(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0025】
本発明の有機電界発光素子は、基板上に、一対の電極と、該電極間に発光層を含む少なくとも一層の有機層を含む。有機層のいずれかの層に一般式(1)で表される化合物を含有し、かつ発光層に一般式(C−1)で表される燐光発光材料を含有する。
一般式(1)で表される化合物と一般式(C−1)で表される燐光発光材料を用いることにより、駆動電圧、発光効率、耐久性などに優れ、高温駆動時の色度変化が小さい有機電界発光素子が得られる。高温駆動時の色度変化が抑えられる理由としては、正確には判明していないが、次のことが考えられる。即ち、高温駆動時には化学反応が促進されるため、発光材料とホスト材料とが発光層内で何らかの予期せぬ化学反応を起こすことが考えられる。同様に、発光層と隣接層との界面にて発光材料と隣接層材料との間でも何らかの化学反応が起こることが考えられる。この結果、発光位置が変化する、副発光成分が生成するなどの理由で色度変化が起こると考えられる。しかし、一般式(1)で表される化合物と一般式(C−1)で表される燐光発光材料の間では高温駆動時にも化学反応が起こりにくく、色度変化が起こりにくいと考えられる。
【0026】
なお、下記一般式(1)〜(3)、一般式(PQ−1)〜(PQ−2)、一般式(C−1)〜(C−6)及び一般式(IV)の説明における水素原子は同位体(重水素原子等)も含み、また更に置換基を構成する原子は、その同位体も含んでいることを表す。
【0027】
以下、一般式(1)で表される化合物について説明する。
【0029】
一般式(1)中、Czは置換若しくは無置換のアリールカルバゾリル基又はカルバゾリルアリール基を表す。Lは単結合、置換若しくは無置換のアリーレン基、置換若しくは無置換のシクロアルキレン基、又は置換若しくは無置換の芳香族へテロ環を表す。Aは置換若しくは無置換の窒素含有芳香族へテロ環であり、p、及びqはそれぞれ独立に1〜6の整数である。
【0030】
一般式(1)について説明する。
Czは、置換若しくは無置換のアリールカルバゾリル基又はカルバゾリルアリール基である。
アリールカルバゾリル基及びカルバゾリルアリール基におけるアリール基は、炭素数6〜30が好ましく、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、ピレニル基、フルオレニル基、ビフェニル基、ターフェニル基等が挙げられ、これらのうち、フェニル基、ナフチル基、ビフェニル基、ターフェニル基が好ましく、フェニル基、ビフェニル基がより好ましい。
アリールカルバゾリル基及びカルバゾリルアリール基におけるカルバゾール環(カルバゾリル基)上でのアリール基の置換位置は、特に限定されないが、化学的安定性やキャリア輸送性の観点から、アリール基がカルバゾール環の2位、3位、6位、7位又は9位に置換していることが好ましく、カルバゾール環の3位、6位又は9位に置換していることがより好ましく、カルバゾール環の9位(N位)に置換していることが最も好ましい。
Czがアリールカルバゾリル基の場合、特に限定されないが、化学的安定性やキャリア輸送性の観点から、アリールカルバゾリル基のカルバゾール環の2位、3位、6位、7位又は9位(N位)でLと連結することが好ましく、カルバゾール環の3位、6位又は9位(N位)でLと連結することがより好ましく、カルバゾール環の9位(N位)でLと連結することが最も好ましい。
また、Czとしてはアルキル基、シリル基、アリール基、シアノ基又はカルバゾリル基で置換されていてもよいカルバゾリルアリール基であることが好ましく、エチル基、t−ブチル基、トリフェニルシリル基、フェニル基、シアノ基又はカルバゾリル基で置換されていてもよいカルバゾリルアリール基であることがより好ましい。
【0031】
Aは、置換若しくは無置換の窒素含有6員芳香族ヘテロ環であり、好ましくは炭素数2〜40の窒素含有6員芳香族ヘテロ環である。Aは複数の置換基を有してもよく、置換基が互いに結合して環を形成してもよい。
窒素含有芳香族ヘテロ環又は窒素含有芳香族ヘテロ6員環を含む窒素含有芳香族ヘテロ環としては、ピリジン、ピリミジン、ピラジン、ピリダジン、トリアジン、アザインドリジン、インドリジン、プリン、プテリジン、β−カルボリン、ナフチリジン、キノキサリン、ターピリジン、ビピリジン、アクリジン、フェナントロリン、フェナジン、イミダゾピリジン等が挙げられ、これらのうち、ピリジン、ピリミジン、ピラジン、トリアジンがより好ましく、ピリミジンが最も好ましい。
【0032】
Lは、単結合、置換若しくは無置換のアリーレン基、置換若しくは無置換のシクロアルキレン基、置換若しくは無置換の芳香族ヘテロ環である。
なお、一般式(1)においてp+qが3以上を表す場合、Lは、前記アリーレン基からp+q−2個の任意の水素原子を除したp+q価の基、シクロアルキレン基からp+q−2個の任意の水素原子を除したp+q価の基、又はp+q価の芳香族ヘテロ環基を表す。
Lが有する置換基としては、前記置換基群Aとしてあげたものが適用でき、好ましくはメチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基、シクロペンチル基、フェニル基、トリル基、キシリル基、ピリジル基、ピリミジル基、チエニル基、フッ素原子、シアノ基、トリフルオロメチル基、ペンタフルオロフェニル基、トリフェニルシリル基、トリメチルシリル基であり、より好ましくはメチル基、エチル基、ブチル基、フェニル基、ピリジル基、ピリミジル基、フッ素原子、シアノ基、トリフルオロメチル基であり、更に好ましくはメチル基、フェニル基、フッ素原子である。
アリーレン基としては、炭素数6〜30のアリーレン基が好ましく、例えば、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラニレン基、フェナンスリレン基、ビレニレン基、クリセニレン基、フルオランテニレン基、パーフルオロアリーレン基等が挙げられ、これらのうちフェニレン基、ビフェニレン基、ターフェニレン基、パーフルオロアリーレン基が好ましく、フェニレン基、ビフェニレン基、ターフェニレン基がより好ましく、フェニレン基、ビフェニレン基が更に好ましい。
シクロアルキレン基としては、炭素数5〜30のシクロアルキレン基が好ましく、例えばシクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基などが挙げられ、これらのうちシクロペンチレン基、シクロヘキシレン基が好ましく、シクロへキシレン基がより好ましい。
芳香族ヘテロ環としては、炭素数2〜30の芳香族ヘテロ環が好ましく、1−ピロリル基、2−ピロリル基、3−ピロリル基、ピラジニル基、2−ピリジニル基、3−ピリジニル基、4−ピリジニル基、1−インドリル基、2−インドリル基、3−インドリル基、4−インドリル基、5−インドリル基、6−インドリル基、7−インドリル基、1−イソインドリル基、2−イソインドリル基、3−イソインドリル基、4−イソインドリル基、5−イソインドリル基、6−イソインドリル基、7−イソインドリル基、2−フリル基、3−フリル基、2−ベンゾフラニル基、3−ベンゾフラニル基、4−ベンゾフラニル基、5−ベンゾフラニル基、6−ベンゾフラニル基、7−ベンゾフラニル基、1−イソベンゾフラニル基、3−イソベンゾフラニル基、4−イソベンゾフラニル基、5−イソベンゾフラニル基、6−イソベンゾフラニル基、7−イソベンゾフラニル基、2−キノリル基、3−キノリル基、4−キノリル基、5−キノリル基、6−キノリル基、7−キノリル基、8−キノリル基、1−イソキノリル基、3−イソキノリル基、4−イソキノリル基、5−イソキノリル基、6−イソキノリル基、7−イソキノリル基、8−イソキノリル基、2−キノキサリニル基、5−キノキサリニル基、6−キノキサリニル基、1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、9−カルバゾリル基、1−フェナンスリジニル基、2−フェナンスリジニル基、3−フェナンスリジニル基、4−フェナンスリジニル基、6−フェナンスリジニル基、7−フェナンスリジニル基、8−フェナンスリジニル基、9−フェナンスリジニル基、10−フェナンスリジニル基、1−アクリジニル基、2−アクリジニル基、3−アクリジニル基、4−アクリジニル基、9−アクリジニル基、1,7−フェナンスロリン−2−イル基、1,7−フェナンスロリン−3−イル基、1,7−フェナンスロリン−4−イル基、1,7−フェナンスロリン−5−イル基、1,7−フェナンスロリン−6−イル基、1,7−フェナンスロリン−8−イル基、1,7−フェナンスロリン−9−イル基、1,7−フェナンスロリン−10−イル基、1,8−フェナンスロリン−2−イル基、1,8−フェナンスロリン−3−イル基、1,8−フェナンスロリン−4−イル基、1,8−フェナンスロリン−5−イル基、1,8−フェナンスロリン−6−イル基、1,8−フェナンスロリン−7−イル基、1,8−フェナンスロリン−9−イル基、1,8−フェナンスロリン−10−イル基、1,9−フェナンスロリン−2−イル基、1,9−フェナンスロリン−3−イル基、1,9−フェナンスロリン−4−イル基、1,9−フェナンスロリン−5−イル基、1,9−フェナンスロリン−6−イル基、1,9−フェナンスロリン−7−イル基、1,9−フェナンスロリン−8−イル基、1,9−フェナンスロリン−10−イル基、1,10−フェナンスロリン−2−イル基、1,10−フェナンスロリン−3−イル基、1,10−フェナンスロリン−4−イル基、1,10−フェナンスロリン−5−イル基、2,9−フェナンスロリン−1−イル基、2,9−フェナンスロリン−3−イル基、2,9−フェナンスロリン−4−イル基、2,9−フェナンスロリン−5−イル基、2,9−フェナンスロリン−6−イル基、2,9−フェナンスロリン−7−イル基、2,9−フェナンスロリン−8−イル基、2,9−フェナンスロリン−10−イル基、2,8−フェナンスロリン−1−イル基、2,8−フェナンスロリン−3−イル基、2,8−フェナンスロリン−4−イル基、2,8−フェナンスロリン−5−イル基、2,8−フェナンスロリン−6−イル基、2,8−フェナンスロリン−7−イル基、2,8−フェナンスロリン−9−イル基、2,8−フェナンスロリン−10−イル基、2,7−フェナンスロリン−1−イル基、2,7−フェナンスロリン−3−イル基、2,7−フェナンスロリン−4−イル基、2,7−フェナンスロリン−5−イル基、2,7−フェナンスロリン−6−イル基、2,7−フェナンスロリン−8−イル基、2,7−フェナンスロリン−9−イル基、2,7−フェナンスロリン−10−イル基、1−フェナジニル基、2−フェナジニル基、1−フェノチアジニル基、2−フェノチアジニル基、3−フェノチアジニル基、4−フェノチアジニル基、10−フェノチアジニル基、1−フェノキサジニル基、2−フェノキサジニル基、3−フェノキサジニル基、4−フェノキサジニル基、10−フェノキサジニル基、2−オキサゾリル基、4−オキサゾリル基、5−オキサゾリル基、2−オキサジアゾリル基、5−オキサジアゾリル基、3−フラザニル基、2−チエニル基、3−チエニル基、2−メチルピロール−1−イル基、2−メチルピロール−3−イル基、2−メチルピロール−4−イル基、2−メチルピロール−5−イル基、3−メチルピロール−1−イル基、3−メチルピロール−2−イル基、3−メチルピロール−4−イル基、3−メチルピロール−5−イル基、2−t−ブチルピロール−4−イル基、3−(2−フェニルプロピル)ピロール−1−イル基、2−メチル−1−インドリル基、4−メチル−1−インドリル基、2−メチル−3−インドリル基、4−メチル−3−インドリル基、2−t−ブチル−1−インドリル基、4−t−ブチル−1−インドリル基、2−t−ブチル−3−インドリル基、4−t−ブチル−3−インドリル基等が挙げられ、これらのうち、ピリジニル基、キノリル基、インドリル基、カルバゾリル基が好ましく、ピリジニル基、カルバゾリル基がより好ましい。
Lとしては、単結合、フェニレン基、ビフェニレン基、シクロペンチレン基、シクロへキシレン基、ピリジニル基、カルバゾリル基が好ましく、単結合、フェニレン基、ビフェニレン基がより好ましく、単結合、フェニレン基が更に好ましい。
【0033】
また、上記一般式(1)におけるCz、A及びLの置換基としては、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、カルバゾリル基、ヒドロキシル基、置換若しくは無置換のアミノ基、ニトロ基、シアノ基、シリル基、トリフルオロメチル基、カルボニル基、カルボキシル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、置換若しくは無置換のアリールアルキル基、置換若しくは無置換の芳香族基、置換若しくは無置換の芳香族ヘテロ環基、置換若しくは無置換のアラルキル基、置換若しくは無置換のアリールオキシ基、置換若しくは無置換のアルキルオキシ基等が挙げられる。これらのうち、フッ素原子、メチル基、パーフルオロフェニレン基、フェニル基、ナフチル基、ピリジル基、ピラジル基、ピリミジル基、アダマンチル基、ベンジル基、ニトロ基、シアノ基、シリル基、トリフルオロメチル基、カルバゾリル基及びこれらのみの組み合わせからなる基が好ましく、フッ素原子、メチル基、フェニル基、ピリジル基、ピリミジル基、シアノ基、シリル基、カルバゾリル基、及びこれらのみの組み合わせからなる基がより好ましく、フェニル基、ピリジル基、ピリミジル基、カルバゾリル基、及びこれらのみの組み合わせからなる基が更に好ましく、フェニル基が最も好ましい。
【0034】
p、及びqは、それぞれ独立に1〜6の整数であり、それぞれ1〜4であることが好ましく、1〜3であることがより好ましく、1又は2であることが更に好ましい。
【0035】
一般式(1)で表される化合物は、以下の一般式(2)で表される化合物であることがより好ましい。
【0037】
一般式(2)中、Czは置換若しくは無置換のアリールカルバゾリル基又はカルバゾリルアリール基を表す。Lは単結合、置換若しくは無置換のアリーレン基、置換若しくは無置換のシクロアルキレン基、又は置換若しくは無置換の芳香族へテロ環を表し、Ar
1、Ar
2、X
1、X
2又はX
3の炭素原子と連結する。Ar
1及びAr
2はそれぞれ独立に置換若しくは無置換のアリール基、又は置換若しくは無置換の芳香族へテロ環基を表し、X
1、X
2及びX
3はそれぞれ独立に窒素原子又は水素原子若しくは置換基が結合した炭素原子を表す。p及びqはそれぞれ独立に1〜6の整数を表す。
【0038】
一般式(2)について説明する。
一般式(2)中、Cz、L、p及びqの定義は、一般式(1)におけるCz、L、p及びqと同様であり、好ましいものも同様である。
Ar
1、及びAr
2はそれぞれ独立に置換若しくは無置換のアリール基、置換基若しくは無置換のアリーレン基、又は置換若しくは無置換の芳香族へテロ環基である。
アリール基は置換又は無置換の炭素数6〜30のものが好ましく、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントラニル基、フェナンスリル基、ビレニル基、クリセニル基、フルオランテニル基、パーフルオロアリール基等が挙げられ、これらのうちフェニル基、ビフェニル基、ターフェニル基、パーフルオロアリール基が好ましく、フェニル基、ビフェニル基、ターフェニル基がより好ましく、フェニル基、ビフェニル基が更に好ましい。
アリーレン基としては置換又は無置換の炭素数6〜30のものが好ましく、具体例や好ましい基は前述の一般式(1)におけるLの説明で挙げたものと同様である。芳香族へテロ環基としては、置換又は無置換の炭素数2〜30のものが好ましく、具体例や好ましい基は前述の一般式(1)におけるLの説明で挙げたものと同様である。これらに置換基が結合する場合、置換基の具体例や好ましい基は前述の一般式(1)におけるCz、A及びLの置換基として挙げたものと同様である。
Ar
1及びAr
2は、好ましくはそれぞれ独立に、カルバゾリル基で置換されていてもよいフェニル基又は無置換のターフェニル基であり、カルバゾリル基で置換されていてもよいフェニル基であることがより好ましい。
X
1、X
2、及びX
3は、それぞれ独立に、窒素原子又は水素原子若しくは置換基が結合した炭素原子を表す。X
1、X
2、及びX
3のうち、0〜2個が窒素原子である場合が好ましく、0又は1個が窒素原子である場合がより好ましく、1個が窒素原子である場合が最も好ましい。X
1、X
2、及びX
3のいずれかに窒素原子が含まれる場合、X
1及びX
3のいずれか一方が窒素原子であることが好ましい。炭素原子に結合する置換基の具体例や好ましい基は前述の一般式(1)におけるCz、A及びLの置換基として挙げたものと同様である。また、一般式(2)においてLの連結位置は特に限定されないが、化学的安定性やキャリア輸送性の観点から、Ar
1の炭素原子と連結することが好ましい。
【0039】
一般式(1)で表される化合物は、以下の一般式(3)で表される化合物であることがより好ましい。
【0041】
一般式(3)中、X
4、及びX
5はそれぞれ独立に窒素原子又は水素原子若しくは置換基が結合した炭素原子を表し、X
4及びX
5のいずれか一方は窒素原子であり、他方は水素原子若しくは置換基が結合した炭素原子である。L’は単結合、置換若しくは無置換のアリーレン基、置換若しくは無置換のシクロアルキレン基、又は置換若しくは無置換の芳香族へテロ環を表す。R
1〜R
5はそれぞれ独立に置換基を表す。n1〜n5はそれぞれ独立に0〜5の整数を表す。p’、及びq’はそれぞれ独立に1〜4の整数を表す。
【0042】
一般式(3)について説明する。
X
4、X
5はそれぞれ独立に窒素原子若しくは又は水素原子若しくは置換基が結合した炭素原子を表す。X
4及びX
5のいずれか一方は窒素原子であり、他方は水素原子若しくは置換基が結合した炭素原子であることが好ましい。一般式(3)におけるX
4及びX
5を含む環がピリジン又はピリミジンを表すことが好ましく、ピリミジンを表すことがより好ましい。炭素原子に結合する置換基の具定例や好ましい基は前述の一般式(1)におけるCz、A及びLの置換基として挙げたものと同様である。
L’の定義は、前述の一般式(1)におけるLと同様であり、好ましい基もLと同様である。L’は、一般式(3)中の含窒素芳香族ヘテロ構造においてR
3が結合するベンゼン環と連結している。
R
1〜R
5はそれぞれ独立に置換基を表す。置換基の具体例は前述の一般式(1)におけるCz、及びAの置換基として挙げたものと同様である。R
1〜R
6として好ましくは、フッ素原子、メチル基、t−ブチル基、フェニル基、ピリジル基、ピラジル基、ピリミジル基、アダマンチル基、シアノ基、トリメチルシリル基、トリフェニルシリル基、トリフルオロメチル基、カルバゾリル基であり、より好ましくは、フッ素原子、メチル基、t−ブチル基、フェニル基、ピリジル基、シアノ基、トリメチルシリル基、トリフェニルシリル基、トリフルオロメチル基、カルバゾリル基であり、更に好ましくはフッ素原子、メチル基、t−ブチル基、フェニル基、シアノ基、シリル基、トリフェニルシリル基、トリフルオロメチル基、カルバゾリル基であり、更に好ましくはフッ素原子、t−ブチル基、フェニル基、シアノ基、トリフェニルシリル基、カルバゾリル基である。R
1〜R
5が複数のとき、複数のR
1〜R
5はそれぞれ同一でも異なっていてもよい。
n1〜n5はそれぞれ独立に0〜5の整数を表す。それぞれ0〜2であることが好ましく、0〜1であることがより好ましく、0であることが更に好ましい。
p’、及びq’はそれぞれ独立に1〜4の整数を表す。それぞれ1〜3であることが好ましく、1又は2であることがより好ましい。
【0043】
好ましくは、一般式(3)中、X
4及びX
5はそれぞれ独立に窒素原子又は水素原子が結合した炭素原子であり、X
4及びX
5を含む環はピリジン又はピリミジンであり、L’は、単結合又はフェニレン基を表し、R
1〜R
5はそれぞれ独立にメチル基、フェニル基、シアノ基、ピリジル基、ピリミジル基、シリル基、カルバゾリル基、又はtert−ブチル基を表し、n1〜n5はそれぞれ独立に0又は1を表し、p’及びq’はそれぞれ独立に1又は2を表す。
なお、一般式(3)においてp’+q’が3以上を表す場合、L’は、前記フェニレン基からp’+q’−2個の任意の水素原子を除したp’+q’価の基を表す。
【0044】
一般式(1)で表される化合物は、炭素原子、水素原子及び窒素原子のみからなる場合が最も好ましい。
【0045】
一般式(1)で表される化合物の分子量は400以上1000以下であることが好ましく、450以上800以下であることがより好ましく、500以上700以下であることが更に好ましい。
【0046】
一般式(1)で表される化合物の膜状態での最低励起三重項(T
1)エネルギーは2.61eV(62kcal/mol)以上3.51eV(80kcal/mol)以下であることが好ましく、2.69eV(63.5kcal/mol)以上3.51eV(80kcal/mol)以下であることがより好ましく、2.76eV(65kcal/mol)以上3.51eV(80kcal/mol)であることが更に好ましい。
T
1エネルギーは、材料の薄膜の燐光発光スペクトルを測定し、その短波長端から求めることができる。例えば、洗浄した石英ガラス基板上に、材料を真空蒸着法により約50nmの膜厚に成膜し、薄膜の燐光発光スペクトルを液体窒素温度下でF−7000日立分光蛍光光度計(日立ハイテクノロジーズ)を用いて測定する。得られた発光スペクトルの短波長側の立ち上がり波長をエネルギー単位に換算することによりT
1エネルギーを求めることができる。
【0047】
一般式(1)で表される化合物のガラス転移温度(Tg)は80℃以上400℃以下であることが好ましく、100℃以上400℃以下であることがより好ましく、120℃以上400℃以下であることが更に好ましい。
【0048】
以下に、一般式(1)で表される化合物の具体例を例示するが、本発明はこれらに限定されるものではない。
【0059】
上記一般式(1)で表される化合物として例示した化合物は、国際公開第03/080760号パンフレットに記載の方法や、国際公開第03/078541号パンフレットに記載の方法、国際公開第05/085387号パンフレットに記載の方法等、種々の方法で合成できる。
例えば、上記No.4の化合物は、m−ブロモベンゾアルデヒドを出発原料に用い、国際公開第05/085387号パンフレット段落[0074]−[0075](45頁、11行〜46頁、18行)に記載の方法で合成することができる。上記No.45の化合物は、3,5−ジブロモベンゾアルデヒドを出発原料に用い、国際公開第03/080760号パンフレットの46頁、9行〜46頁、12行に記載の方法で合成することができる。また、上記No.77の化合物は、N−フェニルカルバゾールを出発原料に用い、国際公開第05/022962号パンフレットの137頁、10行〜139頁、9行に記載の方法で合成することができる。
【0060】
本発明において、一般式(1)で表される化合物は、その用途が限定されることはなく、有機層内のいずれの層に含有されてもよい。一般式(1)で表される化合物の導入層としては、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層のいずれか、若しくは複数に含有されるのが好ましい。
本発明では、高温駆動時の色度変化をより抑えるために、一般式(1)で表される化合物を発光層又は発光層に隣接する層のいずれかに含有されることが好ましく、発光層に隣接する層に含有されることがより好ましい。また、一般式(1)で表される化合物を発光層及び発光層に隣接する層の両層に含有させてもよい。
一般式(1)で表される化合物を発光層中含有させる場合、本発明の一般式(1)で表される化合物は発光層の全質量に対して0.1〜99質量%含ませることが好ましく、1〜95質量%含ませることがより好ましく、10〜95質量%含ませることがより好ましい。
また、一般式(1)で表される化合物を発光層以外の層に含有させる場合は、発光層以外の層の全質量に対して10〜100質量%含ませることが好ましく、30〜100質量%含ませることがより好ましく、50〜100質量%含まれせることがより好ましい。
【0061】
本発明において、一般式(1)で表される化合物とともにホスト材料を併用することができる。併用するホスト材料としては、正孔輸送性ホスト材料であっても、電子輸送性ホスト材料であってもよいが、正孔輸送性ホスト材料を用いることができる。
本発明において、前記発光層が、一般式(1)で表される化合物とホスト材料とを含むことが好ましい。前記ホスト材料は下記一般式(4−1)又は(4−2)で表される化合物であることが好ましい。
本発明においては、発光層に前記一般式(1)で表される化合物と、更に一般式(4−1)又は(4−2)で表される化合物の少なくとも1つ以上を含むことがより好ましい。
【0062】
本発明において、一般式(4−1)又は(4−2)で表される化合物が発光層に含有される場合、一般式(4−1)又は(4−2)で表される化合物は発光層中に30〜90質量%含まれることが好ましく、40〜85質量%含まれることが好ましく、50〜80質量%含まれることが特に好ましい。また、一般式(4−1)又は(4−2)で表される化合物を、複数の有機層に用いる場合はそれぞれの層において、上記の範囲で含有することが好ましい。
【0063】
一般式(4−1)又は(4−2)で表される化合物は、いずれかの有機層に、一種類のみを含有していてもよく、複数の一般式(4−1)又は(4−2)で表される化合物を任意の割合で組み合わせて含有していてもよい。
【0065】
(一般式(4−1)及び(4−2)中、d、及びeはそれぞれ独立に0〜3の整数を表し、少なくとも一方は1以上である。fは1〜4の整数を表す。R’
8は置換基を表し、d、e、fが2以上である場合R’
8は互いに異なっていても同じでも良い。また、R’
8の少なくとも1つは下記一般式(5)で表されるカルバゾール基を表す。)
【0067】
(一般式(5)中、R’
9はそれぞれ独立に置換基を表す。gは0〜8の整数を表す。)
【0068】
R’
8はそれぞれ独立に置換基を表し、具体的にはハロゲン原子、アルコキシ基、シアノ基、ニトロ基、アルキル基、アリール基、ヘテロ環基、又は一般式(5)で表される置換基である。R’
8が一般式(5)を表さない場合、好ましくは炭素数10以下のアルキル基、炭素数10以下の置換又は無置換のアリール基であり、更に好ましくは炭素数6以下のアルキル基である。
【0069】
R’
9はそれぞれ独立に置換基を表し、具体的にはハロゲン原子、アルコキシ基、シアノ基、ニトロ基、アルキル基、アリール基、ヘテロ環基であり、好ましくは炭素数10以下のアルキル基、炭素数10以下の置換又は無置換のアリール基であり、更に好ましくは炭素数6以下のアルキル基である。
gは0〜8の整数を表し、電荷輸送を担うカルバゾール骨格を遮蔽しすぎない観点から0〜4が好ましい。また、合成容易さの観点から、カルバゾールが置換基を有する場合、窒素原子に対し、対称になるように置換基を持つものが好ましい。
【0070】
一般式(4−1)において、電荷輸送能を保持する観点で、dとeの和は2以上であることが好ましい。また、他方のベンゼン環に対しR’
8がメタで置換することが好ましい。その理由として、オルト置換では隣り合う置換基の立体障害が大きいため結合が開裂しやすく、耐久性が低くなる。また、パラ置換では分子形状が剛直な棒状へと近づき、結晶化しやすくなるため高温条件での素子劣化が起こりやすくなる。具体的には以下の構造で表される化合物であることが好ましい。なお以下の化合物中のR’
9及びgは、前記一般式(5)におけるR’
9及びgと同義である。
【0072】
一般式(4−2)において、電荷輸送能を保持する観点で、fは2以上であることが好ましい。fが2又は3の場合、同様の観点からR’
8が互いにメタで置換することが好ましい。具体的には以下の構造で表される化合物であることが好ましい。なお以下の化合物中のR’
9及びgは、前記一般式(5)におけるR’
9及びgと同義である。
【0074】
一般式(4−1)及び(4−2)が水素原子を有する場合、水素の同位体(重水素原子等)も含む。この場合化合物中の全ての水素原子が水素同位体に置き換わっていてもよく、また一部が水素同位体を含む化合物である混合物でもよい。好ましくは一般式(5)におけるR’
9が重水素によって置換されたものであり、特に好ましくは以下の構造が挙げられる。
【0076】
更に置換基を構成する原子は、その同位体も含んでいることを表す。
【0077】
一般式(4−1)及び(4−2)で表される化合物は、種々の公知の合成法を組み合わせて合成することが可能である。最も一般的には、カルバゾール化合物に関してはアリールヒドラジンとシクロヘキサン誘導体との縮合体のアザーコープ転位反応の後、脱水素芳香族化による合成(L.F.Tieze,Th.Eicher著、高野、小笠原訳、精密有機合成、339頁(南江堂刊))が挙げられる。また、得られたカルバゾール化合物とハロゲン化アリール化合物のパラジウム触媒を用いるカップリング反応に関してはテトラヘドロン・レターズ39巻617頁(1998年)、同39巻2367頁(1998年)及び同40巻6393頁(1999年)等に記載の方法が挙げられる。反応温度、反応時間については特に限定されることはなく、前記文献に記載の条件が適用できる。また、mCPなどのいくつかの化合物は市販されているものを好適に用いることができる。
【0078】
本発明において、一般式(4−1)及び(4−2)で表される化合物は、真空蒸着プロセスで薄層を形成することが好ましいが、溶液塗布などのウェットプロセスも好適に用いることが出来る。化合物の分子量は、蒸着適性や溶解性の観点から2000以下であることが好ましく、1200以下であることがより好ましく、800以下であることが特に好ましい。また蒸着適性の観点では、分子量が小さすぎると蒸気圧が小さくなり、気相から固相への変化がおきず、有機層を形成することが困難となるので、250以上が好ましく、300以上が特に好ましい。
【0079】
一般式(4−1)及び(4−2)は、以下に示す構造若しくはその水素原子が1つ以上重水素原子で置換された化合物であることが好ましい。なお以下の化合物中のR’
8及びR’
9は、前記一般式(4−1)及び(4−2)並びに前記一般式(5)におけるR’
8及びR’
9と同義である。
【0081】
以下に、本発明における一般式(4−1)及び(4−2)で表される化合物の具体例を例示するが、本発明はこれらに限定されるものではない。
【0088】
次に、燐光発光材料一般式(C−1)で表される白金錯体について説明する。
まず、本発明においては、置換基群A及びBを以下のように定義する。
【0089】
(置換基群A)
アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、イソプロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、2−ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(芳香族ヘテロ環基も包含し、好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレノフェニル、テルロフェニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、ホスホリル基(例えばジフェニルホスホリル基、ジメチルホスホリル基などが挙げられる。)が挙げられる。
これらの置換基は更に置換されてもよく、更なる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。
【0090】
(置換基群B)
アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、イソプロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、シアノ基、ヘテロ環基(芳香族ヘテロ環基も包含し、好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレノフェニル、テルロフェニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)などが挙げられる。
これらの置換基は更に置換されてもよく、更なる置換基としては、以上に説明した置換基群A及びBから選択される基を挙げることができる。
【0091】
本発明において、上記アルキル基等の置換基の「炭素数」とは、アルキル基等の置換基が他の置換基によって置換されてもよい場合も含み、当該他の置換基の炭素数も包含する意味で用いる。
【0093】
(式中、Q
1、Q
2、Q
3及びQ
4はそれぞれ独立にPtに配位する配位子を表す。L
1、L
2及びL
3はそれぞれ独立に単結合又は二価の連結基を表す。)
【0094】
一般式(C−1)について説明する。Q
1、Q
2、Q
3及びQ
4はそれぞれ独立にPtに配位する配位子を表す。この時、Q
1、Q
2、Q
3及びQ
4とPtの結合は、共有結合、イオン結合、配位結合などいずれであっても良い。Q
1、Q
2、Q
3及びQ
4中のPtに結合する原子としては、炭素原子、窒素原子、酸素原子、硫黄原子、リン原子が好ましく、Q
1、Q
2、Q
3及びQ
4中のPtに結合する原子の内、少なくとも一つが炭素原子であることが好ましく、二つが炭素原子であることがより好ましく、二つが炭素原子で、二つが窒素原子であることが特に好ましい。
炭素原子でPtに結合するQ
1、Q
2、Q
3及びQ
4としては、アニオン性の配位子でも中性の配位子でもよく、アニオン性の配位子としてはビニル配位子、芳香族炭化水素環配位子(例えばベンゼン配位子、ナフタレン配位子、アントラセン配位子、フェナントレン配位子など)、ヘテロ環配位子(例えばフラン配位子、チオフェン配位子、ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子及び、それらを含む縮環体(例えばキノリン配位子、ベンゾチアゾール配位子など))が挙げられる。中性の配位子としてはカルベン配位子が挙げられる。
窒素原子でPtに結合するQ
1、Q
2、Q
3及びQ
4としては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としては含窒素芳香族ヘテロ環配位子(ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子、オキサゾール配位子、チアゾール配位子及びそれらを含む縮環体(例えばキノリン配位子、ベンゾイミダゾール配位子など))、アミン配位子、ニトリル配位子、イミン配位子が挙げられる。アニオン性の配位子としては、アミノ配位子、イミノ配位子、含窒素芳香族ヘテロ環配位子(ピロール配位子、イミダゾール配位子、トリアゾール配位子及びそれらを含む縮環体(例えはインドール配位子、ベンゾイミダゾール配位子など))が挙げられる。
酸素原子でPtに結合するQ
1、Q
2、Q
3及びQ
4としては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはエーテル配位子、ケトン配位子、エステル配位子、アミド配位子、含酸素ヘテロ環配位子(フラン配位子、オキサゾール配位子及びそれらを含む縮環体(ベンゾオキサゾール配位子など))が挙げられる。アニオン性の配位子としては、アルコキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、アシルオキシ配位子、シリルオキシ配位子などが挙げられる。
硫黄原子でPtに結合するQ
1、Q
2、Q
3及びQ
4としては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはチオエーテル配位子、チオケトン配位子、チオエステル配位子、チオアミド配位子、含硫黄ヘテロ環配位子(チオフェン配位子、チアゾール配位子及びそれらを含む縮環体(ベンゾチアゾール配位子など))が挙げられる。アニオン性の配位子としては、アルキルメルカプト配位子、アリールメルカプト配位子、ヘテロアリールメルカプト配位子などが挙げられる。
リン原子でPtに結合するQ
1、Q
2、Q
3及びQ
4としては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはホスフィン配位子、リン酸エステル配位子、亜リン酸エステル配位子、含リンヘテロ環配位子(ホスフィニン配位子など)が挙げられ、アニオン性の配位子としては、ホスフィノ配位子、ホスフィニル配位子、ホスホリル配位子などが挙げられる。
Q
1、Q
2、Q
3及びQ
4で表される基は、置換基を有していてもよく、置換基としては前記置換基群Aとして挙げたものが適宜適用できる。また置換基同士が連結していても良い(Q
3とQ
4が連結した場合、環状四座配位子のPt錯体になる)。
【0095】
Q
1、Q
2、Q
3及びQ
4で表される基として好ましくは、炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子、アルキルオキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、シリルオキシ配位子であり、より好ましくは、炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子、アリールオキシ配位子であり、更に好ましくは炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子である。
【0096】
L
1、L
2及びL
3は、単結合又は二価の連結基を表す。L
1、L
2及びL
3で表される二価の連結基としては、アルキレン基(メチレン、エチレン、プロピレンなど)、アリーレン基(フェニレン、ナフタレンジイル)、ヘテロアリーレン基(ピリジンジイル、チオフェンジイルなど)、イミノ基(−NR
L−)(フェニルイミノ基など)、オキシ基(−O−)、チオ基(−S−)、ホスフィニデン基(−PR
L−)(フェニルホスフィニデン基など)、シリレン基(−SiR
LR
L’−)(ジメチルシリレン基、ジフェニルシリレン基など)、又はこれらを組み合わせたものが挙げられる。ここで、R
L及びR
L’はそれぞれ独立に、アルキル基又はアリール基を表す。これらの連結基は、更に置換基を有していてもよい。
錯体の安定性及び発光量子収率の観点から、L
1、L
2及びL
3として好ましくは単結合、アルキレン基、アリーレン基、ヘテロアリーレン基、イミノ基、オキシ基、チオ基、シリレン基であり、より好ましくは単結合、アルキレン基、アリーレン基、イミノ基であり、更に好ましくは単結合、アルキレン基、アリーレン基であり、更に好ましくは、単結合、メチレン基、フェニレン基であり、更に好ましくは単結合、ジ置換のメチレン基であり、更に好ましくは単結合、ジメチルメチレン基、ジエチルメチレン基、ジイソブチルメチレン基、ジベンジルメチレン基、エチルメチルメチレン基、メチルプロピルメチレン基、イソブチルメチルメチレン基、ジフェニルメチレン基、メチルフェニルメチレン基、シクロヘキサンジイル基、シクロペンタンジイル基、フルオレンジイル基、フルオロメチルメチレン基である。
L
1は特に好ましくは単結合、ジメチルメチレン基、ジフェニルメチレン基、シクロヘキサンジイル基であり、最も好ましくはジメチルメチレン基である。 L
2及びL
3として最も好ましくは単結合である。
【0097】
一般式(C−1)で表される白金錯体のうち、より好ましくは下記一般式(C−2)で表される白金錯体である。
【0099】
(式中、L
21は単結合又は二価の連結基を表す。A
21、及びA
22はそれぞれ独立に炭素原子又は窒素原子を表す。Z
21、及びZ
22はそれぞれ独立に含窒素芳香族ヘテロ環を表す。Z
23、及びZ
24はそれぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。)
【0100】
一般式(C−2)について説明する。L
21は、前記一般式(C−1)中のL
1と同義であり、また好ましい範囲も同様である。
【0101】
A
21、及びA
22はそれぞれ独立に炭素原子又は窒素原子を表す。A
21、及びA
22の内、少なくとも一方は炭素原子であることが好ましく、A
21、及びA
22が共に炭素原子であることが、錯体の安定性の観点及び錯体の発光量子収率の観点から好ましい。
【0102】
Z
21、及びZ
22は、それぞれ独立に含窒素芳香族ヘテロ環を表す。Z
21、Z
22で表される含窒素芳香族ヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環などが挙げられる。錯体の安定性、発光波長制御及び発光量子収率の観点から、Z
21、Z
22で表される環として好ましくは、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環であり、より好ましくはピリジン環、イミダゾール環、ピラゾール環であり、更に好ましくはピリジン環、ピラゾール環であり、特に好ましくはピリジン環である。
【0103】
前記Z
21、Z
22で表される含窒素芳香族ヘテロ環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素原子上の置換基として好ましくはアルキル基、パーフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、ハロゲン原子である。置換基は発光波長や電位の制御のために適宜選択されるが、短波長化させる場合には電子供与性基、フッ素原子、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、フッ素原子、アリール基、芳香族ヘテロ環基などが選択される。また長波長化させる場合には電子求引性基が好ましく、例えばシアノ基、パーフルオロアルキル基などが選択される。窒素原子上の置換基として好ましくは、アルキル基、アリール基、芳香族ヘテロ環基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。
【0104】
Z
23、及びZ
24は、それぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。Z
23、Z
24で表される含窒素芳香族ヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環、チオフェン環、フラン環などが挙げられる。錯体の安定性、発光波長制御及び発光量子収率の観点からZ
23、Z
24で表される環として好ましくは、ベンゼン環、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環、チオフェン環であり、より好ましくはベンゼン環、ピリジン環、ピラゾール環であり、更に好ましくはベンゼン環、ピリジン環である。
【0105】
前記Z
23、Z
24で表されるベンゼン環、含窒素芳香族ヘテロ環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素上の置換基として好ましくはアルキル基、パーフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、ハロゲン原子である。置換基は発光波長や電位の制御のために適宜選択されるが、長波長化させる場合には電子供与性基、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、アリール基、芳香族ヘテロ環基などが選択される。また短波長化させる場合には電子求引性基が好ましく、例えばフッ素基、シアノ基、パーフルオロアルキル基などが選択される。窒素原子上の置換基として好ましくは、アルキル基、アリール基、芳香族ヘテロ環基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。
【0106】
一般式(C−2)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C−3)で表される白金錯体である。
【0108】
(式中、A
301〜A
313は、それぞれ独立に、C−R又は窒素原子を表す。Rは水素原子又は置換基を表す。L
31は単結合又は二価の連結基を表す。)
【0109】
一般式(C−3)について説明する。L
31は一般式(C−2)におけるL
21と同義であり、また好ましい範囲も同様である。A
301〜A
306はそれぞれ独立にC−R又は窒素原子を表す。Rは水素原子又は置換基を表す。Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。
A
301〜A
306として好ましくはC−Rであり、R同士が互いに連結して環を形成していても良い。A
301〜A
306がC−Rである場合に、A
302、A
305のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素基、シアノ基であり、より好ましくは水素原子、アミノ基、アルコキシ基、アリールオキシ基、フッ素基であり、特に好ましくは水素原子、フッ素基である。A
301、A
303、A
304、A
306のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素基、シアノ基であり、より好ましくは水素原子、アミノ基、アルコキシ基、アリールオキシ基、フッ素基であり、特に好ましく水素原子である。A
307、A
308、A
309及びA
310は、それぞれ独立に、C−R又は窒素原子を表す。Rは水素原子又は置換基を表す。Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。A
307、A
308、A
309及びA
310がC−Rである場合に、Rとして好ましくは水素原子、アルキル基、パーフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルキルオキシ基、シアノ基、ハロゲン原子であり、より好ましくは、水素原子、アルキル基、パーフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、フッ素原子、更に好ましくは、水素原子、アルキル基、トリフルオロメチル基、フッ素原子である。また可能な場合は置換基同士が連結して縮環構造を形成してもよい。発光波長を短波長側にシフトさせる場合、A
308が窒素原子であることが好ましい。
【0110】
上記の如くA
307〜A
310を選択した場合、2つの炭素原子とA
307、A
308、A
309及びA
310から形成される6員環としては、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環が挙げられ、より好ましくは、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環であり、特に好ましくはベンゼン環、ピリジン環である。前記6員環が、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環(特に好ましくはピリジン環)であることにより、ベンゼン環と比較して、金属−炭素結合を形成する位置に存在する水素原子の酸性度が向上する為、より金属錯体を形成しやすくなる点有利である。
【0111】
A
311、A
312及びA
313は、それぞれ独立に、C−R又は窒素原子を表す。Rは水素原子又は置換基を表す。Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。A
311、A
312及びA
313がC−Rである場合に、Rとして好ましくは水素原子、アルキル基、パーフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルキルオキシ基、シアノ基、ハロゲン原子であり、より好ましくは、水素原子、アルキル基、パーフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、フッ素原子、更に好ましくは、水素原子、アルキル基、トリフルオロメチル基、フッ素原子である。また可能な場合は置換基同士が連結して、縮環構造を形成してもよい。A
311、A
312及びA
313のうち少なくとも一つは窒素原子であることが好ましく、特にA
311が窒素原子であることが好ましい。
【0112】
一般式(C−2)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C−4)で表される白金錯体である。
一般式(C−4)
【0114】
(一般式(C−4)中、A
401〜A
414はそれぞれ独立にC−R又は窒素原子を表す。Rは水素原子又は置換基を表す。L
41は単結合又は二価の連結基を表す。)
【0115】
一般式(C−4)について説明する。
A
401〜A
414はそれぞれ独立にC−R又は窒素原子を表す。Rは水素原子又は置換基を表す。A
401〜A
406及びL
41は、前記一般式(C−3)におけるA
301〜A
306及びL
31と同義であり、好ましい範囲も同様である。
【0116】
A
407〜A
414としては、A
407〜A
410とA
411〜A
414のそれぞれにおいて、N(窒素原子)の数は、0〜2が好ましく、0又は1がより好ましい。発光波長を短波長側にシフトさせる場合、A
408、A
412が窒素原子であることが好ましく、A
408とA
412が共に窒素原子であることが更に好ましい。
A
407〜A
414がC−Rを表す場合に、A
408、A
412のRとして好ましくは水素原子、アルキル基、パーフルオロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素基、シアノ基であり、より好ましくは水素原子、パーフルオロアルキル基、アルキル基、アリール基、フッ素基、シアノ基であり、特に好ましくは、水素原子、フェニル基、パーフルオロアルキル基、シアノ基である。A
407、A
409、A
411、A
413のRとして好ましくは水素原子、アルキル基、パーフルオロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素基、シアノ基であり、より好ましくは水素原子、パーフルオロアルキル基、フッ素基、シアノ基であり、特に好ましく水素原子、フェニル基、フッ素基である。A
410、A
414のRとして好ましくは水素原子、フッ素基であり、より好ましくは水素原子である。A
407〜A
409、A
411〜A
413のいずれかがC−Rを表す場合に、R同士が互いに連結して環を形成していても良い。
【0117】
一般式(C−2)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C−5)で表される白金錯体である。
【0119】
(一般式(C−5)中、A
501〜A
512は、それぞれ独立に、C−R又は窒素原子を表す。Rは水素原子又は置換基を表す。L
51は単結合又は二価の連結基を表す。)
【0120】
一般式(C−5)について説明する。A
501〜A
506及びL
51は、前記一般式(C−3)におけるA
301〜A
306及びL
31と同義であり、好ましい範囲も同様である。
【0121】
A
507、A
508及びA
509とA
510、A
511及びA
512は、それぞれ独立に、一般式(C−3)におけるA
311、A
312及びA
313と同義であり、また好ましい範囲も同様である。
【0122】
一般式(C−1)で表される白金錯体のうち、より好ましい別の態様は下記一般式(C−6)で表される白金錯体である。
【0124】
(式中、L
61は単結合又は二価の連結基を表す。A
61はそれぞれ独立に炭素原子又は窒素原子を表す。Z
61、及びZ
62はそれぞれ独立に含窒素芳香族ヘテロ環を表す。Z
63はそれぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。YはPtに結合するアニオン性の非環状配位子である。)
【0125】
一般式(C−6)について説明する。L
61は、前記一般式(C−1)中のL
1と同義であり、また好ましい範囲も同様である。
【0126】
A
61は炭素原子又は窒素原子を表す。錯体の安定性の観点及び錯体の発光量子収率の観点からA
61は炭素原子であることが好ましい。
【0127】
Z
61、及びZ
62は、それぞれ前記一般式(C−2)におけるZ
21、及びZ
22と同義であり、また好ましい範囲も同様である。Z
63は、前記一般式(C−2)におけるZ
23と同義であり、また好ましい範囲も同様である。
【0128】
YはPtに結合するアニオン性の非環状配位子である。非環状配位子とはPtに結合する原子が配位子の状態で環を形成していないものである。Y中のPtに結合する原子としては、炭素原子、窒素原子、酸素原子、硫黄原子が好ましく、窒素原子、酸素原子がより好ましく、酸素原子が最も好ましい。炭素原子でPtに結合するYとしてはビニル配位子が挙げられる。窒素原子でPtに結合するYとしてはアミノ配位子、イミノ配位子が挙げられる。酸素原子でPtに結合するYとしては、アルコキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、アシルオキシ配位子、シリルオキシ配位子、カルボキシル配位子、リン酸配位子、スルホン酸配位子などが挙げられる。硫黄原子でPtに結合するYとしては、アルキルメルカプト配位子、アリールメルカプト配位子、ヘテロアリールメルカプト配位子、チオカルボン酸配位子などが挙げられる。
Yで表される配位子は、置換基を有していてもよく、置換基としては前記置換基群Aとして挙げたものが適宜適用できる。また置換基同士が連結していても良い。
【0129】
Yで表される配位子として好ましくは酸素原子でPtに結合する配位子であり、より好ましくはアシルオキシ配位子、アルキルオキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、シリルオキシ配位子であり、更に好ましくはアシルオキシ配位子である。
【0130】
一般式(C−6)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C−7)で表される白金錯体である。
【0132】
(式中、A
701〜A
710は、それぞれ独立に、C−R又は窒素原子を表す。Rは水素原子又は置換基を表す。L
71は単結合又は二価の連結基を表す。YはPtに結合するアニオン性の非環状配位子である。)
【0133】
一般式(C−7)について説明する。L
71は、前記一般式(C−6)中のL
61と同義であり、また好ましい範囲も同様である。A
701〜A
710は一般式(C−3)におけるA
301〜A
310と同義であり、また好ましい範囲も同様である。Yは一般式(C−6)におけるそれと同義であり、また好ましい範囲も同様である。
【0134】
一般式(C−1)で表される白金錯体として具体的には、特開2005−310733の[0143]〜[0152]、[0157]〜[0158]、[0162]〜[0168]に記載の化合物、特開2006−256999の[0065]〜[0083]に記載の化合物、特開2006−93542の[0065]〜[0090]に記載の化合物、特開2007−73891の[0063]〜[0071]に記載の化合物、特開2007−324309の[0079]〜[0083]に記載の化合物、特開2007−96255の[0055]〜[0071]に記載の化合物、特開2006−313796の[0043]〜[0046]が挙げられ、その他以下に例示する白金錯体が挙げられる。
【0138】
一般式(C−1)で表される白金錯体化合物は、例えば、Journal of Organic Chemistry 53, 786, (1988) 、G. R. Newkome et al.)の、789頁、左段53行〜右段7行に記載の方法、790頁、左段18行〜38行に記載の方法、790頁、右段19行〜30行に記載の方法及びその組み合わせ、Chemische Berichte 113, 2749 (1980)、H. Lexy ほか)の、2752頁、26行〜35行に記載の方法等、種々の手法で合成できる。
例えば、配位子、又はその解離体と金属化合物を溶媒(例えば、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ニトリル系溶媒、アミド系溶媒、スルホン系溶媒、スルホキサイド系溶媒、水などが挙げられる)の存在下、若しくは、溶媒非存在下、塩基の存在下(無機、有機の種々の塩基、例えば、ナトリウムメトキシド、t−ブトキシカリウム、トリエチルアミン、炭酸カリウムなどが挙げられる)、若しくは、塩基非存在下、室温以下、若しくは加熱し(通常の加熱以外にもマイクロウェーブで加熱する手法も有効である)得ることができる。
【0139】
本発明において、一般式(C−1)で表される化合物を発光層に含有させる場合、その含有量は発光層中1〜30質量%であることが好ましく、3〜25質量%であることがより好ましく、5〜20質量%であることが更に好ましい。
本発明において、前記白金錯体化合物の他、発光材料としてイリジウム(Ir)錯体を併用することができる。前記併用するイリジウム(Ir)錯体として、下記一般式(PQ−1)で表される化合物であることが好ましい。
一般式(PQ−1)で表される化合物について説明する。
【0141】
(一般式PQ−1中、R
1〜R
10は水素原子又は置換基を表す。置換基同士は可能であれば互いに結合して環を形成しても良い。X−Yは二座のモノアニオン性配位子を表す。nは1〜3の整数を表す。)
【0142】
R
1〜R
10で表される置換基としては前記置換基群Aを挙げることができる。R
1〜R
10として好ましくは、水素原子、アルキル基(アルキル基はフッ素原子を有していてもよく、好ましくは炭素数1〜8、より好ましくは炭素数1〜6)、シクロアルキル基(好ましくは炭素数3〜20、より好ましくは炭素数3〜10、更に好ましくは炭素数5〜10)、アリール基(好ましくは炭素数6〜12、より好ましくは炭素数6〜10)、アミノ基、アルコキシ基(好ましくは炭素数1〜8、より好ましくは炭素数1〜6)、アリールオキシ基(好ましくは炭素数6〜12、より好ましくは炭素数6〜10)、ヘテロ環オキシ基、シアノ基、ヘテロ環基(好ましくは炭素数2〜12、より好ましくは炭素数3〜10)、シリル基、シリルオキシ基、フッ素原子であり、より好ましくは水素原子、アルキル基、シクロアルキル基、アリール基、アミノ基、ヘテロ環基、アルコキシ基、シアノ基、シリル基、フッ素原子であり、より好ましくは水素原子、アルキル基、アリール基であり、更に好ましくは水素原子、メチル基、エチル基、イソプロピル基、t−ブチル基、ネオペンチル基、イソブチル基、フェニル基、ナフチル基、フェナントリル基、トリル基であり、更に好ましくは水素原子、メチル基、フェニル基である。環を形成する場合、R
1〜R
10の内の隣接する2つが互いに結合して環を形成することが好ましく、R
7とR
8、R
8とR
9、又はR
9とR
10、とが互いに結合して環を形成することがより好ましい。R
7とR
8、R
8とR
9、又はR
9とR
10、とが互いに結合して環を形成する場合に、R
7〜R
10が置換するベンゼン環とともに形成される環としては、アルキル基、アルコキシ基等で置換されていてもよいアリール環等が挙げられる。
形成されるアリール環は、好ましくは炭素数6〜30のアリール環であり、より好ましくは炭素数6〜15のアリール環である。形成されるアリール環としては、例えばナフタレン環、フェナントレン環、フルオレン環等が挙げられ、ナフタレン環又はフルオレン環が好ましく、ナフタレン環がより好ましい。これら環はアルキル基、アルコキシ基等の置換基を有していてもよく、アルキル基又はアルコキシ基で置換されていてもよいナフタレン環又はフルオレン環であることが好ましい。
【0143】
一般式(PQ−1)中、R
1〜R
6の内の0〜3つがそれぞれ独立にアルキル基、シクロアルキル基、アリール基、シアノ基又はフッ素原子を表すと共に、その他のR
1〜R
6が全て水素原子であることも好ましく、R
1〜R
6の内の0又は1つがアルキル基、シクロアルキル基、アリール基、シアノ基又はフッ素原子を表すと共に、その他のR
1〜R
6が全て水素原子であることがより好ましく、R
1〜R
6が全て水素原子であることが、耐久性向上のため更に好ましい。
一般式(PQ−1)中、R
7〜R
10の内の0〜2つがそれぞれ独立にアルキル基、アリール基、シアノ基、ヘテロ環基又はフッ素原子を表すと共に、その他のR
7〜R
10が全て水素原子であることも好ましく、R
7〜R
10の内の0〜2つがそれぞれ独立にアルキル基、アリール基、シアノ基又はフッ素原子を表すと共に、その他のR
7〜R
10が全て水素原子であることがより好ましく、R
9がアリール基を表すと共に、R
7、R
8及びR
10が全て水素原子であることが更に好ましい。なお、R
7とR
8、R
8とR
9、又はR
9とR
10、は互いに結合して前述の環を形成していてもよく、環を形成する場合、前述のアリール環を形成することがより好ましく、ベンゼン環を形成することが更に好ましい。置換基同士は可能であれば互いに結合して環を形成しても良い。
【0144】
nは2又は3であることが好ましく、2であることがより好ましい。
【0145】
(X−Y)は、二座のモノアニオン性配位子を示す。これらの配位子は、発光特性に直接寄与するのではなく、分子の発光特性を制御することができると考えられている。「3−n」は0、1又は2でありうる。発光材料において使用される二座のモノアニオン性配位子を、当業界で公知であるものから選択することができる。二座のモノアニオン性配位子は、例えばLamanskyらのPCT出願WO02/15645号パンフレットの89〜90頁に記載されている配位子が挙げられるが、本発明はこれに限定されない。好ましい二座のモノアニオン性配位子には、アセチルアセトネート(acac)及びピコリネート(pic)、及びこれらの誘導体が含まれる。本発明においては錯体の安定性、高い発光量子収率の観点から二座のモノアニオン性配位子はアセチルアセトネートであることが好ましい。下記一般式中、Mは金属原子を表す。
【0147】
前記一般式(PQ−1)で表される化合物は、下記一般式(PQ−2)で表される化合物であることが好ましい。
【0149】
(一般式(PQ−2)中、R
8〜R
10は水素原子又は置換基を表す。置換基同士は可能であれば互いに結合して環を形成しても良い。X−Yは二座のモノアニオン性配位子を表す。)
【0150】
R
8〜R
10及びX−Yは、一般式(PQ−1)におけるR
8〜R
10及びX−Yと同義であり、また好ましい範囲も同様である。
【0151】
一般式(PQ−1)で表される化合物の具体例を以下に列挙するが、以下に限定されるものではない。
【0154】
上記一般式(PQ−1)で表される化合物として例示した化合物は、例えば特許第3929632号公報に記載の方法などの種々の方法で合成できる。例えば、FR−2は、2−フェニルキノリンを出発原料として、特許第3929632号公報の18頁、2〜13行に記載の方法で合成することができる。また、FR−3は、2−(2−ナフチル)キノリンを出発原料として、特許第3929632号公報の18頁、14行〜19頁、8行に記載の方法で合成することができる。
【0155】
本発明において、発光層に一般式(PQ−1)で表される化合物を含有させる場合、その含有量は発光層中0.1〜30質量%であることが好ましく、2〜20質量%であることがより好ましく、5〜15質量%であることが更に好ましい。
【0156】
〔一般式(1)で表される化合物と一般式(C−1)で表される燐光発光材料とを含有する発光層〕
本発明は一般式(1)で表される化合物と一般式(C−1)で表される燐光発光材料とを含む発光層にも関する。本発明の発光層は有機電界発光素子に用いることができる。
本発明の発光層は、前記一般式(PQ−1)で表される化合物を更に含むことが好ましい。
前記一般式(PQ−1)で表される化合物を、前記一般式(1)で表される化合物及び前記一般式(C−1)で表される燐光発光材料と併用することで、より外部量子効率及び駆動耐久性に優れた有機電界発光素子を得ることができる。本発明の発光層における一般式(PQ−1)で表される化合物の含有量は発光層中0.1〜30質量%であることが好ましく、2〜20質量%であることがより好ましく、5〜15質量%であることがより好ましい。
【0157】
〔一般式(1)で表される化合物と一般式(C−1)で表される燐光発光材料とを含有する組成物〕
本発明は前記一般式(1)で表される化合物と前記一般式(C−1)で表される燐光発光材料とを含有する組成物にも関する。
本発明の組成物における一般式(1)で表される化合物の含有量は15〜99質量%であることが好ましく、30〜99質量%であることがより好ましく、50〜99質量%であることが更に好ましい。
本発明の組成物における一般式(C−1)で表される化合物の含有量は1〜30質量%であることが好ましく、5〜25質量%であることがより好ましく、10〜20質量%であることが更に好ましい。本発明の組成物における他に含有しても良い成分としては、有機物でも無機物でもよく、有機物としては、後述するホスト材料、蛍光発光材料、燐光発光材料、炭化水素材料として挙げた材料が適用でき、好ましくはホスト材料、炭化水素材料であり、より好ましくは一般式(VI)で表される化合物である。
本発明の組成物は蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法等により有機電界発光素子の有機層を形成することができる。
【0158】
本発明の組成物は、前記一般式(PQ−1)で表される化合物を更に含むことが好ましい。
本発明の組成物における一般式(PQ−1)で表される化合物の含有量は組成物中、0.1〜30質量%であることが好ましく、2〜20質量%であることがより好ましく、5〜15質量%であることがより好ましい。
【0159】
[有機電界発光素子]
本発明の素子について詳細に説明する。
本発明の有機電界発光素子は、一対の電極間に発光層を含む有機層を有する。発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明若しくは半透明であることが好ましい。有機層としては、発光層以外に、正孔注入層、正孔輸送層、正孔ブロック層、電子輸送層などが挙げられる。
図1に、本発明に係る有機電界発光素子の構成の一例を示す。
図1の有機電界発光素子10は、基板2上に、一対の電極(陽極3と陰極9)の間に発光層6を含む有機層を有する。有機層としては、陽極側3から正孔注入層4、正孔輸送層5、発光層6、正孔ブロック層7、及び電子輸送層8がこの順に積層されている。
有機電界発光素子の素子構成、基板、陰極及び陽極については、例えば、特開2008−270736号公報に詳述されており、該公報に記載の事項を本発明に適用することができる。
【0160】
(発光層)
発光層は、電界印加時に、陽極、正孔注入層又は正孔輸送層から正孔を受け取り、陰極、電子注入層又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
【0161】
<発光材料>
本発明では、発光材料として、一般式(C−1)で表される燐光発光材料を用いるが、これ以外の蛍光発光材料や燐光発光材料を併用することができる。
これら併用できる蛍光発光材料や燐光発光材料については、例えば、特開2008−270736号公報の段落番号[0100]〜[0164]、特開2007−266458号公報の段落番号[0088]〜[0090]に詳述されており、これら公報の記載の事項を本発明に適用することができる。
【0162】
発光層中の発光材料は、発光層を形成する全化合物質量に対して、一般的に0.1質量%〜50質量%含有されるが、耐久性、外部量子効率、低駆動電圧及び高温駆動時の色度変化の観点から1質量%〜30質量%含有されることが好ましく、5質量%〜25質量%含有されることがより好ましく、7質量%〜20質量%含有されることが更に好ましい。
【0163】
発光層の厚さは、特に限定されるものではないが、通常、2nm〜500nmであるのが好ましく、中でも、外部量子効率の観点で、3nm〜200nmであるのがより好ましく、5nm〜100nmであるのが更に好ましい。
【0164】
<ホスト材料>
発光層には、発光材料とともにホスト材料を用いることが好ましい。ホスト材料とは、発光層において主に電荷の注入、輸送を担う化合物であり、また、それ自体は実質的に発光しない化合物のことである。ここで「実質的に発光しない」とは、該実質的に発光しない化合物からの発光量が好ましくは素子全体での全発光量の5%以下であり、より好ましくは3%以下であり、更に好ましくは1%以下であることを言う。
本発明に用いられるホスト材料としては、例えば、以下の化合物を挙げることができる。
ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体及びそれらの誘導体(置換基や縮環を有していてもよい)等を挙げることができる。
【0165】
本発明における発光層において、前記ホスト材料の三重項最低励起エネルギー(T
1エネルギー)が、前記燐光発光材料のT
1エネルギーより高いことが色度、発光効率、駆動耐久性の点で好ましい。
【0166】
また、本発明におけるホスト化合物の含有量は、特に限定されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上95質量%以下であることが好ましい。
【0167】
有機電界発光素子は、更に、炭化水素化合物を含むことが好ましく、発光層に炭化水素化合物を含むことがより好ましい。
また、炭化水素化合物は下記一般式(VI)で表される化合物であることが好ましい。
一般式(VI)で表される化合物を発光材料とともに適切に用いることにより、材料分子間の相互作用を適切に制御し、隣接分子間のエネルギーギャップ相互作用を均一にすることで駆動電圧を更に低下させることが可能となる。
また、有機電界発光素子において用いられる、一般式(VI)で表される化合物は、化学的な安定性に優れ、素子駆動中における材料の分解等の変質が少なく、当該材料の分解物による、有機電界発光素子の効率低下や素子寿命の低下を防ぐことが出来る。
一般式(VI)で表される化合物について説明する。
【0169】
一般式(VI)中、R
4、R
6、R
8、R
10、X
4〜X
15は、それぞれ独立に、水素原子、アルキル基又はアリール基を表す。
【0170】
一般式(VI)の、R
4、R
6、R
8、R
10、X
4〜X
15で表されるアルキル基は、アダマンタン構造、アリール構造で置換されていてもよく、炭素数1〜70が好ましく、炭素数1〜50がより好ましく、炭素数1〜30が更に好ましく、炭素数1〜10がより更に好ましく、炭素数1〜6が特に好ましく、炭素数2〜6の直鎖のアルキル基が最も好ましい。
【0171】
一般式(VI)の、R
4、R
6、R
8、R
10、X
4〜X
15で表されるアルキル基としては、例えば、n−C
50H
101基、n−C
30H
61基、3−(3,5,7−トリフェニルアダマンタン−1−イル)プロピル基(炭素数31)、トリチル基(炭素数19)、3−(アダマンタン−1−イル)プロピル基(炭素数13)、9−デカリル基(炭素数10)、ベンジル基(炭素数7)、シクロヘキシル基(炭素数6)、n−ヘキシル基(炭素数6)、n−ペンチル基(炭素数5)、n−ブチル基(炭素数4)、n−プロピル基(炭素数3)、シクロプロピル基(炭素数3)、エチル基(炭素数2)、メチル基(炭素数1)などが挙げられる。
【0172】
一般式(VI)の、R
4、R
6、R
8、R
10、X
4〜X
15で表されるアリール基は、アダマンタン構造、アルキル構造で置換されていてもよく、炭素数6〜30が好ましく、炭素数6〜20がより好ましく、炭素数6〜15が更に好ましく、炭素数6〜10が特に好ましく、炭素数6が最も好ましい。
【0173】
一般式(VI)の、R
4、R
6、R
8、R
10、X
4〜X
15で表されるアリール基としては、例えば、1−ピレニル基(炭素数16)、9−アントラセニル基(炭素数14)、1−ナフチル基(炭素数10)、2−ナフチル基(炭素数10)、p−t−ブチルフェニル基(炭素数10)、2−m−キシリル基(炭素数8)、5−m−キシリル基(炭素数8)、o−トリル基(炭素数7)、m−トリル基(炭素数7)、p−トリル基(炭素数7)、フェニル基(炭素数6)などが挙げられる。
【0174】
一般式(VI)のR
4、R
6、R
8、R
10は、水素原子であっても、アルキル基であっても、アリール基であってもよいが、前述の高いガラス転移温度が好ましい観点から、少なくともひとつはアリール基であることが好ましく、少なくともふたつはアリール基であることがより好ましく、3ないし4つがアリール基であることが特に好ましい。
【0175】
一般式(VI)の、X
4〜X
15は、水素原子であっても、アルキル基であっても、アリール基であってもよいが、水素原子、又はアリール基であることが好ましく、水素原子であることが特に好ましい。
【0176】
本発明における一般式(VI)で表される化合物の分子量は、有機電界発光素子を真空蒸着プロセスや溶液塗布プロセスを用いて作成するので、蒸着適性や溶解性の観点から、2000以下であることが好ましく、1200以下であることがより好ましく、1000以下であることが特に好ましい。また、蒸着適性の観点では、分子量が小さすぎると蒸気圧が小さくなり、気相から固相への変化がおきず、有機層を形成することが困難となるので、250以上が好ましく、350以上がより好ましく、400以上が特に好ましい。
【0177】
一般式(VI)で表される化合物は、室温(25℃)において固体であることが好ましく、室温(25℃)から40℃の範囲において固体であることがより好ましく、室温(25℃)から60℃の範囲において固体であることが特に好ましい。
室温(25℃)において固体を形成しない一般式(VI)で表される化合物を用いる場合は、他の材料と組み合わせることにより、常温で固相を形成させることができる。
【0178】
一般式(VI)で表される化合物は、その用途が限定されることはなく、有機層内のいずれの層に含有されてもよい。本発明における一般式(VI)で表される化合物の導入層としては、後述の発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層のいずれか、若しくは複数に含有されるのが好ましく、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層のいずれか、若しくは複数に含有されるのがより好ましく、発光層、正孔注入層、正孔輸送層のいずれか、若しくは複数に含有されるのが特に好ましく、発光層に含むことが最も好ましい。
【0179】
一般式(VI)で表される化合物を、有機層中で用いる場合は、一般式(VI)で表される化合物の含量は、電荷輸送性を抑制しない程度の量に制限して用いる必要があり、一般式(VI)で表される化合物は0.1〜70質量%含まれることが好ましく、0.1〜30質量%含まれることがより好ましく、0.1〜25質量%含まれることが特に好ましい。
また、一般式(VI)で表される化合物を、複数の有機層に用いる場合はそれぞれの層において、上記の範囲で含有することが好ましい。
【0180】
一般式(VI)で表される化合物は、いずれかの有機層に、一種類のみを含有していてもよく、複数の一般式(VI)で表される化合物を任意の割合で組み合わせて含有していてもよい。
【0181】
炭化水素化合物の具体例を以下に列挙するが、以下に限定されるものではない。
【0186】
一般式(VI)で表される化合物は、アダマンタン、若しくは、ハロゲン化アダマンタンと、ハロゲン化アルキル若しくは、アルキルマグネシウムハライド(グリニヤー試薬)を適当に組み合わせることによって合成できる。例えば、インジウムを用いて、ハロゲン化アダマンタンと、ハロゲン化アルキルをカップリングすることができる(文献1)。また、ハロゲン化アルキルをアルキル銅試薬に変換し、芳香族化合物のグリニヤー試薬とカップリングすることもできる(文献2)。また、ハロゲン化アルキルを、適当なアリールホウ酸とパラジウム触媒を用いてカップリングすることもできる(文献3)。
文献1:Tetrahedron Lett. 39, 1998, 9557−9558.
文献2:Tetrahedron Lett. 39, 1998, 2095−2096.
文献3:J. Am. Chem. Soc. 124, 2002, 13662−13663.
【0187】
アリール基を有するアダマンタン骨格は、アダマンタン、若しくは、ハロゲン化アダマンタンと、対応するアレーンやアリールハライドを適当に組み合わせることにより合成できる。
【0188】
なお、上記に示した製造方法において、定義された置換基が、ある合成方法の条件下で変化するか、又は該方法を実施するのに不適切な場合、官能基の保護、脱保護(例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis)、グリーン(T. W. Greene)著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド(John Wiley & Sons Inc.)(1981年)等)等の手段により容易に製造が可能である。また、必要に応じて適宜置換基導入等の反応工程の順序を変化させることも可能である。
【0189】
本発明の有機電界発光素子は前記電極が陽極を含み、前記発光層と該陽極の間に電荷輸送層を有し、該電荷輸送層がカルバゾール化合物を含むことが好ましい。
(電荷輸送層)
電荷輸送層とは、有機電界発光素子に電圧を印加した際に電荷移動が起こる層をいう。具体的には正孔注入層、正孔輸送層、電子ブロック層、発光層、正孔ブロック層、電子輸送層又は電子注入層が挙げられる。好ましくは、正孔注入層、正孔輸送層、電子ブロック層又は発光層である。塗布法により形成される電荷輸送層が正孔注入層、正孔輸送層、電子ブロック層又は発光層であれば、低コストかつ高効率な有機電界発光素子の製造が可能となる。また、電荷輸送層として、より好ましくは、正孔注入層、正孔輸送層又は電子ブロック層である。
−正孔注入層、正孔輸送層−
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。これらの層に用いる正孔注入材料、正孔輸送材料は、低分子化合物であっても高分子化合物であってもよい。
具体的には、カルバゾール誘導体、ピロール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボン、イリジウム錯体等の各種金属錯体等を含有する層であることが好ましい。
【0190】
正孔注入層、正孔輸送層がカルバゾール化合物を含有することが好ましい。
本発明において、カルバゾール化合物は下記一般式(a)で表されるカルバゾール化合物であることが好ましい。
一般式(a)
【0192】
(一般式(a)中、R
aは該骨格の水素原子に置換し得る置換基を表し、R
aは複数存在する場合はそれぞれ同じでも異なってもよい。n
aは0〜8の整数を表す。)
【0193】
一般式(a)で表される化合物を、電荷輸送層中で用いる場合は、一般式(a)で表される化合物は50〜100質量%含まれることが好ましく、80〜100質量%含まれることが好ましく、95〜100質量%含まれることが特に好ましい。
また、一般式(a)で表される化合物を、複数の有機層に用いる場合はそれぞれの層において、上記の範囲で含有することが好ましい。
【0194】
一般式(a)で表される化合物は、いずれかの有機層に、一種類のみを含有していてもよく、複数の一般式(a)で表される化合物を任意の割合で組み合わせて含有していてもよい。
【0195】
本発明において、一般式(a)で表される化合物を正孔輸送層に含ませる場合、一般式(a)で表される化合物を含む正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、3nm〜200nmであるのがより好ましく、5nm〜100nmであるのが更に好ましい。また、該正孔輸送層は発光層に接して設けられていることが好ましい。
該正孔輸送層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
【0196】
R
aが表す置換基としては具体的にはハロゲン原子、アルコキシ基、シアノ基、ニトロ基、アルキル基、アリール基、芳香族複素環基が挙げられ、炭素数10以下のアルキル基、炭素数10以下の置換又は無置換のアリール基が好ましく、炭素数6以下のアルキル基であることがより好ましい。naは0〜4が好ましく、0〜2がより好ましい。
【0197】
本発明において、一般式(a)を構成する水素原子は、水素の同位体(重水素原子等)も含む。この場合化合物中の全ての水素原子が水素同位体に置き換わっていてもよく、また一部が水素同位体を含む化合物である混合物でもよい。
【0198】
一般式(a)で表される化合物は、種々の公知の合成法を組み合わせて合成することが可能である。最も一般的には、カルバゾール化合物に関してはアリールヒドラジンとシクロヘキサン誘導体との縮合体のアザーコープ転位反応の後、脱水素芳香族化による合成(L.F.Tieze,Th.Eicher著、高野、小笠原訳、精密有機合成、339頁(南江堂刊))が挙げられる。また、得られたカルバゾール化合物とハロゲン化アリール化合物のパラジウム触媒を用いるカップリング反応に関してはテトラヘドロン・レターズ39巻617頁(1998年)、同39巻2367頁(1998年)及び同40巻6393頁(1999年)等に記載の方法が挙げられる。反応温度、反応時間については特に限定されることはなく、前記文献に記載の条件が適用できる。
【0199】
本発明において、一般式(a)で表される化合物は、真空蒸着プロセスで薄層を形成することが好ましいが、溶液塗布などのウェットプロセスも好適に用いることが出来る。化合物の分子量は、蒸着適性や溶解性の観点から2000以下であることが好ましく、1200以下であることがより好ましく、800以下であることが特に好ましい。また蒸着適性の観点では、分子量が小さすぎると蒸気圧が小さくなり、気相から固相への変化がおきず、有機層を形成することが困難となるので、250以上が好ましく、300以上が特に好ましい。
【0200】
以下に、本発明における一般式(a)で表される化合物の具体例を例示するが、本発明はこれらに限定されるものではない。
【0205】
本発明の有機電界発光素子の正孔注入層あるいは正孔輸送層には、電子受容性ドーパントを含有させることができる。正孔注入層、あるいは正孔輸送層に導入する電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも
有機化合物でも使用できる。
【0206】
具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモンなどのハロゲン化金属、五酸化バナジウム、及び三酸化モリブデンなどの金属酸化物などが挙げられる。
【0207】
有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フラーレンなどを好適に用いることができる。
この他にも、特開平6−212153、特開平11−111463、特開平11−251067、特開2000−196140、特開2000−286054、特開2000−315580、特開2001−102175、特開2001−160493、特開2002−252085、特開2002−56985、特開2003−157981、特開2003−217862、特開2003−229278、特開2004−342614、特開2005−72012、特開2005−166637、特開2005−209643等に記載の化合物を好適に用いることが出来る。
【0208】
このうちヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、又はフラーレンC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、又は2,3,5,6−テトラシアノピリジンがより好ましく、テトラフルオロテトラシアノキノジメタンが特に好ましい。
【0209】
これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。
【0210】
正孔注入層、正孔輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、正孔注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.5nm〜100nmであるのがより好ましく、1nm〜100nmであるのが更に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
【0211】
−電子注入層、電子輸送層−
電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
具体的には、本発明の一般式(1)で表される化合物の他、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、等を含有する層であることが好ましい。
【0212】
本発明の有機電界発光素子の電子注入層あるいは電子輸送層には、電子供与性ドーパントを含有させることができる。電子注入層、あるいは電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属や還元性有機化合物などが好適に用いられる。金属としては、特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、及びYbなどが挙げられる。また、還元性有機化合物としては、例えば、含窒素化合物、含硫黄化合物、含リン化合物などが挙げられる。
この他にも、特開平6−212153、特開2000−196140、特開2003−68468、特開2003−229278、特開2004−342614等に記載の材料を用いることができる。
【0213】
これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。
【0214】
電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
電子輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.2nm〜100nmであるのがより好ましく、0.5nm〜50nmであるのが更に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
【0215】
−正孔ブロック層−
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
正孔ブロック層を構成する有機化合物の例としては、アルミニウム(III)ビス(2−メチル−8−キノリナト)4−フェニルフェノレート(Aluminum (III)bis(2−methyl−8−quinolinato)4−phenylphenolate(BAlqと略記する))等のアルミニウム錯体、トリアゾール誘導体、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(2,9−Dimethyl−4,7−diphenyl−1,10−phenanthroline(BCPと略記する))等のフェナントロリン誘導体、等が挙げられる。
正孔ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
−電子ブロック層−
電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機層として、電子ブロック層を設けることができる。
電子ブロック層を構成する有機化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
電子ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
電子ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
【0216】
<保護層>
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層については、特開2008−270736号公報の段落番号〔0169〕〜〔0170〕に記載の事項を本発明に適用することができる。
【0217】
<基板>
本発明で使用する基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。
<陽極>
陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
<陰極>
陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
【0218】
基板、陽極、陰極については、特開2008−270736号公報の段落番号〔0070〕〜〔0089〕に記載の事項を本発明に適用することができる。
【0219】
<封止容器>
本発明の素子は、封止容器を用いて素子全体を封止してもよい。
封止容器については、特開2008−270736号公報の段落番号〔0171〕に記載の事項を本発明に適用することができる。
【0220】
(駆動)
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書等に記載の駆動方法を適用することができる。
【0221】
本発明の有機電界発光素子の外部量子効率としては、5%以上が好ましく、7%以上がより好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、若しくは、20℃で素子を駆動したときの100〜300cd/m
2付近での外部量子効率の値を用いることができる。
【0222】
本発明の有機電界発光素子の内部量子効率は、30%以上であることが好ましく、50%以上が更に好ましく、70%以上が更に好ましい。素子の内部量子効率は、外部量子効率を光取り出し効率で除して算出される。通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能である。
【0223】
本発明の有機電界発光素子は、350nm以上700nm以下に極大発光波長(発光スペクトルの最大強度波長)を有するものが好ましく、より好ましくは350nm以上600nm以下、更に好ましくは400nm以上520nm以下、特に好ましくは400nm以上465nm以下である。
【0224】
(本発明の素子の用途)
本発明の素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、又は光通信等に好適に利用できる。特に、照明装置、表示装置等の発光輝度が高い領域で駆動されるデバイスに好ましく用いられる。
【0225】
次に、
図2を参照して本発明の発光装置について説明する。
図2は、本発明の発光装置の一例を概略的に示した断面図である。
図2の発光装置20は、透明基板(基板)2、有機電界発光素子10、封止容器16等により構成されている。
【0226】
有機電界発光素子10は、基板2上に、陽極(第一電極)3、有機層11、陰極(第二電極)9が順次積層されて構成されている。また、陰極9上には、保護層12が積層されており、更に、保護層12上には接着層14を介して封止容器16が設けられている。なお、各電極3、9の一部、隔壁、絶縁層等は省略されている。
ここで、接着層14としては、エポキシ樹脂等の光硬化型接着剤や熱硬化型接着剤を用いることができ、例えば熱硬化性の接着シートを用いることもできる。
【0227】
本発明の発光装置の用途は特に制限されるものではなく、例えば、照明装置のほか、テレビ、パーソナルコンピュータ、携帯電話、電子ペーパ等の表示装置とすることができる。
【0228】
(照明装置)
次に、
図3を参照して本発明の照明装置について説明する。
図3は、本発明の照明装置の一例を概略的に示した断面図である。本発明の照明装置40は、
図3に示すように、前述した有機EL素子10と、光散乱部材30とを備えている。より具体的には、照明装置40は、有機EL素子10の基板2と光散乱部材30とが接触するように構成されている。
光散乱部材30は、光を散乱できるものであれば特に制限されないが、
図3においては、透明基板31に微粒子32が分散した部材とされている。透明基板31としては、例えば、ガラス基板を好適に挙げることができる。微粒子32としては、透明樹脂微粒子を好適に挙げることができる。ガラス基板及び透明樹脂微粒子としては、いずれも、公知のものを使用できる。このような照明装置40は、有機電界発光素子10からの発光が散乱部材30の光入射面30Aに入射されると、入射光を光散乱部材30により散乱させ、散乱光を光出射面30Bから照明光として出射するものである。
【実施例】
【0229】
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
【0230】
<実施例1>
[素子1−1の作製]
厚み0.5mm、2.5cm角のITO膜を有するガラス基板(ジオマテック社製、表面抵抗10Ω/□)を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。この透明陽極(ITO膜)上に真空蒸着法にて以下の有機化合物層を順次蒸着した。
第1層:2−TNATA及びF
4−TCNQ(質量比99.7:0.3) :膜厚120nm
第2層:αNPD(N,N’−ジ−α−ナフチル−N,N’−ジフェニル)−ベンジジン) :膜厚7nm
第3層:C−1 :膜厚3nm
第4層:H−1及び9−16(質量比85:15):膜厚30nm
第5層:例示化合物4:膜厚29nm
第6層:BCP :膜厚1nm
この上に、フッ化リチウム0.1nm及び金属アルミニウム100nmをこの順に蒸着し陰極とした。
この積層体を、大気に触れさせることなく、窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止し、本発明の有機電界発光素子1−1を得た。
【0231】
[他の素子の作製]
第3層、第4層及び第5層の構成材料を下記表1−1及び表1−2に示した組成に変更する以外は、素子1−1の作製と同様の方法で本発明の実施例の素子1−2〜1−38及び比較例の比較素子1−1〜1−22を得た。
これらの素子を発光させた結果、それぞれの発光材料に由来する発光が得られた。極大発光波長も表1−1及び表1−2に示す。
【0232】
【表1】
【0233】
【表2】
【0234】
実施例及び比較例で使用した化合物の構造を以下に示す。
【0235】
【化58】
【0236】
【化59】
【0237】
【化60】
【0238】
【化61】
【0239】
【化62】
【0240】
【化63】
【0241】
実施例で使用した一般式(1)で表される化合物は、国際公開第03/080760号パンフレット、国際公開第03/078541号パンフレット、国際公開第05/085387号パンフレット、国際公開第05/022962号パンフレット等を参考に合成した。例えば、例示化合物4は、m−ブロモベンゾアルデヒドを出発原料に用い、国際公開第05/085387号パンフレット[0074]−[0075](45頁、11行〜46頁、18行)に記載の方法で合成することができる。また例示化合物45は、3,5−ジブロモベンゾアルデヒドを出発原料に用い、国際公開第03/080760号パンフレットの46頁、9行〜46頁、12行に記載の方法で合成することができる。また、例示化合物77は、N−フェニルカルバゾールを出発原料に用い、国際公開第05/022962号パンフレットの137頁、10行〜139頁、9行に記載の方法で合成ることができる。
【0242】
実施例で用いた一般式(C−1)で表される化合物は特開2005−310733号公報、特開2006−93542号公報、特開2007−19462号公報、Journal of Organic Chemistry 53,786(1988)等に記載の方法で合成した。例えば、化合物8−4は、Journal of Organic Chemistry 53,786(1988),G.R.Nekome et al.の、789頁左段53行〜右段7行に記載の方法、790頁左段18行〜38行に記載の方法、790頁右段19行〜30行に記載の方法及びその組み合わせにより得ることができる下記の化合物BBPyを出発原料として、特開2007−19462号公報の52頁、34行〜53頁、23行に記載の方法にて合成することができる。
【0243】
【化64】
【0244】
なお、本明細書中の実施例に用いた有機材料は全て昇華精製したものを用いた。
【0245】
(有機電界発光素子の性能評価)
得られた各素子に対し、外部量子効率、駆動電圧、駆動耐久性及び高温駆動時の色度変化を測定して素子の性能を評価した。なお、各種測定は以下のように行なった。
(a)外部量子効率
東陽テクニカ製ソースメジャーユニット2400を用いて、直流電圧を各素子に印加し発光させ、その輝度をトプコン社製輝度計BM−8を用いて測定した。発光スペクトルと発光波長は浜松ホトニクス製スペクトルアナライザーPMA−11を用いて測定した。これらを元に輝度が1000cd/m
2付近の外部量子効率を輝度換算法により算出した。
(b)駆動電圧
各素子を輝度が360cd/m
2になるように直流電圧を印加し発光させる。この時の印加電圧を駆動電圧評価の指標とした。
(c)駆動耐久性
各素子を輝度が1000cd/m
2になるように直流電圧を印加し、輝度が500cd/m
2になるまでの時間を測定した。この輝度半減時間を駆動耐久性評価の指標とした。
(d)高温駆動時の色度変化
各素子を輝度が1000cd/m
2になるように直流電圧を印加して発光させた時の色度と、80℃の恒温槽中で輝度が1000cd/m
2になるように直流電圧を印加して発光させ続け、輝度が500cd/m
2になった時の色度のx値、y値の(Δx、Δy)を高音駆動時の色度変化の指標とした。
各素子の評価結果を表2に示す。
【0246】
【表3】
【0247】
表2の結果から、本発明の素子は、発光波長が同様の比較例の素子と比べて、駆動電圧が低く、発光効率及び耐久性に優れ、高温駆動時の色度変化が極めて小さいことが分かる。
また、比較素子1−8〜1−22の素子と実施例の素子との比較により、一般式(1)で表される化合物と発光材料として一般式(C−1)で表される燐光発光材料を用いた場合に、高温駆動時の色度変化抑制の効果が大きいことが分かる。また、実施例の素子1−24〜1−38の結果から示されるように、明細書中に記載の様々な材料の組み合わせで、素子特性が高く、高温での色度変化が小さい素子が得られることが分かる。
【0248】
<実施例2>
[素子2−1の作製]
第3層、第4層及び第5層の成分を下記表3に示した組成に変更する以外は、素子1−1の作製と同様の方法で本発明の実施例の素子2−1〜2−12及び比較例の比較素子2−1〜2−4を得た。
これらの素子を発光させた結果、それぞれの発光材料に由来する発光が得られた。極大発光波長も表3に示す。
【0249】
【表4】
【0250】
これらの素子の性能評価を実施例1と同様に行った。評価結果を表4に示す。
【0251】
【表5】
【0252】
表4の結果から、一般式(1)で表される化合物を一般式(C−1)で表される燐光発光材料とともに発光層に用いた本発明の素子は、発光波長が同様の比較例の素子と比べて、駆動電圧が低く、発光効率及び耐久性に優れ、高温駆動時の色度変化も小さいことが分かる。また、実施例の素子2−9〜2−12の結果から示されるように、一般式(1)で表される化合物を一般式(C−1)で表される燐光発光材料とともに発光層に用いた本発明の素子は、明細書中に記載の様々な材料の組み合わせで、素子特性が高く、高温での色度変化が小さい素子が得られることが分かる。
【0253】
本発明の素子は色度変化が小さく、車載用途などの高温環境で使用する際においても発光効率や耐久性にも優れ、発光装置、表示装置、照明装置に有利に利用することができる。