所望の数へと動的に変更することが可能となる。幾つかの実施形態では、ロータ101の極数がアーマチュア107のアーマチュアコイルの数と等しいことが望まれる。したがって、例えば界磁コイルセル108の動的な及び選択的なゲーティングにより、幅広い電圧及び周波数のAC、DC、又は同極機械としてのユニバーサルコンバータが達成される。プログラマブル電気コンバータ100のプログラム可能性により、単一の機械を、例えば60Hzにおける480V、50Hzにおける400V及び/又は特定の使用基準に基づく他の環境などの、複数の異なる環境での使用のために構成することができる。さらに、極数が動的に可変であることは、プログラマブル電気コンバータ100がモータとして動作する際に、電圧又は速度から独立してトルクを制御できるということを意味する。
【0019】
幾つかの実施形態で、極及び界磁電流は、界磁コイルセル108の一又は複数が故障した場合を許容するよう、ロータ101の周囲で放射状に転回されうる。例えば、界磁コイルセル108の一又は複数が故障した場合、悪い界磁コイル108をスキップするよう、極をロータ101で再マッピングすることができる。幾つかの実施形態では、プログラマブル電気コンバータ100を完全にパワーダウンする必要なしに、故障した界磁コイルセル108を新しい界磁コイルセルに置き換えることができる。
【0020】
図4及び
図5には、Cコアタイプの界磁コイルセル108の実施形態が示される。界磁コイルセル108はCコア界磁コイルセルとして示されるが、任意の数の異なる界磁コイルセル構成が利用され得る。図示の実施形態では、界磁コイルセル108は積層鋼構築で形成されており、各Cコア界磁コイルセル108は、周囲に互いに直列の2つの巻線112を有し、各巻線112がCコア内で同方向に磁束を生み出すよう巻装される。各巻線112は、DC電源などの別個の電源(図示せず)に結合されており、巻線112を通る電流の双方向制御を可能にするために、電源と巻線112との間に絶縁ゲートバイポーラトランジスタ(IGBT)118を有する。各界磁コイルセル108の独立制御のために双方向IGBT118を使用することにより、プログラマブル電気コンバータ100は、異なる方向の磁場を含む複数の異なる一時的磁場を、ロータ101へと同時に印加することができる。上述のように、各N極をアーマチュアコイルの1本のレグと整列させ、各S極を同じアーマチュアコイル内の別のレグと整列させることにより、アーマチュア107の各アーマチュアコイルに相補的な電位を造り出す。さらに、ロータ101に印加される一時的磁場を選択的に制御できることにより、ロータ101の位置に依拠しない柔軟な動作性が与えられる。加えて、界磁コイルセル108におけるIGBT118のゲーティング周波数を制御することにより、アーマチュア107の出力周波数の規定が可能となり得る。界磁コイルセル108の電流の閉ループ電流制御を介して、アーマチュアコイル出力電圧の制御が達成され得る。分配された多重界磁コイル設計の潜在的利益は、熱損失が複数のCコア及び付随するIGBT間で分配され廃熱が容易となることである。幾つかの実施形態で、一又は複数の一次励磁コイルに加えて、別個のモータ巻線回路(motoring winding circuit)、別個の磁気軸受巻線、及び/又は別個のダンピング回路などの、多重並列巻線が界磁コイルセル積層物に含まれてもよい。
【0021】
幾つかの実施形態で、ロータ101は真空内に設けられ得、界磁コイルセル108は真空の外側に設けられ得る。幾つかの実施形態で、界磁コイルセル108は強制的に空気冷却され、巻線112は低インピーダンスかつ高レスポンス性をもたらす低ターン高電流巻線であり得る。幾つかの実施形態で、高放電をもたらすために電源はコンデンサ119を含み得る。幾つかの実施形態で、界磁コイルセル108の各々又は界磁コイルセル108群は、IGBT118及びドライバを搭載するために一又は複数の回路基板114に結合され得る。幾つかの実施形態で、故障したアーマチュアコイル115の運用性を改善するために、個々のアーマチュアコイル115は界磁コイルセル108の一部として組み立てられ得る。幾つかの実施形態で、Cコアの積層物はMETGLAS、又はアモルファス金属合金、又は磁気損失の低い他の材料で作成され得る。
【0022】
ここで
図6から
図8を参照すると、
図1のプログラマブル電気コンバータ100での使用に適したロータ101の様々な実施形態が示されている。様々な実施形態でロータ101は鋼製であり得、ロータの外面の形状及び材料特性は設計基準により変動し得る。幾つかの実施形態では、ロータ101に設けられる着磁性材料の量を削減することで効率化が図られる。
図6に示すように、幾つかの実施形態で、外面に設けられた複数のリング(116a〜c)を含む、複合設計を有するロータ101が使用され得る。幾つかの実施形態では、アーマチュアコイルの有効長の下に一又は複数の透磁性リング116bが配置され、非磁性リング116a及び116cの間に介在し得る。幾つかの実施形態で、非磁性リング116a及び116cはロータ101の突出部及び/又はロータ101に固定された別個のリングであり得る。様々な実施形態では、損失を減らすために、透磁性リング116bはスロットされ得る及び/又はリング116bは積層で構築され得る。
【0023】
図7に示すように、幾つかの実施形態で、ロータ101は一般的に、回転軸に沿って上部及び底部に突出部を有するモノリシックな鋼設計の中実円筒であり得る。ロータ101の材料は、特に材料の密度及び磁場持続性を含む、その物理的特性に基づいて選択され得る。幾つかの実施形態では、ロータ101の物理的特性及び磁気特性を変動させるよう、ロータの様々な表面が処理され得る。例えば、ロータ101の外周の表面エリアを減らすことなくロータ101の重量を削減するために、上部及び底部側壁の部分が除去され得る。付加的に、幾つかの実施形態では、ロータ101の外面とロータ101の内部容積との間に磁気的な断絶を形成するために、ロータ101外周の内部に特定の深さの空洞を設けることができる。
図8に示すような幾つかの実施形態では、ロータ101の周囲に造られる複数の磁場を絶縁させるために、ロータ101の外面にスロット101aが形成され得る。幾つかの実施形態でスロット101aはロータ101の外周の高さ全体にわたって延びてよく、幾つかの実施形態でスロット101aは高さ全体より短くてよい。幾つかの実施形態でスロット101aの数は、ロータ101の周囲に設けられる界磁セルコイルの数に等しいか、又はその倍数であり得る。例えば
図2に示す実施形態において、ロータ101はアーマチュアコイルの長さ内に4つの突出部又は歯部を有する。幾つかの実施形態でロータ101は、任意選択の真空バリア内から真空引きするための、統合されたエアポンプを含む。様々な実施形態で、ロータの径、高さ、重量、表面形状、及び他の特性はプログラマブル電気コンバータ100の所望の入出力に依拠して処理され得る。幾つかの実施形態でロータ101は、ロータ101の指部(fingers)又はその近傍に設けられた着磁パッドを有する複合設計であり得る。
【0024】
幾つかの実施形態では、磁気スラスト軸受力など多方向の力を造り出し、アーマチュアの有効長の一端から他端とは差別的な半径方向速度を生み出すために、ロータ101の外周を斜角付け又は面取りすることができる。幾つかの実施形態で、一又は複数の軸受アセンブリは、半径方向荷重を受けるよう適合された玉軸受104(
図1に示す)であり得、及び/又は、一又は複数の軸受アセンブリは、スラスト荷重を受けるため玉軸受とピボット軸受109(
図1に示す)との両方を含み得る。このような実施形態でピボット軸受は高速及び高スラストが可能であり、玉軸受の径を小さくし、これにより半径方向速度を低下させることができる。
【0025】
ここで
図9を参照すると、ロータ周囲に真空を包含するために使用されるO(オー)リング117と共にアーマチュアアセンブリ107の内径に適用された任意選択の真空バリア102を有する、プログラマブル電気コンバータ100の一実施形態の切取図が示される。例えば高速応用などの幾つかの実施形態で空気抵抗は悪影響を及ぼすため、ロータ周囲に真空を造り出すことにより空気抵抗を低減することができる。真空バリア102は一般的に、界磁コイルセルとロータとの間の干渉を最小化するのに適した非磁性材料から形成され得る。非真空システムの場合、抵抗を減らすためにロータと界磁コイルセルとの間の間隙は最小限にされ得る。
【0026】
図10には、プログラマブル電気コンバータ100のエンドプレート105が示される。エンドプレート105はロータの上面及び底面に沿って設けられ、ロータ周囲のパタン化されたスペーサ113によって分割される。エンドプレート105は内表面に沿った肩部を含み、
図1に示すようにロータ101の周囲に設けられると肩部に対して界磁コイルセルが接する。界磁コイルセルに構造的支持を提供するために、スペーサ113の一表面又は両表面は、界磁コイルセルの表面に合致するよう適合される。幾つかの実施形態で、スペーサ113は側面をテーパさせることなどにより、励磁された界磁コイルセルとロータとの相互作用により造られた高い半径方向磁力の、エンドプレート105への伝達を容易にするように構成される。スペーサ113及びエンドプレート105は、例えば遮蔽をもたらすためにアルミニウムなどの非磁性材料で形成することができ、界磁コイルセル及び/又はスイッチ(IGBT群)からの熱を除去するために、一体型のヒートシンクフィーチャを内蔵してもよい。
【0027】
図11には、
図1のプログラマブル電気コンバータ100の一実施形態に使用されるアーマチュア107が示される。様々な実施形態で、アーマチュア107は、可能であれば真空バリアの外側に設けられる。図示の実施形態で、アーマチュア107は8つのアーマチュアコイル115を含み、各アーマチュアコイルは2本のアクティブレグ及び2本のアーマチュアリード111、すなわち合計16本のアクティブレグと16本のアーマチュアリード111とを有する。幾つかの実施形態でアーマチュア107は、例えば2本以上のアーマチュアリード111を互いに結合することにより、一又は複数の位相を含み得る。様々な実施形態で、共結合されるアーマチュアリード111群の数は、2から最大でアーマチュアコイル115の数の2倍にわたる。一又は複数のアーマチュアコイル115の共通のアーマチュアリード111をグループ化するために、任意の数の内部ブッシング(busing)構造が採用され得る。例えば、一又は複数のスイッチ(図示せず)がアーマチュアリード111間に設けられ得る。これらのスイッチは、直列、並列又は逆並列切り替え要素の組み合わせであり得る。アーマチュアアセンブリ107は、例えばスロット巻装された、もしくはボビン巻装された、アーマチュアコイル又はZ型コイルを使用して、強制対流冷却について最適化され得る。
【0028】
様々な実施形態で、本開示のプログラマブル電気コンバータは、(エネルギを吸収し機械的にロータで保存することによる)停電の場合の限られた期間に電力供給するための常時電力ソリューションとして及び/又はサージ防護機器としての使用に適合し得る。このような実施形態では、クリーンスリップ(すなわちジャストヒート)を提供する磁気クラッチカップリングにより、シャフトがエンジン発電セット(gen−set)に結合され得る。回転するロータに保存された慣性エネルギは、保存されたエネルギの幾分かを、ディーゼル発電機などの代替電源への伝達前に慣性発電セット起動に使用すると同時に、臨界負荷にライドスルー電力を生成するために使用され得る。他の実施形態では、プログラマブル電気コンバータが様々なシャフト入力を受け、規定の周波数及び電圧出力を提供できることにより、風力タービンの発電機としての使用も可能になる。幾つかの実施形態でプログラマブル電気コンバータは、ブレーキ及びロータの動的ダンピングにおける回生エネルギの捕捉により、トラクション駆動を提供するために利用され得る。このような実施形態で、一又は複数のプログラマブル電気コンバータは車両の各車輪に設けられ得る。幾つかの実施形態でプログラマブル電気コンバータは、精密な位置制御を伴うステッピングモータとして利用され得る。幾つかの実施形態では、異なる周波数の電力間の変換を行うために、2つのプログラマブル電気コンバータ(又は2つのアーマチュアを有する単一のプログラマブル電気コンバータ)をシャフト結合することができ、これは例えば、50Hz電源から一方のアーマチュアに入力してロータを動かす(motor)と同時に、他方のアーマチュアから60Hzで出力を生成することによって行われる。
【0029】
幾つかの実施形態ではAC及びDCの双方が同時に生み出され、ACは1つのアーマチュアコイルで生成されDCが別のアーマチュアコイルで生成される。幾つかのシャフト結合の実施形態で、1つのコンバータをACモータとして動作し他方をDC発電機として動作することにより、AC電力はDC電力へと変換され得る。幾つかのシャフト結合の実施形態で、1つのコンバータをDCモータとして動作し他方をAC発電機として動作することにより、DC電力はAC電力へと変換され得る。幾つかの実施形態でプログラマブル電気コンバータは、入力シャフトトルクと界磁コイルセルのDC電力とを使用して、高圧においてDC電力を生成するためのDC−DCコンバータとして動作し得る。
【0030】
幾つかの実施形態でプログラマブル電気コンバータは、精密な加速プロファイルを提供し、回生ブレーキエネルギを捕捉するため、磁気浮揚の応用において電磁推進を提供するために利用され得る。幾つかの実施形態でプログラマブル電気コンバータは、コイルガン又はレールガンに電力供給するため、反復パルス出力の使用によって対象を推進するために利用され得る。幾つかの実施形態では、必要に応じてステップアップ及びステップダウンの変換を提供するために、本開示のプログラマブル電気コンバータが複数、配電網全体にわたって分配され得る。幾つかの実施形態でプログラマブル電気コンバータは、効率対速度をバランスさせるためにコイルを追加又は除去することにより(すなわちプログラミングを介した動的トルク制御により)電圧を変化させることなく、モータトルクが可変であるモータとして利用され得る。様々なコンポーネントが独立して制御されることにより各々を異なる機能に割り当てることができるため、モータとして構成される場合、プログラマブル電気コンバータは従来の電気モータよりも高速及び円滑に方向転換が可能である。例えば、プログラマブル電気コンバータの幾つかのコンポーネントは電力を使用して第1の方向に動き、幾つかのコンポーネントは電力を生成し、幾つかのコンポーネントは同じ電力を使用して第2の方向に動き、各コンポーネントにより行われる仕事の割合はリアルタイム可変であり得る。
【0031】
図12から
図15には、ロータ202及び複数の静止した回路基板201から構成されるマルチディスクプログラマブル電気コンバータ200の一実施形態が示される。
図13に示すように、ロータ202はシャフト及びこれに沿って固定された複数のディスクから構成され、ロータ202の各ディスクはその上に設けられた着磁エリア202aを有する。様々な実施形態で各回路基板201は、バックアイアンとして作用する材料の層、アーマチュアコイルを有するアーマチュア(図示せず)、及び、選択的に励磁することが可能な、バックアイアンとアーマチュアコイルとの間に介在する複数の界磁コイル201a(
図14及び14aに示す)から構成される。
図12に示すマルチディスクプログラマブル電気コンバータの実施形態で、回路基板201は、ロータ202の着磁エリア202aへと磁場を印加するために励磁され得る界磁コイル201aのマトリクスを提供するために、ロータ202の各ディスク間にインタリーブ配置される。
図15に示すように、動作の第1モードで界磁コイル201aは、着磁エリア202aに磁力を付与するために選択的に励磁された後、次いでロータ202を回転軸に沿って回転させるよう着磁ドット202aへ磁力を付与するために選択的に励磁される。第2の動作モードで、ロータ202に印加された入力トルクは202aの着磁エリアを界磁コイル201aに対して移動させ、電気を生成する。
【0032】
幾つかの実施形態でロータ202の複数のディスクは、分離した複数の着磁ドット、一又は複数のより大きい着磁エリア、及び/又はより大きい着磁エリア内の、例えば孔などの複数の分離した非着磁エリアから構成され得る。ロータ202の一又は複数のディスク上のより大きい着磁エリア内に非着磁エリア又は孔が設けられた実施形態の第1の動作モードでは、界磁コイル201aの励磁により、界磁コイル201aがロータ202のディスク上に設けられた着磁エリアを引き付ける及び/又はそのような着磁エリアと反発するときにロータ202内に運動を付与する磁力が生み出される。第2の動作モードでは、ロータ202に印加されたトルクが、界磁コイル201aの極間でロータ202のディスクの着磁エリア及び非着磁エリアの運動を引き起こし、電気を生成する。幾つかの実施形態で、ロータ202のディスク間に設けられた界磁コイル201aは極小であり得、例えば集積回路上に設けられ得る。様々な実施形態で、高密度のエネルギ変換を提供するために回路基板201はロータ202のディスクと同軸に沿ってスタックされ得、ミクロレベルの低電圧で動作し得るが、システムレベルでは高電流及び高電圧を送ることができる。
【0033】
幾つかの実施形態で、マルチディスクプログラマブル電気コンバータ200の効率は、プログラマブル電気コンバータ200全体の体積に対するロータ202の体積の割合に関連する。界磁コイル201a及び着磁エリア202aが接触することになるアクティブエリアを最大化することにより、材料コストが削減され効率が上昇する。電磁場が距離の二乗に比例して減衰することはよく知られている。したがって幾つかの実施形態では、マルチディスクプログラマブル電気コンバータ200によりもたらされ得る比較的大きいエリア及び至近での接触により、放射エネルギ損失が減少する。様々な実施形態で、隣接する界磁コイル201aの磁気的結合を避けるため、界磁コイル201aは低電圧で動作し及び/又は互いから離間され得る。様々な実施形態で、磁場の生成又は印加された磁場の減衰に要する時間によって、マルチディスクプログラマブル電気コンバータ200の速度及びレスポンス性を選択的に制御するため、動作電圧が使用され得る。動作電圧を低下させることにより、磁場変調及び界磁コイル201aの周波数を高め、離間距離を短縮することが可能となる。幾つかの実施形態で、電磁コイル201aの列を時分割スケジュールで交互に活動化させることにより、近距離だけ離間した界磁コイル201a間の磁気的結合は減少する。幾つかの実施形態で、インダクタ基板の両側の磁束線が着磁エリア202aと相互作用するために使用され得、これにより磁気放射損失を低減させるよう、インダクタレイアウトをマルチレイヤ基板の下に作成し得る。幾つかの実施形態で、プリント回路基板はインダクタドライバを保持し、マイクロコントローラ又はFPGAに接続するコネクタを有し得る。
【0034】
図16には、ロッド301と、外表面に沿って設けられた複数の着磁エリア300aを有するロータ302とを含むリニアプログラマブル電気コンバータ300の実施形態が示される。様々な実施形態でロッド301は、バックアイアンとして作用する材料の層、ロッド301の内表面に設けられたアーマチュアコイル(図示せず)を有するアーマチュア、及び、バックアイアンとアーマチュアコイルとの間に介在する複数の界磁コイル300bを含む。この実施形態でリニアプログラマブル電気コンバータ300は、ロッド301内で前後に線形振動するロータ302を伴うソレノイドとして作用する。このような実施形態でアーマチュアコイルは、シャフト302を駆動するため着磁エリア300a上で磁力を発揮するか、又は、着磁エリア300aのアーマチュアコイルに対する運動から電流を生成するために利用され得る。図示の実施形態でシャフト302は、内表面に設けられた着磁エリア(図示せず)を伴い中空であり、ロッド301は外表面に設けられたアーマチュア及び界磁コイル(図示せず)を伴う内部ロッドを含む。幾つかの実施形態で、リニアプログラマブル電気コンバータ300を次のサイクルのためにリセットする復元力を提供するために、各端部に固定された磁石又はばねが存在してもよい。このタイプのリニアプログラマブル電気コンバータ300の機械的応用の1つは、車内の衝撃吸収としての使用を含み得、この場合上下運動が電力生成及び/又は運転の円滑化に使用され得る。幾つかの実施形態で、リニアプログラマブル電気コンバータ300は一般的に、電気機械変換器におけるプログラマブルコイル構成を含み得る。コイルの分散により、ドライバ/ピックアップコイルのアセンブリが独立して駆動され、機械的基板が部品の作用をリンクし、これらの部品を動的に可変な機能を伴う単一の電気機械システムに多重化する。ロータ302は、図示の実施形態でロッド301内での前後振動のためのサイズを有するが、他の実施形態ではロッド301の外面に隣接して振動するためのサイズを有してもよく、及び/又は、ロータ302は静止しロッド301がロータ302に対して運動してもよい。
【0035】
幾つかの実施形態で、アーマチュア及び界磁コイル及び着磁エリアは可撓性材料に埋め込まれてもよく、この材料の折り曲げを制御するために電気パルスが使用されてもよく、及び/又は、材料の運動が電気パルスとして感知され材料の配置及び配向を表してもよい。幾つかの実施形態で、プログラマブル電気コンバータはランニングシューズに装着されるように適合することができ、例えば点滅する安全LED灯又は無線パフォーマンスモニタに給電するための電力を生成し得る。他の実施形態で、可撓性材料のプログラマブル電気コンバータのシートが風で「フラップ」し、電力を生成し得る。様々な実施形態で、プログラマブル電気コンバータは電気機械変換器として動作し、この場合、スイッチ/コイル/ドットユニットアセンブリが、同じシステム内で機能の細分化及び専門化により時間及び空間によって特性が変動し得る圧電効果よりも望ましい。
【0036】
本発明による方法及び装置の様々な実施形態を、添付図面に例示し、上述の「発明を実施するための形態」に記載したが、本発明は開示された実施形態に限定されるものではなく、本発明の精神及び範囲から逸脱することなしに数多くの再構成、修正、及び代替が可能であるということが理解されるべきである。