【文献】
Herbert Sixta,Handbook of Pulp,2008年 1月30日,Volume 1,PP. 351-355
(58)【調査した分野】(Int.Cl.,DB名)
前記酸素脱リグニンを、アルカリ添加率0.5〜4質量%、温度80〜140℃、処理時間20〜180分の条件で行うことを特徴とする、請求項1〜3のいずれかに記載の溶解クラフトパルプの製造方法。
【発明を実施するための形態】
【0009】
本発明において溶解クラフトパルプ(DKP)とは、クラフト蒸解法(KP法)によって製造される溶解パルプである。溶解パルプとは、化学的に精製されたセルロース純度の高いパルプを意味し、好ましい態様においてα−セルロース含有率が90%以上である。一般に木材はセルロース、リグニン、ヘミセルロースの三大成分と少量の樹脂分、灰分などを含んでいるが、溶解パルプはセルロース純度が高く、化学繊維、セロハン、プラスチック、合成糊料、その他いろいろなセルロース系誘導体の原料として広く利用されている。
【0010】
本発明の原料は針葉樹木材チップである。本発明の木材チップは、針葉樹材のチップを含んでいれば、そのサイズや樹種は特に制限されず、単一種類の木材のチップでも2種以上の木材が混合されたチップでもよい。本発明においては、比較的、蒸解や漂白が難しいとされる樹種であっても、高品質な溶解パルプを効率良く製造することができる。本発明において使用される針葉樹材のチップとしては、例えば、カラマツ属やマツ属の木材チップを好適に使用することができる。カラマツ属に関しては、例えば、Larix(以下、L.と略す)leptolepis(カラマツ)、L.laricina(タマラック)、L.occidentalis(セイブカラマツ)、L.decidua(ヨーロッパカラマツ)、L.gmelinii(グイマツ)などが挙げられる。また、カラマツ属以外の針葉樹としては、例えば、マツ属に関しては、Pinus radiata(ラジアータマツ)など、トガサワラ属に関しては、Pseudotsuga(以下、P.と略す)menziesii(ダクラスファー)、P.japonica(トガサワラ)など、スギ属に関しては、Cryptomeria japonicaなどを挙げることができる。
【0011】
前加水分解工程
本発明ではクラフト蒸解を行う前の前処理として、チップに対して加水分解処理を行って、木材チップ中のヘミセルロース分を水溶性の糖に分解して、除去する。前処理としての加水分解処理(前加水分解)は、木材チップを高温の水で処理することによって実施される。添加する水は、熱水でも水蒸気の状態でもよい。加水分解の進行によって有機酸等が生成するので、処理液のpHは2〜5となるのが一般的である。
【0012】
前加水分解処理は、150〜180℃の温度範囲で行うことが好ましい。温度が150℃未満であれば、ヘミセルロースの除去が不十分となり、180℃を超えると加水分解が過剰となりα−セルロース分も低下してしまう。処理時間は特に制限されないが、30〜400分が好ましく、35〜250分がより好ましく、40〜150分がさらに好ましい。処理時間が短すぎると、ヘミセルロースの除去が不十分となり、ヘミセルロースを除去したことによる脱リグニン性の向上効果も少なくなる。一方、処理時間が長すぎると、加水分解が過剰となりα−セルロース分が減少してパルプ収率の低下を招くとともに、リグニンの縮合により、後に続くクラフト蒸解工程における蒸解性の悪化を招いてしまう。
【0013】
また、本発明における前加水分解処理は、Pファクター(Pf)を指標として、処理温度及び処理時間を設定することができる。Pファクターとは、前加水分解処理で反応系に与えられた熱の総量を表す目安であり、本発明では下記式によって表わされ、チップと水が混ざった時点から蒸解終了時点まで時間積分することで算出する。
【0014】
Pf=∫ln
−1(40.48−15106/T)dt
[式中、Tはある時点の絶対温度を表す]
本発明における前加水分解処理は、Pファクター(Pf)が350〜900となる範囲で行うことが好ましく、500〜800がさらに好ましい。Pf350未満であれば、ヘミセルロースの除去が不十分となり、ヘミセルロースを除去したことによる脱リグニン性の向上効果も少なくなる。また、Pf900を超えると、加水分解が過剰となりα−セルロース分が減少してパルプ収率の低下を招くとともに、リグニンの縮合により、後に続くクラフト蒸解工程における蒸解性の悪化を招いてしまう。
【0015】
前加水分解工程は、木材チップと水を耐圧性容器(前加水分解釜)に入れて行うことができるが、容器の形状や大きさは特に制限されない。
【0016】
前加水分解釜に木材チップと水を供給する際の比率は1〜2.3L/kgとすることが好ましい。前加水分解釜に供給する木材チップと水の比率は動的液比とも呼ばれ、木材チップ1kgあたりの水の量として示される。動的液比が1.0L/kg未満であると、木材チップに対して水が少なすぎるために加水分解が不十分となり、液比が2.3L/kgを超えると前加水分解釜の頂部において気相部が十分に確保できないので好ましくない。なお、水には木材チップと共に供給する水だけではなく、木材チップに含まれる水分、ドレン水等も含まれる。
【0017】
また、前加水分解釜内において木材チップと水の液比は、例えば、1.0〜5.0L/kgとすることができ、1.5〜4.5L/kgが好ましく、2.0〜4.0L/kgがさらに好ましい。液比が1.0L/kg未満であると、木材チップに対して水が少なすぎるために加水分解が不十分となり、液比が5.0L/kgを超えると容器の大きさが過大となるので好ましくない。また、必要に応じて、少量の鉱酸を添加してもよい。
【0018】
チップの洗浄・回収工程
次いで、前加水分解処理後の木材チップは、前加水分解液を除去し、チップを十分に水で洗浄して回収する。不十分な洗浄では、後続の蒸解工程において悪影響が生じる場合がある。
【0019】
加水分解液の洗浄、除去は、一般的な固液分離装置などを用いることによって行うことができる。例えば、前加水分解に用いる容器に抽出スクリーンを設け、容器下部から洗浄水を導入してスクリーンから抽出して向流洗浄することができる。
【0020】
クラフト蒸解工程
洗浄後のチップは、蒸解液と共に蒸解釜へ投入され、クラフト蒸解に供する。また、MCC、EMCC、ITC、Lo−solidなどの修正クラフト法の蒸解に供しても良い。また、1ベッセル液相型、1ベッセル気相/液相型、2ベッセル液相/気相型、2ベッセル液相型などの蒸解型式なども特に限定はない。すなわち、本願のアルカリ性水溶液を含浸し、これを保持する工程は、従来の蒸解液の浸透処理を目的とした装置や部位とは別個に設置してもよい。好ましくは、蒸解を終えた未晒パルプは蒸解液を抽出後、ディフュージョンウォッシャーなどの洗浄装置で洗浄する。洗浄後の未晒パルプのカッパー価は、9〜15にすることが好ましく、10〜13としてもよい。
【0021】
クラフト蒸解工程は、前加水分解処理した木材チップをクラフト蒸解液とともに耐圧性容器に入れて行うことができるが、容器の形状や大きさは特に制限されない。木材チップと薬液の液比は、例えば、1.0〜5.0L/kgとすることができ、1.5〜4.5L/kgが好ましく、2.0〜4.0L/kgがさらに好ましい。
【0022】
蒸解液は、対絶乾木材チップ重量当たりの有効アルカリ添加率を16〜22質量%とすることが好ましい。有効アルカリ添加率を16質量%未満であるとリグニンやヘミルロースの除去が不十分となり、22質量%を超えると収率の低下や品質の低下が起こる。
【0023】
クラフト蒸解は、120〜180℃の温度範囲で行うことが好ましく、140〜160℃がより好ましい。温度が低すぎると脱リグニン(カッパー価の低下)が不十分である一方、温度が高すぎるとセルロースの重合度(粘度)が低下する。また、本発明における蒸解時間とは、蒸解温度が最高温度に達してから温度が下降し始めるまでの時間であるが、蒸解時間は、60分以上600分が好ましく、120分以上360分以下がさらに好ましい。蒸解時間が60分未満ではパルプ化が進行せず、600分を超えるとパルプ生産効率が悪化するために好ましくない。
【0024】
また、本発明におけるクラフト蒸解は、Hファクター(Hf)を指標として、処理温度及び処理時間を設定することができる。Hファクターとは、蒸解過程で反応系に与えられた熱の総量を表す目安であり、下記の式によって表わされる。Hファクターは、チップと水が混ざった時点から蒸解終了時点まで時間積分することで算出する。
【0025】
Hf=∫exp(43.20−16113/T)dt
[式中、Tはある時点の絶対温度を表す]
本発明においては、クラフト蒸解後に得られた溶解クラフトパルプの粘度(Tappi試験法T230om−89に従って測定)が9〜15cpsで、酸素脱リグニン後の溶解クラフトパルプの粘度(Tappi試験法T230om−89に従って測定)が9〜12cpscpsとすることが必要である。クラフト蒸解後に得られた溶解クラフトパルプと酸素脱リグニン後の溶解クラフトパルプの粘度を、これらの範囲の粘度にすることにより、引き続いて行われる多段漂白処理に際に起こるパルプ粘度を抑制することができる。パルプ粘度はセルロース重合度の指標であるが、セルロース重合度が低くなり過ぎると溶解パルプから得られるビスコース溶液の濾過性を悪化させる可能性がある。また、酸素脱リグニン処理までの粘度の低下をマイルドにすることにより、パルプ品質の向上にも効果があると考えられる。
【0026】
本発明においては、蒸解後得られた未漂白パルプは、必要に応じて、種々の処理に供することができる。
【0027】
一つの態様において、クラフト蒸解で得られたパルプに酸素脱リグニン処理を行うことができる。本発明に使用される酸素脱リグニンは、公知の中濃度法あるいは高濃度法がそのまま適用できる。中濃度法の場合はパルプ濃度が8〜15質量%、高濃度法の場合は20〜35質量%で行われることが好ましい。酸素脱リグニンにおけるアルカリとしては、水酸化ナトリウム、水酸化カリウムを使用することができ、酸素ガスとしては、深冷分離法からの酸素、PSA(Pressure Swing Adsorption)からの酸素、VSA(Vacuum Swing Adsorption)からの酸素等が使用できる。
【0028】
酸素脱リグニン処理の反応条件は、特に限定はないが、酸素圧は3〜9kg/cm
2、より好ましくは4〜7kg/cm
2、アルカリ添加率は0.5〜4質量%、温度は80〜140℃、処理時間は20〜180分、この他の条件は公知のものが適用できる。なお、本発明において、酸素脱リグニン処理は、複数回行ってもよい。
【0029】
酸素脱リグニン処理が施されたパルプは、例えば、次いで洗浄工程へ送られ、洗浄後、多段漂白工程へ送られ、多段漂白処理を行うことができる。本発明の多段漂白処理は、特に限定されるものではないが、酸(A)、二酸化塩素(D)、アルカリ(E)、酸素(O)、過酸化水素(P)、オゾン(Z)、過酸等の公知の漂白剤と漂白助剤を組み合わせるのが好適である。例えば、多段漂白処理の初段は二酸化塩素漂白段(D)やオゾン漂白段(Z)を用い、二段目にはアルカリ抽出段(E)や過酸化水素段(P)、三段目以降には、二酸化塩素や過酸化水素を用いた漂白シーケンスが好適に用いられる。三段目以降の段数も特に限定されるわけではないが、エネルギー効率、生産性等を考慮すると、合計で三段あるいは四段で終了するのが好適である。また、多段漂白処理中にエチレンジアミンテトラ酢酸(EDTA)、ジエチレントリアミンペンタ酢酸(DTPA)等によるキレート剤処理段を挿入してもよい。
【0030】
本発明によって製造された溶解クラフトパルプ(DKP)は、ヘミセルロースや各種フェノール類が除去されているため、通常の酸素脱リグニン処理や漂白処理により高品質の溶解クラフトパルプを容易に製造することができる。
【実施例】
【0031】
次に実施例に基づき、本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、特に記載しない限り、本発明において、%などは重量基準であり、数値範囲はその端点を含むものとする。
【0032】
[実施例1]
カラマツとラジアータパインを50:50で混合した木材チップを、篩い分け器(ジャイロシフター)を使用して篩い分けし、サイズが9.5〜25.4mmの木材チップを得た。
回転型オートクレーブを用い、この木材チップに液比3.2(L/kg)となるように水を加え、前加水分解温度170℃にて30分間、Pファクター=550で前加水分解を行った。
前加水分解終了後、チップと前加水分解液とを300メッシュ濾布で分離し、チップの15倍量の60℃温水で30秒間手もみ洗浄を行った。
続いて、再び回転型オートクレーブを用い、150℃、85分間、クラフト蒸解薬液の浸透を行った後、蒸解温度158℃で210分間、H−ファクター(HF)=1500で蒸解を行った。薬液は、活性アルカリ添加率(AA)18%で、活性アルカリ105g/L(Na
2O換算値)、NaOH75.6g/L(Na
2O換算値)、Na
2S29.4g/L(Na
2O換算値)、硫化度28%の組成で、木材チップと蒸解薬液との液比は3.2(L/kg)とした。
【0033】
蒸解終了後、得られた未漂白パルプについて酸素脱リグニン処理を行い、続いて、二酸化塩素処理(D
1)−アルカリ抽出/過酸化水素処理(Ep)−二酸化塩素処理(D
2)を行って漂白溶解クラフトパルプを得た。処理条件は以下のとおりであり、薬品の添加量は対絶乾パルプ重量に対するものである。
・酸素脱リグニン処理:パルプ濃度10質量%、酸素添加量3.5質量%、水酸化ナトリウム添加量3.0%、温度98℃、40分間
・二酸化塩素処理(D
1):パルプ濃度10質量%、二酸化塩素添加量1.2質量%、温度55℃、60分間
・アルカリ抽出/過酸化水素処理(Ep):パルプ濃度10質量%、水酸化ナトリウム添加量0.93質量%、過酸化水素添加量1.03質量%、温度70℃、90分間
・二酸化塩素処理(D
2):パルプ濃度10質量%、二酸化塩素添加量0.66質量%、温度75℃、240分間
クラフト蒸解後の溶解クラフトパルプ、酸素脱リグニン後の溶解クラフトパルプ及び漂白溶解クラフトパルプの白色度、粘度を以下の方法にて測定し、結果を表1に示した。なお、クラフト蒸解後の溶解クラフトパルプについてはカッパー価も測定した。
・カッパー価:JIS P 8221に従って、測定した。
・粘度:Tappi試験法T230om−89に従って測定した。
・白色度:JIS P 8209に従って手抄きシートを作製し、JIS P 8148:2001に準じてISO白色度を測定した。
【0034】
[実施例2]
酸素脱リグニン処理において、水酸化ナトリウム添加量を3.5%にした以外は、実施例1と同様に漂白溶解クラフトパルプを製造した。得られたクラフト蒸解後の溶解クラフトパルプ、酸素脱リグニン後の溶解クラフトパルプ及び漂白溶解クラフトパルプの白色度、粘度を以下の方法にて測定し、結果を表1に示した。
【0035】
[比較例1]
クラフト蒸解において、活性アルカリ添加率(AA)を21%にした以外は、、実施例1と同様に漂白溶解クラフトパルプを製造した。得られたクラフト蒸解後の溶解クラフトパルプ、酸素脱リグニン後の溶解クラフトパルプ及び漂白溶解クラフトパルプの白色度、粘度を以下の方法にて測定し、結果を表1に示した。
【0036】
【表1】
【0037】
表1に示されるように、同等の白色度まで漂白した場合、実施例1〜2の漂白溶解クラフトパルプに比較して、比較例1の漂白溶解クラフトパルプは、粘度の低下が大きかった。