【課題を解決するための手段】
【0013】
本発明者は、上記の目的を達成すべく鋭意検討を重ねた結果、噴霧乾燥マンニトール結晶粒子、導水剤であるメタケイ酸アルミン酸マグネシウム、クロスポビドンなどの崩壊剤を含有する錠剤を、加湿、乾燥を経ることで、マンニトール結晶粒子の固結現象による硬度上昇を利用し、上記課題に対する画期的な効果を見出し、本発明を完成するに至った。
【0014】
さらに、本発明者は、本発明に係る噴霧乾燥マンニトール結晶粒子について、結晶粒子の形状を問わず本発明の効果が得られること、ならびに結晶粒子の形状が球形であればより好ましいこと、そして、結晶粒子が特定の性質をもった球形マンニトール結晶粒子であれば最大限に本発明の効果を得ることができることを見出し、本発明を完成するに至った。
【0015】
すなわち、本発明は第一に、噴霧乾燥マンニトール結晶粒子と、導水剤と、崩壊剤を含有する粉体を圧縮成形後、加湿、乾燥を経ることによって、加湿、乾燥前よりも硬度を上昇させた、口腔内崩壊錠の製造方法である。
本発明は第二に、噴霧乾燥マンニトール結晶粒子が、アスペクト比1.0〜1.2、試験法Aによる吸油率1が25〜60%、吸油率2が15〜40%である球形マンニトール結晶粒子であることを特徴とする、上記第一に記載の口腔内崩壊錠の製造方法である。
本発明は第三に、前記導水剤が、メタケイ酸アルミン酸マグネシウムであることを特徴とする、上記第一または第二に記載の口腔内崩壊錠の製造方法である。
本発明は第四に、前記崩壊剤が、クロスポビドン、クロスカルメロースナトリウム、
低置換度ヒドロキシプロピルセルロース、カルメロースカルシウム、アルファ化澱粉、カルボキシメチルスターチナトリウム、結晶セルロース・軽質無水ケイ酸から選ばれる1種以上であることを特徴とする、上記第一から第三のいずれか一つに記載の口腔内崩壊錠の製造方法である。
本発明は第五に、圧縮成形を100kgf〜1000kgfの成形圧で行うことを特徴とする、上記第一から第四のいずれか一つに記載の口腔内崩壊錠の製造方法である。
本発明は第六に、圧縮成形後で加湿、乾燥前の硬度が2.0kgf〜20.0kgfであることを特徴とする、上記第一から第五のいずれか一つに記載の口腔内崩壊錠の製造方法である。
本発明は第七に、加湿、乾燥後の硬度が4.0kgf〜20.0kgfであり、口腔内崩壊時間が5秒〜60秒であることを特徴とする、上記第一から第六のいずれか一つに記載の口腔内崩壊錠の製造方法である。
本発明は第八に、加湿、乾燥後の硬度が4.0kgf〜20.0kgfであり、口腔内崩壊時間が5秒〜45秒であることを特徴とする、上記第二から第六のいずれか一つに記載の口腔内崩壊錠の製造方法である。
本発明は第九に、上記第一から第八のいずれか一つに記載の口腔内崩壊錠の製造方法により製造された、口腔内崩壊錠である。
本発明は第十に、導水剤の量が0.5重量%〜1.5重量%、および、崩壊剤の量が0.4重量%〜4重量%であることを特徴とする、上記第九に記載の口腔内崩壊錠である。
【0016】
マンニトールを口腔内崩壊錠の賦形剤として用いる場合、従来の微粉砕品では、その粒子間の結着力が低いため、小さな力で成形した場合、打錠直後の錠剤硬度が低く、製造工程中で錠剤を取り扱うのに、十分な硬度を得ることができない。一方大きな力で成形した場合は、崩壊性が著しく低下し、口腔内崩壊錠として要求される性能を得ることは困難であった。
【0017】
一方、本発明に係る噴霧乾燥マンニトール結晶粒子は、噴霧乾燥品であるため、微細な一次粒子が集合して二次粒子を形成している。この噴霧乾燥マンニトール結晶粒子を圧縮成形すると、普通錠を製造する際の成形圧を用いた場合においても、崩壊性を維持し、さらに、噴霧乾燥マンニトール結晶粒子の高い充填率、可塑性のため、従来の微粉砕品では得ることのできなかった、製造工程中での取り扱いに支障のない十分な硬度を得ることができた。
【0018】
その上、本発明のより好適な形状である球形マンニトール結晶粒子(以下、「球形マンニトール」と称することがある)は、微細な一次粒子が球状に集合して二次粒子を形成しており、その内部は空隙を有している。また比較的粒子径がそろっていることも特徴として挙げられる。この球形マンニトール結晶粒子を圧縮成形すると、普通錠を製造する際の成形圧を用いた場合においても、崩壊性を維持し、さらに、球形マンニトール結晶粒子の高い流動性、充填率、可塑性のため、従来の微粉砕品では得ることのできなかった、製造工程中での取り扱いに支障のない十分な硬度(2.0kgf〜20.0kgf)を得ることができた。
【0019】
さらに、圧縮成形後、加湿、乾燥によって、結着剤を用いることなく硬度を上昇させ、流通工程中において支障のない硬度とすることができることを見出し、圧縮成形時の錠剤硬度を、加湿乾燥工程までに必要な最小限の硬度に抑えることにより、打錠時の錠剤中の空隙の損失を抑えることに成功した。
【0020】
マンニトールの固結現象を利用した加圧成形後の加湿乾燥工程による硬度上昇も本発明の特徴である。固結現象とは、糖、糖アルコールなどの吸湿性を有する粒子の付着・凝集性を原因として、時間経過とともに粉末同士が固着し、大きな塊となっていく現象である。水溶性物質の場合は、吸湿、乾燥を繰り返すことにより固着が強化されることが知られており、これは吸湿によって結晶粒子表面に付着した水分が結晶粒子表面を一部溶解し、隣接する結晶粒子との間に水溶液の架橋を作り、乾燥した際に再結晶化もしくはアモルファスとなって接着することによるものである。この現象はマンニトールにも認められる。マンニトールは溶解性・吸湿性が低く、水溶液の架橋を形成しにくいため、粉末同士の接触する面積が固着強化の大きな要因となる。
【0021】
従来使用されてきた結晶マンニトールの微粉砕品は粉末同士の接触点が多く、粉末状態で保存しておくと長い時間を掛けて、非常に強固な塊を生成する。これに対して本発明に係る球形マンニトール結晶粒子等の噴霧乾燥マンニトール結晶粒子は、粉末同士の接触点が減っているため固結防止効果があり、粉末保存時の固結を低減する。
【0022】
しかしながら、先にも述べたとおり、本発明に係る噴霧乾燥マンニトール結晶粒子は粉末の充填率、可塑性が向上しているため、圧縮成形の際には高い成形性を示す。また、本発明に係る噴霧乾燥マンニトール結晶粒子は、加湿・乾燥工程を経由して固結現象を発生させることにより、結着剤を用いることなく硬度上昇が効果的に起こることを見出した。
【0023】
さらに、先にも述べたとおり、本発明に係る球形マンニトール結晶粒子は粉末の流動性、充填率、可塑性が向上しているため、圧縮成形の際には高い成形性を示す。本発明に係る球形マンニトール結晶粒子は、粉体を成形する際に緻密に充填され、粒子間の接触点が増えるだけでなく、均等に分布するため、加湿・乾燥工程を経由して固結現象を発生させることにより、結着剤を用いることなく硬度上昇が効果的に起こることを見出した。
【0024】
また、錠剤中に崩壊剤と導水剤であるメタケイ酸アルミン酸マグネシウムとを共存させた状態で加湿し、錠剤の硬度を上昇させることも、本発明の特徴である。
口腔内崩壊錠において、崩壊剤は吸水によってそれ自体が溶解あるいは膨潤することで賦形剤粒子を引き離し、その結着を解消させるものである。そのため、加湿時間が長くなると、崩壊剤が膨潤し、賦形剤粒子を引き離し、錠剤の硬度低下が起こるため、好ましくない。一方、導水剤は賦形剤粒子の間に入ることにより、錠剤が水に接触した際に水の錠剤への吸水経路を確保する物質である。
しかしながら、導水剤であるメタケイ酸アルミン酸マグネシウムを崩壊剤と共存させると、導水剤であるにもかかわらず、予想外に、錠剤の加湿処理の際に、崩壊剤への吸湿を抑制し、錠剤硬度を維持することを見出した。
さらに、メタケイ酸アルミン酸マグネシウムは錠剤の加湿処理の際に、錠剤表面の荒れを防ぐ安定剤としての役割を果たすことも見出した。
すなわち、メタケイ酸アルミン酸マグネシウムと崩壊剤を共存させることで、加湿の際の錠剤の安定化と口腔内における錠剤の崩壊時間も口腔内崩壊錠における要求を満たすものであることを見出した。
【0025】
これら球形マンニトール結晶粒子等の噴霧乾燥マンニトール結晶粒子の固結現象を利用した錠剤硬度の上昇法、導水剤、崩壊剤共存下での加湿、乾燥による錠剤硬度の上昇と崩壊時間の確保という知見から、口腔内崩壊錠の製造においてこれまで実施が困難であった通常錠の製造で実施される成形圧による成形工程によって、製造工程中での取り扱いに支障のない十分な硬度と、高い崩壊性を有する口腔内崩壊錠を製造することが可能となり、本発明を完成した。
【0026】
上述のように、本発明では、噴霧乾燥マンニトール結晶粒子であればその形状を問わず使用できるが、以下に、本発明の効果をより顕著に発揮する球形マンニトール結晶粒子について詳述する。
【0027】
本発明の好ましい実施態様における球形マンニトール結晶粒子とは、マンニトール水溶液を噴霧乾燥することによって得られる、微細な一次結晶粒子が球形に集合した二次粒子である。この粒子は、例えば、国際公開第2008/146590号公報に記載の方法で得ることが可能である。
【0028】
本発明におけるアスペクト比とは、粒子の長軸と短軸との比であり、真球度を示す目安となるものである。長軸、短軸の比は、試料粒子を、例えば、走査型電子顕微鏡(S−2600N、株式会社日立製作所製)を用いて無蒸着、加速電圧20kV、真空度50Pa、拡大倍率1500倍で写真撮影し、30個の球形粒について長軸の長さ(長径)と長軸の中点から垂直に引いた短軸の長さ(短径)を各々測定し、各々について短径に対する長径の比を求め、30個の平均値で示したものである。
【0029】
本発明の好ましい実施態様において有利に採用できる球形マンニトールは、その真球度の高いものが好ましく、好ましくは、アスペクト比1.0〜1.2以下、より好ましくは、アスペクト比1.0〜1.1、もっとも好ましくは、アスペクト比1.0である。
【0030】
本発明における試験法Aによる吸油率とは以下の通りである。中鎖脂肪酸トリグリセライド(花王株式会社製、ココナードMT)30gと試料マンニトール15gを100mLのガラス製ビーカーに入れ、粉体を破砕しないように穏やかにスパチュラで油と粉末試料とをかき混ぜたのち、例えば、真空定温乾燥機(VOS−300D、EYELA社製)に入れ、室温で0.67パスカルまで減圧して3時間油を含浸させる。
【0031】
次に、325メッシュ(目開き45μm)のろ布を敷いた遠沈管(底に孔のあるもの)に移し、遠心分離器(国産遠心器株式会社製、H−500R)を用いて約1300Gで10分間遠心分離する。遠心分離後の試料入り遠沈管重量と遠沈管風袋重量の測定値から遠心分離後に遠沈管内に残った粉末試料の重量(重量a)を求め、下記式1により計算された値を吸油率1とする。
吸油率1(%)=[(重量a−15)/15]×100 (式1)
【0032】
更に、100mLのガラス製ビーカーに遠心分離後の試料入り遠沈管を入れ、n−ヘキサン20gを粉末試料の上から加え、遠心分離器を用いて約1300Gで10分間遠心分離する。次に、遠心分離後の試料入り遠沈管重量と遠沈管風袋重量の測定値から遠心分離後に遠沈管内に残った粉末試料の重量(重量b)を求め、下記式2により計算された値を吸油率2とする。
吸油率2(%)=[(重量b−15)/15]×100 (式2)
【0033】
本発明の好ましい実施態様においては試験法Aによる吸油率1が25〜60%、吸油率2が15〜40%である球形マンニトールが好適に使用できる。
【0034】
本発明における平均粒子径とは、一般にメディアン径と呼ばれるものであり、粉体粒子積算分布の50%を与える粒子径である。
【0035】
平均粒子径の測定では、例えば、レーザー回折式粒度分布測定機MT−3000(日機装株式会社製)、および分散溶媒として2−プロパノール(試薬一級、純度99.0%以上、和光純薬工業株式会社製)を用いることができる。その測定に際しては表示部に「適量」と表示されるまで試料を添加し、超音波出力40Wで超音波処理を30秒間行なった後、平均粒子径を測定する。一種類の試料につき前述の操作を2回繰り返し実施し、その平均値を平均粒子径とする。
【0036】
本発明におけるゆるみかさ密度とは、粉体を所定の容器内に自然落下させた状態の充填密度であり、例えば、A.B.D粉体特性測定器(筒井理化学器械株式会社製)を用いて以下の方法で測定する。
【0037】
測定円台に試料容器(容積100mL)を置き、試料用ホッパーから排出ノズルを取った状態で試料を落下させ試料容器に山盛りに充填し、上部をすり切りヘラですり切りし、その重量を測定する。一種類の試料について同じ操作を3度繰り返し、その平均値をゆるみかさ密度とする。
【0038】
本発明の好ましい実施態様においては、平均粒子径15〜165μmの粉末のゆるみかさ密度が0.35〜0.60g/cm
3である球形マンニトール結晶粒子が好適に使用できる。
【0039】
本発明における安息角とは、粉体を円盤上に自然落下させた状態で形成される山の角度であり、例えば、A.B.D粉体特性測定器(筒井理化学器械株式会社製)を用いて以下の方法で測定する。試料用ホッパーに投入した試料を振動棒、網(目開き1000μm)、排出ロート、ノズル(内径1cm)を通し、安息角試料台の円板上に落下させ山を作り、異なる向き3ヶ所でその山の角度を角度計で測定し、同じ操作を3度繰り返し行い、その平均値を安息角とする。
【0040】
本発明の好ましい実施態様においては、平均粒子径15〜165μmの粉末の安息角が30〜50°である球形マンニトール結晶粒子が好適に使用できる。
【0041】
本発明における加湿処理とは、圧縮成形工程における雰囲気下の空気中の水分量に比べ水分量を多くした雰囲気下に、錠剤を一定時間曝露することを意味し、水を蒸発させて気体として空気中に存在させるほか、例えば噴霧によって微細な液体として存在させても良い。また、乾燥処理とは、錠剤中の水分を除去する工程であり、乾燥方法に特に制限はないが、錠剤の構成成分が変質しない程度に加温する方法が好ましい。
【0042】
本発明における導水剤とは、口腔内崩壊錠を水と接触させた際、賦形剤粒子の間に存在することで、錠剤内部への水の導入を促進するために使用する物質である。導水剤としては、例えば、メタケイ酸アルミン酸マグネシウム、合成ヒドロタルサイト、乾燥水酸化アルミニウムゲル、沈降炭酸カルシウム、ケイ酸アルミン酸マグネシウム、ケイ酸マグネシウム、合成ケイ酸アルミニウム、酸化マグネシウム、水酸化アルミナマグネシウム、水酸化アルミニウムゲル、水酸化アルミニウム、水酸化アルミニウム・炭酸水素ナトリウム共沈生成物、水酸化アルミニウム・炭酸マグネシウム、水酸化アルミニウム・炭酸マグネシウム・炭酸カルシウム共沈生成物、水酸化マグネシウム、炭酸水素ナトリウム、炭酸マグネシウム、無水リン酸水素カルシウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸などを使用することができる。本発明においては、メタケイ酸アルミン酸マグネシウムが導水剤として特に好適に使用できる。
【0043】
本発明において使用するメタケイ酸アルミン酸マグネシウムの品質は、製剤分野で一般的に使用できるものであればいずれのものも使用できる。また、メタケイ酸アルミン酸マグネシウムは、錠剤を加湿、乾燥する際、錠剤表面の平滑な状態を保つ効果も有している。メタケイ酸アルミン酸マグネシウムの錠剤全体に対する含有量は、0.5〜1.5重量%、好ましくは0.7〜1重量%である。メタケイ酸アルミン酸マグネシウムの含有量が0.5重量%未満の場合は、錠剤の加湿の際に錠剤表面の平滑な状態が失われる。また添加量が1.5重量%を超える場合は、水に対する溶解性が極めて低いため、服用時にざらつきを感じるため錠剤の口当たりが悪くなる。
【0044】
本発明における崩壊剤とは、口腔内崩壊錠において、吸水によってそれ自体が溶解あるいは膨潤することで賦形剤粒子を引き離し、その結着を解消させるために使用する物質である。崩壊剤としては、例えば、コーンスターチ、バレイショデンプン、コメデンプン、アルファ化澱粉などの澱粉類、クロスポビドン、カルメロース、カルメロースナトリウム、カルメロースカルシウム、クロスカルメロースナトリウム、
低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、カルボキシメチルスターチナトリウム、結晶セルロース・軽質無水ケイ酸などを使用することができるが、本発明においては、クロスポビドン、クロスカルメロースナトリウム、
低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、アルファ化澱粉、カルボキシメチルスターチナトリウム、結晶セルロース・軽質無水ケイ酸から選ばれる1種以上を崩壊剤として特に好適に使用することができ、さらに好ましくはクロスポビドン、クロスカルメロースナトリウムから選ばれる1種以上を崩壊剤とし使用することができる。
【0045】
本発明において使用する崩壊剤は、製剤分野で一般的に使用できる品質のものであればいずれのものも使用できる。崩壊剤の錠剤全体に対する含有量は、0.3〜4重量%、好ましくは0.4〜3.5重量%、より好ましくは1〜3重量%である。崩壊剤の含有量が0.3重量%未満のときは得られた錠剤の口腔内崩壊時間が遅延する。また含有量が4重量%を超える場合は成形後の工程、特に加湿乾燥工程後の錠剤強度が低くなる。
【0046】
滑沢剤とは、粉体を錠剤に成形する際に、臼杵と粉の摩擦や付着を低減して、打錠障害を低減するために用いる物質である。本発明の好ましい実施態様においては、滑沢剤として、ステアリン酸マグネシウム、ステアリン酸カルシウム、フマル酸ステアリルナトリウム、ショ糖脂肪酸エステル、ポリエチレングリコール、タルク、ステアリン酸などから選ばれる1種以上を使用することができる。
【0047】
本発明において使用する滑沢剤は、製剤分野で一般的に使用できる品質のものであればいずれのものも使用できる。滑沢剤の添加量は、少なすぎると打錠障害を低減する効果がなく、多すぎると錠剤の溶解性や食感を妨げるため、打錠粉末の性質と各滑沢剤の機能を加味して適した添加量に調整する必要がある。
【0048】
口腔内崩壊錠の製造過程で、普通錠で実施される成形圧で成形を行うことは本発明の特徴の一つである。本発明における成形圧は100kgf〜1000kgf、好ましくは200kgf〜800kgf、より好ましくは300kgf〜600kgfである。100kgf未満では製造工程中の取り扱いに支障ない程度の錠剤硬度を得ることは出来ない。また、1000kgfを超える成形圧は実用的でないばかりでなく、錠剤の崩壊性が著しく低下する。
【0049】
本発明における錠剤硬度とは、例えば、錠剤硬度計(TH−303MP型、富山産業株式会社製)を用いて各試料5錠の錠剤硬度を測定し、その平均値を計算したものである。
【0050】
本発明における錠剤硬度は製造工程中の取り扱いに支障ない程度の錠剤硬度が必要であるため、錠剤成形後、加湿、乾燥工程を経て錠剤が得られるまでの工程を通じて2kgf〜20kgf、好ましくは3.5kgf〜15kgfであることが望ましい。2kgf未満の場合は製造工程中で破損が生じ、20kgfを超える場合は口腔内崩壊時間が遅延してしまう。なお、本発明において、錠剤成形後、加湿・乾燥前の錠剤硬度を「初期硬度」ということがある。また、本発明は、錠剤成形後の加湿乾燥後に錠剤硬度が上昇することを特徴としており、加湿、乾燥後の錠剤硬度(「処理後硬度」ということがある)は4kgf〜20kgf、好ましくは5kgf〜15kgfである。
【0051】
本発明における口腔内崩壊時間とは健康な成人の口腔内に水を含まず錠剤を含ませ、錠剤が唾液のみで完全に崩壊し溶解するまでの時間(秒)を測定し、3錠の平均をとったものであり、本発明の口腔内崩壊錠においては、口腔内崩壊錠に要求される崩壊時間は5秒〜60秒、好ましくは5秒〜45秒、さらに好ましくは5秒〜40秒である。
【0052】
本発明における官能評価は、目視および食感の2種類があり、いずれも口腔内崩壊時間を測定する錠剤3錠にて判定したものである。目視は錠剤表面の荒れの有無、食感は錠剤を口腔内で溶解させた際のざらつきなどのマウスフィールの良し悪しである。それぞれについて良好(表では◎)、可(表では○)、不可(表では×)の3段階で評価を行った。
【0053】
本発明においては、薬効成分を錠剤の成分として配合することも可能である。剤形として口腔内崩壊錠を選択できる薬効成分であれば、制限なく好適に採用することが可能である。