(58)【調査した分野】(Int.Cl.,DB名)
前記入力トルク推定手段は、前記原動機の出力トルクと、前記原動機から前記補機に供給される補機駆動トルクと、から前記入力トルクを推定する、請求項2又は3記載のロックアップクラッチの制御装置。
【発明を実施するための形態】
【0019】
以下、図面を参照して、本発明の実施形態について説明する。
なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。
【0020】
まず、本実施形態にかかるロックアップクラッチの制御装置が適用された車両の駆動系と制御系の構成を説明する。なお、本実施形態では、自動変速機に、ベルト式無段変速機(以下、ベルト式CVT、又は、単に、CVTとも記す)が適用されたものを例示するが、自動変速機としては、トロイダルCVTなどその他の無段変速機や、有段変速機を適用することもできる。
【0021】
[全体システム構成]
図1は、本実施形態にかかる車両の駆動系と制御系を示す構成図である。
図1に示すように、車両の駆動系は、駆動源であるエンジン(原動機,内燃機関)1と、トルクコンバータ2と、前後進切替機構3と、ベルト式無段変速機構(自動変速機構)4と、終減速機構5と、駆動輪6,6と、を備えている。なお、トルクコンバータ2と前後進切替機構3とベルト式無段変速機構4とをトランスミッションケース内に収納することによりベルト式無段変速機(CVT)100が構成される。
【0022】
エンジン1には、スロットルバルブ開閉動作や燃料カット動作等により出力トルク制御を行なう出力トルク制御アクチュエータ10が装備される。これによって、エンジン1は、ドライバによるアクセル操作による出力トルクの制御以外に、外部からのエンジン制御信号による出力トルクの制御も可能になっている。
【0023】
トルクコンバータ2は、トルク増大機能を有する発進要素であり、トルク増大機能を必要としないとき、エンジン出力軸11(=トルクコンバータ入力軸)とトルクコンバータ出力軸21を直結可能なロックアップクラッチ20を有する。このトルクコンバータ2は、エンジン出力軸11にコンバータハウジング22を介して連結されたポンプインペラ23と、トルクコンバータ出力軸21に連結されたタービンランナ24と、ケースにワンウェイクラッチ25を介して設けられたステータ26と、を構成要素とする。
【0024】
また、ロックアップクラッチ20は、車両の状態や運転状態に応じてロックアップ状態(クラッチ完全締結状態)と、アンロックアップ状態(クラッチ完全解放状態)と、スリップロックアップ状態(クラッチ滑り締結状態、つまり、ロックアップクラッチの入力側の回転部材の回転数と、出力側の回転部材に差回転があるが、入力側から出力側へトルクが伝達されている状態)との何れかに、切り替え制御される。
【0025】
この切り替え制御と、ロックアップ状態やスリップロックアップ状態でのクラッチ係合力、即ち、クラッチのトルク伝達容量の制御は、ロックアップクラッチ20へ供給する供給油圧の制御により行なう。この供給油圧とは、ロックアップクラッチ20の前後の図示しない二つの油室の差圧、即ち、アプライ室のトルクコンバータ供給圧Paとレリーズ室のトルクコンバータ解放圧Prの差圧(ロックアップ差圧)ΔP(=Pa−Pr)であり、ロックアップクラッチ20の締結(スリップ締結も含む)を制御することから、ロックアップクラッチ締結圧とも称する。
【0026】
前後進切替機構3は、ベルト式無段変速機構4への入力回転方向を前進走行時の正転方向と後退走行時の逆転方向で切り替える機構である。この前後進切替機構3は、ダブルピニオン式遊星歯車30と、複数のクラッチプレートから成る前進クラッチ31(前進側摩擦締結要素)と、複数のブレーキプレートから成る後退ブレーキ32(後退側摩擦締結要素)と、を有する。
【0027】
前進クラッチ31は、Dレンジ(ドライブレンジ)等の前進走行レンジの選択時に前進クラッチ圧Pfcにより締結される。後退ブレーキ32は、後退走行レンジであるRレンジ(後退レンジ)の選択時に後退ブレーキ圧Prbにより締結される。なお、前進クラッチ31及び後退ブレーキ32は、Nレンジ(ニュートラルレンジ、非走行レンジ)の選択時、前進クラッチ圧Pfcと後退ブレーキ圧Prbをドレーンすることで、いずれも解放される。
【0028】
ベルト式無段変速機構4は、ベルト接触径の変更により変速機入力回転数と変速機出力回転数の比である変速比を無段階に変化させる無段変速機能を備え、プライマリプーリ42と、セカンダリプーリ43と、ベルト44と、を有する。プライマリプーリ42は、固定プーリ42aとスライドプーリ42bにより構成され、スライドプーリ42bは、プライマリ圧室45に導かれるプライマリ圧Ppriにより軸方向に移動する。セカンダリプーリ43は、固定プーリ43a及びスライドプーリ43bにより構成され、スライドプーリ43bは、セカンダリ圧室46に導かれるセカンダリ圧Psecにより軸方向に移動する。
【0029】
プライマリプーリ42の固定プーリ42a及びスライドプーリ42bの各対向面であるシーブ面、及び、セカンダリプーリ43の固定プーリ43a及びスライドプーリ43bの各対向面であるシーブ面は、何れもV字形状をなし、ベルト44の両側のフランク面は、これらの各シーブ面と接触する。スライドプーリ42b,43bの移動に応じて、プライマリプーリ42及びセカンダリプーリ43へのベルト44の巻付き半径が変更されることにより、変速比が変更される。
【0030】
終減速機構5は、ベルト式無段変速機構4の変速機出力軸41からの変速機出力回転を減速するとともに差動機能を与えて左右の駆動輪6,6に伝達する機構である。この終減速機構5は、変速機出力軸41と左右のドライブ軸51,51との間に介装され、変速機出力軸41に設けられた第1ギヤ52,アイドラ軸50に設けられた第2ギヤ53及び第3ギヤ54と、最終減速ギヤ55と、差動機能を持つディファレンシャルギヤ56とを有する。
【0031】
車両の制御系のうち、特にCVT100の制御系は、
図1に示すように、油圧コントロールユニット7と、CVT電子コントロールユニット(CVTECU)8と、を備えている。また、このCVT電子コントロールユニット8と情報を授受するエンジン電子コントロールユニット(エンジンECU)9が装備されている。なお、各電子コントロールユニット(ECU:Electric Control Unit)8,9は、入出力装置,多数の制御プログラムを内蔵した記憶装置(ROM,RAM,BURAM等),中央処理装置(CPU),タイマカウンタ等を備えて構成される。
【0032】
油圧コントロールユニット7は、プライマリ圧室45に導かれるプライマリ圧Ppriと、セカンダリ圧室46に導かれるセカンダリ圧Psecと、前進クラッチ31への前進クラッチ圧Pfcと、後退ブレーキ32への後退ブレーキ圧Prbと、ロックアップコントロールバルブ78へのソレノイド圧Psolとを作り出す制御ユニットである。この油圧コントロールユニット7は、オイルポンプ70と、油圧制御回路71と、を備え、油圧制御回路71は、ライン圧ソレノイド72と、プライマリ圧ソレノイド73と、セカンダリ圧ソレノイド74と、前進クラッチ圧ソレノイド75と、後退ブレーキ圧ソレノイド76と、ロックアップソレノイド77とを有する。
【0033】
ライン圧ソレノイド72は、CVTECU8から出力されるライン圧指示に応じ、オイルポンプ70から圧送される作動油を、指示されたライン圧PLに調圧する。
プライマリ圧ソレノイド73は、CVTECU8から出力されるプライマリ圧指示に応じ、ライン圧PLを元圧として指示されたプライマリ圧Ppriに減圧調整する。
セカンダリ圧ソレノイド74は、CVTECU8から出力されるセカンダリ圧指示に応じ、ライン圧PLを元圧として指示されたセカンダリ圧Psecに減圧調整する。
【0034】
前進クラッチ圧ソレノイド75は、CVTECU8から出力される前進クラッチ圧指示に応じ、ライン圧PLを元圧として指示された前進クラッチ圧Pfcに減圧調整する。
後退ブレーキ圧ソレノイド76は、CVTECU8から出力される後退ブレーキ圧指示に応じ、ライン圧PLを元圧として指示された後退ブレーキ圧Prbに減圧調整する。
【0035】
ロックアップソレノイド77は、CVTECU8からの指示により、ロックアップコントロールバルブ78への指示信号圧としてのソレノイド圧Psolを作り出す。ロックアップコントロールバルブ78は、ソレノイド圧Psolを作動信号圧として、ロックアップクラッチ20のクラッチ前後油室の差圧であるロックアップ差圧ΔP(ΔP=Pa−Pr)がCVTECU8からの指示に基づく値となるようにトルクコンバータ供給圧とトルクコンバータ解放圧とを作り出す。
【0036】
CVTECU8は、スロットル開度等に応じた目標ライン圧を得る指示をライン圧ソレノイド72に出力するライン圧制御、車速やスロットル開度等に応じて目標変速比を得る指示をプライマリ圧ソレノイド73及びセカンダリ圧ソレノイド74に出力する変速油圧制御、前進クラッチ31と後退ブレーキ32の締結/解放を制御する指示を前進クラッチ圧ソレノイド75及び後退ブレーキ圧ソレノイド76に出力する前後進切替制御を行なうとともに、ロックアップソレノイド77に指示を出力してロックアップクラッチ20の締結,解放,スリップ係合(クラッチ滑り締結)等の制御を行なう。
【0037】
このCVTECU8には、プライマリ回転センサ80,セカンダリ回転センサ81,セカンダリ圧センサ82,油温センサ83,エンジン回転数センサ84,ブレーキスイッチ85,スロットル開度センサ86,プライマリ圧センサ87,ライン圧センサ89,車速センサ90,アクセル開度センサ91,アイドルスイッチ92,エアコンコントローラ93等からのセンサ情報やスイッチ情報が入力される。また、エンジンECU9からはトルク情報が入力され、エンジン1へはトルクリクエストを出力する。ここで、図示しないインヒビタースイッチは、運転者のシフトレバーの操作によって選択されているレンジ位置(Dレンジ,Nレンジ,Rレンジ等)を検出し、レンジ位置に応じたレンジ位置信号を出力する。
【0038】
[ロックアップクラッチの制御装置の構成]
ところで、本実施形態にかかるロックアップクラッチの制御装置は、ロックアップクラッチ20をコンバータ状態からロックアップ状態へ切り替える締結制御時に、ロックアップクラッチ20の締結容量〔この「締結容量」は「クラッチ容量」とも称する〕の指示値(締結圧を制御ための目標値に相当する)を時間経過とともに増大するように演算し、演算した締結容量の指示値に基づいてロックアップクラッチ20の締結圧を制御する点に特徴がある。
【0039】
つまり、ロックアップクラッチ20の動作状態としては、トルクコンバータ2の入出力要素間を直結状態とするロックアップ状態(完全締結状態)と、該入出力要素間を完全解放し、流体を介してトルク伝達を行なうコンバータ状態と、ロックアップクラッチ20を半締結状態とし、該入出力要素間を所定のスリップ状態に維持するスリップ状態とがある。
【0040】
ロックアップクラッチ20の制御では、これらの3つの動作状態を、ロックアップクラッチ締結圧(=ロックアップ差圧ΔP)を変更して行なうが、特に、本締結制御においては、ロックアップクラッチ20のトルク伝達容量である締結容量の指示値T
LU(以下、単に、締結容量T
LUとも記す)を周期的に求めて、この締結容量T
LUに応じてオープンループ制御によりロックアップクラッチの締結圧の指示値P
LU(以下、単に、締結圧P
LUとも記す)を制御する。
【0041】
なお、ロックアップクラッチ20の締結容量T
LUと締結圧P
LUとは、締結容量T
LUが増大するに連れて締結圧P
LUが増大(例えば、線形に増大)する関係があるので、この関係に基づくマップを用意しておくことにより、変換マップを参照して、締結容量T
LUを締結圧P
LUに変換することができる。そして、得られた締結圧P
LUをロックアップソレノイド77の指令値(ロックアップデューティ)に変換し、指令値によりロックアップソレノイド77を制御し、ロックアップクラッチ20の状態を制御する。
【0042】
ロックアップクラッチ20をコンバータ状態からロックアップ状態へ切り替える締結制御時には、この締結容量T
LUを時間経過とともに増大させていってコンバータ状態からスリップ状態を経てロックアップ状態にするが、ロックアップクラッチ20のロックアップ(完全締結)が急激に行なわれると締結ショックを招き、車両の乗り心地を損なう。そこで、ロックアップクラッチ20をロックアップ状態にする際に、トルク伝達容量の増大を緩やかに行ないスムースにロックアップに移行させる制御(スムースオン制御)を行なう。
【0043】
このスムースオン制御は、締結ショックを防ぎつつ速やかにロックアップを完了させたいため、
図2に示すように、まず、締結圧P
LUに初期値(スムースオン初期値)を与えてステップ状に増大させ、その後ランプ状に漸増させる。スムースオン初期値は、コンバータ状態のロックアップクラッチ20を締結側に起動させてクラッチ間の隙間を0付近にする(ガタ詰めする)ためのもので、ロックアップクラッチ20がスリップ状態に移行する直前の状態となる程度の大きさに設定される。
【0044】
ランプ状に漸増させる過程(ランプ制御)では、初めに、増加率が比較的小さいランプ2の漸増を実施し、その後、増加率が比較的大きいランプ1の漸増を実施する。ランプ2により極めて緩やかに締結圧P
LUを増大させることで、締結側に起動したロックアップクラッチ20の動きを落ち着かせるとともに実際の締結圧が指示値である締結圧P
LUに近づくのを待つ。その後、トルクコンバータ2の入出力要素間の差回転数(スリップ回転数)ΔNが第1所定値ΔN1以下になったら、ランプ1に切り替えて、ランプ1により、締結に過剰な時間がかからず且つ急締結のおそれを回避できる適度な増加率で締結圧P
LUを増大させる。なお、トルクコンバータ2の入出力要素間の差回転数、つまり、スリップ回転数ΔNはエンジン回転数Neとトルクコンバータ2のタービン回転数Ntとの差(=Ne−Nt)に相当する。
【0045】
このようなランプ制御(ランプ2及びランプ1)によって、トルクコンバータ2の入出力要素間の差回転数(スリップ回転数)ΔNが0付近の微小な締結判定基準値(第2所定値)ΔN0以下になったらスリップ状態からロックアップ状態に切り替わったものとして、締結圧P
LUをステップ状に増大し、ロックアップ状態を確実に保持できるようにする。ただし、このロックアップ状態の判定は、演算したスリップ回転数ΔNをノイズキャンセルのためにフィルタリングした上で行なう。
【0046】
なお、ロックアップクラッチ20がスリップ状態からロックアップ状態に切り替わるのは、ロックアップクラッチ20が伝達するトルク容量(締結容量)T
LUがトルクコンバータ2(したがって、ロックアップクラッチ20)に入力される入力トルクTcinを上回った時であり、入力トルクTcinに依存する。つまり、スリップ状態において、ロックアップクラッチ20の締結容量T
LUが増加しなくても、入力トルクTcinが低下すればロックアップ状態に切り替わり、ロックアップクラッチ20の締結容量T
LUが増加しても入力トルクTcinが増加すれば、なかなかロックアップ状態に切り替わらない。
【0047】
特に、ランプ制御を行なっていても入力トルクTcinの急減少があるとロックアップクラッチ20が急締結して車両の挙動変動を招く。オープンループ制御による上記のランプ制御ではこのような車両の挙動変動を回避することは困難であり、このような入力トルクTcinの減少によるロックアップクラッチ20の急締結を回避するには締結容量T
LUの演算に、この入力トルクTcinの急減少による影響を加味する必要がある。
【0048】
また、ランプ制御を行なっているときに入力トルクTcinの増加があると、なかなかロックアップ状態に切り替わらないため、ロックアップ状態への切り替えに過剰に時間がかかってしまい、その分、燃費の抑制効果が低下するのでこれを回避したい。また、ロックアップ状態までに時間がかかるだけでなく、ロックアップ状態とスリップ状態との過渡状態においてこれに起因して車両にジャダー(異常振動)が発生することがあるのでこれを回避したい。
【0049】
ロックアップクラッチ20への入力トルクTcinは、エンジン1の出力トルクTeに依存するが、エンジン1の出力トルクTeはトルクコンバータ2(CVT100)に供給されるだけでなくエンジン1により駆動される補機110にも供給されるので、この点を考慮して入力トルクTcinを把握しなくては、ロックアップ状態への速やかな切り替えを達成できない場合がある。
【0050】
本ロックアップクラッチの制御装置は、ロックアップクラッチ20と、スロットル開度センサ86,アクセル開度センサ91,補機作動情報の信号を出力する信号出力部93a等のセンサ類と、CVTECU8の機能要素として設けられた開度減少判定部(開度減少判定手段)8A,入力トルク推定部(入力トルク推定手段)8B,トルク増大判定部(トルク増大判定手段)8C,締結容量演算部(締結容量演算手段)8D,締結制御部(締結制御手段)8Hとから構成され、締結制御部8Hでは、締結容量T
LUを時間経過とともに増大するように制御する上述のランプ制御時に、ロックアップクラッチ20の急締結を回避するとともにロックアップ状態への速やかな切り替えを達成する制御を行なう。
【0051】
本実施形態では、この急締結回避にかかる制御を、スムースオン制御中のランプ1,2によって締結圧P
LUを増大させる制御を行なっている際に実施する。つまり、ロックアップクラッチ20の締結圧P
LUをステップ状に増大させてから、差回転数ΔNが締結判定基準値ΔN0以下になる迄の間において、アクセル踏み戻しによる急締結を回避するアクセル踏み戻し制御を実施する。更に、本実施形態では、早期切り替えにかかる制御を、スムースオン制御中のランプ1によって締結圧P
LUを増大させる制御を行なっている際に実施する。つまり、ロックアップクラッチ20がスリップ状態になってトルクコンバータ2の入出力要素間の差回転数ΔNが第1所定値ΔN1以下になってから差回転数ΔNが締結判定基準値ΔN0以下になる迄の間において、入力トルク増加によるジャダー防止,早期切り替えを促進する入力トルク増加制御を実施する。
【0052】
開度減少判定部8Aは、アクセル開度センサ91で検出されたアクセル開度APOを所定の制御周期(演算周期)で読み込んで、アクセル開度APOが減少したか否かを判定する。ここでは、アクセル開度の今回値APO(n)と前回値APO(n−1)との差分であるアクセル開度変化量ΔAPO〔=APO(n)−APO(n−1)〕を、閾値ΔAPO1(ただし、ΔAPO1<0)と比較して、アクセル開度変化量ΔAPOが閾値ΔAPO1よりも小さければ(ΔAPO<ΔAPO1)、アクセル開度APOが減少したと判定する。
【0053】
入力トルク推定部8Bは、エンジン1からトルクコンバータ2に入力される入力トルクTcinを所定の制御周期で推定する。前述のように、エンジン1の出力トルクTeはトルクコンバータ2だけでなくエンジン1により駆動される補機110にも供給される。そこで、入力トルク推定部8Bは、補機110の作動状態を考慮して入力トルクTcinを推定する。なお、本実施形態では、補機110としてエアコンのコンプレッサを想定するが、補機110はこれに限るものではない。
【0054】
つまり、入力トルク推定部8Bは、
図3(c)に示すように、エンジン回転数(エンジン回転速度)Neとスロットル開度TPOとからその時点のエンジンの出力トルクTeを例えば特許文献1に開示された公知の手法で演算する。また、補機(エアコンのコンプレッサ)110の作動状態からエンジンの出力トルクTeのうち補機110の送られる分(補機駆動トルク)T
ACを演算する。補機110の作動状態は、エアコンコントローラ93の信号出力部93aからの信号により把握する。また、補機駆動トルクT
ACは補機110の作動状態に対応する。そして、入力トルク推定部8Bは、エンジン出力トルクTeから補機駆動トルクT
ACを減算して入力トルクTcinを算出する。
【0055】
トルク増大判定部8Cは、入力トルク推定部8Bで推定された入力トルクTcinが増大するか否かを判定する。つまり、トルク増大判定部8Cは、所定の制御周期で入力トルクTcinを読み込んで、入力トルクTcinの今回値Tcin(n)と前回値Tcin(n−1)との差分である入力トルク変化量ΔTcin〔=Tcin(n)−Tcin(n−1)〕を閾値ΔTcin1(ただし、ΔTcin1>0)と比較して、入力トルク変化量ΔTcinが閾値ΔTcin1よりも大きければ(ΔTcin>ΔTcin1)、入力トルクTcinが増大したと判定する。
【0056】
締結容量演算部8Dは、定常時締結容量を演算する第1演算部(定常時締結容量演算部)8eと、トルク増大時締結容量を演算する第2演算部(トルク増大時締結容量演算部)8fと、アクセル開度減少時締結容量を演算する第3演算部(アクセル開度減少時締結容量演算部)8gと、を備え、各演算部8e〜8gは、所定の制御周期(演算周期)毎に演算を実行する。
【0057】
第1演算部8eは、入力トルクTcinが定常状態のときに用いる定常時締結容量を演算する。この第1演算部8eでは、
図3(b)に実線で示すように、各制御周期において、前回の締結容量T
LU(n−1)に所定の変化量(一定量)ΔT
LU1(ただし、ΔT
LU1>0)を加算して今回の締結容量T
LU(n)を演算する。これにより得られる締結容量T
LU(n)は定常時締結容量であり、定常時締結容量を用い場合、締結容量T
LU(n)は時間経過とともに一定の増加率で増大する。
【0058】
第2演算部8fは、入力トルクTcinが増大しているときに用いるトルク増大時締結容量を演算する。この第2演算部8fでは、
図3(b)に実線及び二点鎖線で示すように、各制御周期において、前回の締結容量T
LU(n−1)に所定の変化量(一定量)ΔT
LU1(ただし、ΔT
LU1>0)を加算するとともに、入力トルクTcinの増大分ΔTcinに基づいた補正用の締結容量変化量ΔT
LU(ΔTcin)を加算して、今回の締結容量T
LU(n)を演算する。これにより得られる締結容量T
LU(n)はトルク増大時締結容量であり、トルク増大時締結容量を用い場合、締結容量T
LU(n)は時間経過とともに定常時締結容量を用い場合よりも大きな増加率で増大する。
【0059】
第3演算部8gは、アクセル開度APOが減少しているときに用いるアクセル開度減少時締結容量を演算する。この第3演算部8gでは、
図3(a)に示すように、各制御周期において、前回の締結容量T
LU(n−1)にアクセル開度APOの開度減少分ΔAPO(ただし、ΔAPO<0)に基づいた締結容量変化量ΔT
LU(ΔAPO)を減算して今回の締結容量T
LU(n)を演算する。これにより得られる締結容量T
LU(n)はアクセル開度減少時締結容量であり、アクセル開度減少時締結容量を用い場合、締結容量T
LU(n)は時間経過とともに減少する。
【0060】
締結容量演算部8Dは、開度減少判定部8A及びトルク増大判定部8Cによる判定結果に基づいて、アクセル開度APOが減少していないと判定され且つ入力トルクTcinが増大していないと判定された場合には、第1演算部8eで算出された定常時締結容量を、アクセル開度APOが減少していないと判定され且つ入力トルクTcinが増大したと判定された場合には第2演算部8fで算出されたトルク増大時締結容量を、アクセル開度APOが減少したと判定された場合には第3演算部8gで算出されたアクセル開度減少時締結容量を、それぞれ締結容量に採用する。
【0061】
締結制御部8Hは、締結容量演算部8Dで演算された締結容量T
LUに基づいてロックアップクラッチ20の締結圧P
LUを制御する。つまり、締結制御部8Hでは、アクセル開度APOが減少していないと判定され且つ入力トルクTcinが増大していないと判定された場合には第1演算部8eで演算された指示値である定常時締結容量に基づいて、アクセル開度APOが減少していないと判定され且つ入力トルクTcinが増大したと判定された場合には第2演算部8fで演算された指示値であるトルク増大時締結容量に基づいて、アクセル開度APOが減少したと判定された場合には第3演算部8gで演算された指示値であるアクセル開度減少時締結容量に基づいて、それぞれ、ロックアップクラッチ20の締結容量を制御する。このとき、締結制御部8Hでは、図示しない変換マップを参照して、締結容量T
LUを締結圧P
LUに変換する。そして、得られた締結圧P
LUをロックアップソレノイド77の指令値(ロックアップデューティ)に変換し、この指令値によりロックアップソレノイド77を制御し、ロックアップクラッチ20の状態を制御する。
【0062】
[作用及び効果]
本実施形態にかかるロックアップクラッチの制御装置は、上述のように構成されているので、例えば、
図4のフローチャートに示すように、ロックアップクラッチ20の制御を実施することができる。なお、
図4のフローチャートは、ロックアップクラッチ20をコンバータ状態からロックアップ状態へ切り替える締結制御時(スムースオン制御中且つΔN0≦ΔN≦ΔN1の時)に実施され、締結制御が終了するまで所定の制御周期で繰り返される。また、締結容量の初期値T
LU(1)は、締結圧P
LUの初期値(スムースオン初期値)と対応した値を予め設定する。
【0063】
図4に示すように、CVTECU8は、アクセル開度センサ91で検出されたアクセル開度APO及び入力トルク推定部8Bで推定された入力トルクTcinを読み込む(ステップS10)。そして、アクセル開度の今回値APO(n)と前回値APO(n−1)との差分であるアクセル開度変化量ΔAPO〔=APO(n)−APO(n−1)〕を算出する(ステップS20)。
【0064】
次に、開度減少判定部8Aにより、アクセル開度変化量ΔAPOを閾値ΔAPO1(ただし、ΔAPO1<0)と比較して、アクセル開度APOが減少したか否かを判定する(ステップS30)。アクセル開度変化量ΔAPOが閾値ΔAPO1よりも小さければ、アクセル開度APOが減少したと判定する。
【0065】
アクセル開度APOが減少したと判定したら、締結容量演算部8Dでは、第3演算部8gで、前回の締結容量T
LU(n−1)にアクセル開度APOの開度減少分ΔAPO(ただし、ΔAPO<0)に基づいた締結容量変化量ΔT
LU(ΔAPO)を減算して今回の締結容量T
LU(n)を演算する(ステップS40)。こうして演算された締結容量T
LU(n)(アクセル開度減少時締結容量)は時間経過とともに減少する。そして、ステップS90に進む。
【0066】
一方、開度減少判定部8Aにより、アクセル開度APOが減少していないと判定したら、入力トルク推定部8Bで推定したトルクコンバータ2に入力される入力トルクTcinの変化量ΔTcinを演算し(ステップS50)、この入力トルク変化量ΔTcinに基づいて、トルク増大判定部8Cで、入力トルクTcinが増大したか否かを判定する(ステップS60)。
【0067】
トルク増大判定部8Cで入力トルクTcinが増大していないと判定したら、第1演算部8eで、前回の締結容量T
LU(n−1)に所定の変化量(一定量)ΔT
LU1(ただし、ΔT
LU1>0)を加算して今回の締結容量T
LU(n)を演算する(ステップS70)。こうして演算された締結容量T
LU(n)(定常時締結容量)は時間経過とともに一定の増加率で増大する。そして、ステップS90に進む。
【0068】
トルク増大判定部8Cで入力トルクTcinが増大したと判定したら、第1演算部8eで、前回の締結容量T
LU(n−1)に所定の変化量(一定量)ΔT
LU1(ただし、ΔT
LU1>0)を加算するとともに、入力トルクTcinの増大分ΔTcinに基づいた締結容量変化量ΔT
LU(ΔTcin)を加算して今回の締結容量T
LU(n)を演算する(ステップS80)。こうして演算された締結容量T
LU(n)(トルク増大時締結容量)は時間経過とともに定常時締結容量よりも大きな増加率で増大する。そして、ステップS90に進む。
【0069】
トルク増大判定部8Cで入力トルクTcinが増大したと判定するのは、例えば、アクセルペダルの踏み増しでエンジン1の出力トルクTeが増加した場合や、エアコンのコンプレッサ等の補機110が作動状態から停止状態に切り替わった場合である。アクセルペダルの踏み増し後そのアクセル開度を保持している場合や、補機110を停止させた後この状態を保持している場合には、ステップS60で、入力トルクTcinが増大していないと判定され、ステップS70で、前回の締結容量T
LU(n−1)に所定の変化量ΔT
LU1を加算して今回の締結容量T
LU(n)を演算する。
【0070】
ステップS40,S70,S80の何れかにおいて、アクセル開度減少時締結容量,定常時締結容量又はトルク増大時締結容量にかかる締結容量T
LU(n)が演算されたら、締結制御部8Hによって、締結容量T
LUを締結圧P
LUに変換して(ステップS90)、得られた締結圧P
LUをロックアップソレノイド77の指令値(ロックアップデューティ)に変換し、この指令値によりロックアップソレノイド77による油圧状態を指示して、ロックアップクラッチ20の状態を制御する(ステップS100)。
【0071】
図5は、ロックアップクラッチ20の締結制御中に、アクセル開度APOが減少した場合、即ち、アクセル開度減少時締結容量にかかる締結容量T
LU(n)が採用された場合の例を示すタイムチャートである。
図5に実線で示すように、時点t
11でアクセルペダルの踏み戻し(アクセル開度APOの減少)があると、このときのアクセル開度APOの減少量(制御周期当たりの減少量、減少率に相当する)ΔAPOに応じて締結圧P
LUが低下され、ロックアップクラッチ20の急締結が回避される。
【0072】
つまり、アクセル開度APOが減少すると、エンジン1の出力トルクTeが低下するため、トルクコンバータ2への入力トルクTcinが減少し、ロックアップクラッチ20が完全締結するのに必要な締結圧P
LUが低下する。このため、スムースオン制御に従って締結圧P
LUをランプ状に増大させるランプ制御を続行すると、トルクコンバータ2の入出力要素間の差回転数(スリップ回転数)ΔNが急減少し、ロックアップクラッチ20は急締結して、車両の挙動変化を招く。
【0073】
これに対して、本装置では、アクセルペダルの踏み戻しがあると締結圧P
LUを低下させるので、ロックアップクラッチ20の急締結が回避される。特に、締結圧P
LUの制御には油圧を用いるので、締結圧P
LUの指令値を変更しても実際に締結圧P
LUが低下するには応答遅れ(タイムラグ)があるが、本装置では、エンジン1の出力トルクTeの低下に基づくのでなく、入力トルクTcinを減少させる出力トルクTeの低下のトリガーとなるアクセル開度APOの減少に基づくので、締結圧P
LUの指令値変更が早期に実施され、油圧応答遅れ(タイムラグ)の影響、即ち、ロックアップクラッチ20が急締結し車両の挙動変化を招くこと、が回避される。
【0074】
また、締結圧P
LUの低下量(ロックアップクラッチ20の締結容量T
LUの低下量)は、アクセル開度APOの減少量ΔAPOの大きさに応じて設定されるので、締結圧P
LUを過剰に低下させることがなく、ロックアップクラッチ20の急締結を回避しながら、ロックアップクラッチ20の締結までに過剰な時間を要さないようにすることができる。
【0075】
図5に実線で示す例では、時点t
11でアクセルペダルの踏み戻しがあり、その後は、アクセルペダルが一定に保持されており、アクセルペダルの踏み戻しを受けて締結圧P
LUを低下させた後は、再び、スムースオン制御に従って締結圧P
LUをランプ状に増大させるランプ制御を続行する。このスムースオン制御によって、時点t
12でトルクコンバータ2の入出力要素間の差回転数(スリップ回転数)ΔNが締結判定基準値ΔN0(例えば10rpm)以下になり、この時点でロックアップクラッチ20が完全締結したと判定して、スムースオン制御を終了し、締結圧P
LUをステップ状に増大する。
【0076】
ただし、この完全締結(ロックアップ状態)の判定は、演算したスリップ回転数ΔNをノイズキャンセルのためにフィルタリングした上で行なうので、スリップ回転数ΔNが実際に締結判定基準値ΔN0(例えば10rpm)以下になってから、僅かな時間であるが一定のタイムラグがあり、この間は、完全締結判定中となって、スムースオン制御は終了しない。しかし、ここでは、スリップ回転数ΔNの生の演算値が締結判定基準値ΔN0以下になったら、締結圧P
LUの低下制御を禁止している。
【0077】
スリップ回転数ΔNが締結判定基準値ΔN0以下になった状態で、
図5に破線で示すように締結圧P
LUを低下させると、エンジン回転数Neは
図5に破線で示すように増大し、スリップ回転数ΔNが再び増大する。このため、トルクコンバータ2がスリップ状態とロックアップ状態との境界付近で不安定な状態となって、ジャダー(異常振動)が発生することがある。締結圧P
LUの低下制御を禁止しているのは、こうしたジャダーの発生を回避するためである。したがって、
図5に一点鎖線で示すように、完全締結判定中である時点t
13でアクセルペダルが踏み戻しされたとしても、締結圧P
LUは低下されずに、スムースオン制御による締結圧P
LUのランプ状の増大が続行され、ジャダーの発生が回避される。
【0078】
図6は、ロックアップクラッチ20の締結制御中に、アクセル開度APOの減少はなく、アクセルペダルの踏み増しによるエンジン出力トルクTeの増加があった場合、即ち、トルク増大時締結容量にかかる締結容量T
LU(n)が採用された場合の例を示すタイムチャートである。
図6において、エンジン回転数Ne及びタービン回転数Ntは同一基準軸(回転数0)上に記載している。また、
図6に示すFは、スリップ状態のトルクコンバータ2への入力トルクTcinが増大し締結圧P
LUを増大補正する場合(トルク増大時締結容量を採用する場合)に立ち上がる(F=1)フラグである。ここでは、スリップ回転数ΔNが第1所定値ΔN1以下になったら(時点t
23)、締結圧P
LUを増大補正する制御モード(F=1)に切り替え、スリップ回転数ΔNが締結判定基準値ΔN0以下になったら(時点t
25)、この制御モードを終了(F=0)する。
【0079】
図6に示すように、例えば車両の停止状態から、時点t
21で、アクセルペダルの踏み込みがありこれに応じてスロットル開度TPOが立ち上がり、ロックアップクラッチ20の締結制御が開始される。その後の時点t
22で、ロックアップクラッチ20の締結圧の指示値である締結圧P
LUが立ち上がり、締結圧P
LUは次第に増加する。そして、その後の時点t
23でスリップ回転数ΔNが第1所定値ΔN1以下になって締結圧P
LUを補正する制御モード(F=1)に切り替わる。
【0080】
締結圧P
LUを補正する制御モードに入ると、エンジントルクTeの増加に対して、補正用の締結容量変化量ΔT
LU(ΔTcin)も発生し、この締結容量変化量ΔT
LU(ΔTcin)の加算に応じて締結圧P
LUも破線で示すように上乗せ増加される。時点t
23の直後はアクセル開度が微小に漸増しているため、締結圧P
LUの上乗せ補正も僅かであるが、この締結圧P
LUの上乗せ補正によって、スリップ回転数ΔNが破線で示すように低下を促進され、ロックアップクラッチ20のロックアップ状態への移行が早められる。
【0081】
そして、その後の時点t
24でアクセルペダルの踏み増しによりスロットル開度のステップ上昇があり、これに応じてエンジントルクTeが急増し、この上昇分だけトルクコンバータ2への入力トルクTcinも急増する。このときには、補正用の締結容量変化量ΔT
LU(ΔTcin)も大きくなり、この締結容量変化量ΔT
LU(ΔTcin)の増加に応じて締結圧P
LUも破線で示すように増加される。
【0082】
ただし、ここでは、エンジントルクTeを演算により推定する際に、スロットル開度及びエンジン回転数Neに基づくトルク値に無駄時間や時定数を考慮して演算するので、推定したエンジントルクTeの増加は破線で示すように鈍化されて実際値(実Te)に近づけられ、入力トルクTcinも実際値(実Tcin)に近づけられる。したがって、締結容量変化量ΔT
LU(ΔTcin)も傾きをもって増加し、締結圧P
LUも傾きをもって増加される。
【0083】
このようにして、トルクコンバータ2への入力トルクTcinの増加に対応して、締結容量変化量ΔT
LU(ΔTcin)も増加し、締結圧P
LUが増加されるので、エンジン回転数Neは破線で示すように制御しない場合(実線)よりも速やかに低下し、スリップ回転数ΔNは破線で示すように制御しない場合(実線)に比べて速やか且つ安定して0に向かって収束して、実線で示す非制御時におけるロックアップ判定タイミング(時点t
25)に比べて早期にロックアップ判定がなされる(時点t
25´)。
【0084】
もちろん、ロックアップクラッチ20は締結ショックを生じない範囲で速やかに締結される。また、ロックアップクラッチ20がスリップ状態とロックアップ状態との境界付近の状態にあるとジャダー(異常振動)が生じやすいが、スリップ回転数ΔNが安定して低下するのでこのようなジャダーの発生も回避することができる。
【0085】
つまり、入力トルクTcinが増加すると、ロックアップクラッチ20の締結(ロックアップ)に必要な締結圧P
LUも増加するため、増加量一定(ΔT
LUのみ)の場合のスムースオン制御では、ロックアップクラッチ20の締結までに時間がかかるだけでなく、ロックアップクラッチ20がスリップ状態とロックアップ状態との境界付近で不安定な状態になり、ジャダーがするおそれもある。この点、締結圧P
LUを入力トルクTcinの増加に応じた締結容量変化量ΔT
LU(ΔTcin)で増加補正するので、ジャダーの発生を回避し、且つ、ロックアップクラッチ20が速やかに締結する(時点t
25´)ことができる。
【0086】
図6に示す例は、エンジン出力トルクTe自体が増加することにより、トルクコンバータ2への入力トルクTcinが増加する場合であって、エンジンで駆動される補機110の作動状態には変化がない場合を想定したが、エンジン出力トルクTe自体が増加しなくても、エンジンで駆動される補機110が作動状態から停止状態になった場合には、トルクコンバータ2への入力トルクTcinが増加する。
図7はこのような場合を例示するタイムチャートである。
【0087】
図7に示すように、時点t
31で、アクセルペダルの踏み込みに応じてスロットル開度TPOが立ち上がり、ロックアップクラッチ20の締結制御が開始される。その後の時点t
32で、ロックアップクラッチ20がスリップ状態になり締結圧P
LUが立ち上がり、締結圧P
LUは次第に増加する。そして、その後の時点t
33でスリップ回転数ΔNが第1所定値ΔN1以下になって締結圧P
LUを補正する制御モード(F=1)に切り替わる。
【0088】
締結圧P
LUを補正する制御モードに入ると、エンジントルクTeの増加に対して、補正用の締結容量変化量ΔT
LU(ΔTcin)も演算し、この締結容量変化量ΔT
LU(ΔTcin)の加算補正に応じて締結圧P
LUも破線で示すように上乗せ増加される。時点t
33の直後はアクセル開度が微小に漸増しているため、締結圧P
LUの上乗せ補正も僅かであるが、この締結圧P
LUの上乗せ補正によって、スリップ回転数ΔNが破線で示すように低下を促進され、ロックアップクラッチ20のロックアップ状態への移行が早められる。ここまでは、
図6に示す例と同様である。
【0089】
その後の時点t
34で補機(ここでは、エアコンのコンプレッサ)110が作動状態から停止状態になったものとする。エンジンで駆動される補機110が作動から停止になると、エンジントルクTeのうち補機110に消費されていた分がトルクコンバータ2へ供給されるようになるため、この分だけトルクコンバータ2への入力トルクTcinも急増する。このときには、補正用の締結容量変化量ΔT
LU(ΔTcin)も大きくなり、この締結容量変化量ΔT
LU(ΔTcin)の増加に応じて締結圧P
LUも破線で示すように増加される。
【0090】
このようにして、トルクコンバータ2への入力トルクTcinの増加に対応して、締結容量変化量ΔT
LU(ΔTcin)も増加し、締結圧P
LUが増加されるので、この場合も、エンジン回転数Neは破線で示すように制御しない場合(実線)に比べて速やかに低下し、スリップ回転数ΔNは破線で示すように制御しない場合(実線)に比べて速やか且つ安定して0に向かって収束して、実線で示す非制御時におけるロックアップ判定タイミング(時点t
35)に比べて早期にロックアップ判定がなされる(時点t
35´)。
【0091】
もちろん、ロックアップクラッチ20は締結ショックを生じない範囲で速やかに締結される。また、ロックアップクラッチ20がスリップ状態とロックアップ状態との境界付近の状態にあるとジャダー(異常振動)が生じやすいが、スリップ回転数ΔNが安定して低下するのでこのようなジャダーの発生も回避することができる。
【0092】
つまり、補機110が作動から停止になって入力トルクTcinが増加すると、ロックアップクラッチ20の締結(ロックアップ)に必要な締結圧P
LUも増加するため、増加量一定(ΔT
LUのみ)の場合のスムースオン制御では、ロックアップクラッチ20の締結までに時間がかかるが、入力トルクTcinの増加に応じた締結容量変化量ΔT
LU(ΔTcin)で補正することによって、ジャダーの発生を回避し、且つ、ロックアップクラッチ20を速やかに締結する(時点t
35´)ことができる。
【0093】
なお、スムースオン制御における本制御は、限られた時間内に完了するものなので、本制御の実施中に、補機110のオンオフの影響を解消する手法として、補機110のオンオフを禁止することも有効である。しかし、補機110のオンオフのうち作動状態から停止状態への切り替えは、燃費上の観点から遅らせることなく速やかに行ないたい。そこで、本制御では、制御の実施中に補機110のオンオフのうち作動状態から停止状態への切り替えを禁止することなく、この切り替えを制御に反映させることにより、ロックアップクラッチ20の締結制御に対する補機110のオンオフ影響を抑制している。一方、補機110の停止状態から作動状態への切り替えは、燃費低下を招くものではないため、切り替えを禁止して制御に対する補機110のオンオフ影響を抑制することができる。
また、
図6,
図7においては、説明を簡単にするため、
図2で説明したランプ2からランプ1への切り替えについては図示及び説明を行なっておらず、予め設定されたランプは一定のものとして説明を行なっている。
【0094】
[その他]
以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形したり、一部を採用したりして実施することができる。
【0095】
上記実施形態では、入力トルク増加制御として、エンジン1の出力トルクTe自体の増加に起因した例(
図6)と、補機110のオンからオフへの切り替えに起因した例(
図7)と、を説明したが、入力トルクTcinは出力トルクTeと補機110の作動状態とから算出するので、出力トルクTe増加と補機110の切り替えが同時発生したら、両者とも補正用の締結容量変化量ΔT
LU(ΔTcin)に反映される。
【0096】
また、上記実施形態では、エンジン1の補機110への出力トルク(補機負荷)が低減する代表的な例として、補機110のオンからオフへの切替による入力トルクTcinの増加の例を説明したが、補機110がオン状態であっても、高出力作動状態から低出力作動状態に切り替わる場合にも、エンジン1の補機110への出力トルク(補機負荷)が減少して入力トルクTcinが増加するので、この場合も入力トルク増加制御を適用できる。
【0097】
また、上記実施形態では、本制御の開始条件をランプ制御においてランプ2からランプ1に切り替わる条件と一致させて、差回転数ΔNが第1所定値ΔN1以下になったこととしてシンプルに構成しているが、これらの条件は必ずしも一致させる必要はない。
【0098】
また、上記実施形態では、アクセル開度が減少した場合には、その開度減少分に基づきロックアップクラッチの締結容量を減少させる制御を他に優先して行なうようにしているため、ロックアップクラッチ20の急締結が回避され、これに起因した車両の挙動変化も回避されるが、このアクセル開度の減少に基づく制御を用いずに、トルクコンバータ2への入力トルクTcinに補機負荷の低減を考慮して、ロックアップクラッチ20の締結容量を制御するだけでも、ロックアップ状態への過渡時に発生する昇圧不足の現象を確実に回避できる効果を得られる。