特許第6223589号(P6223589)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ シーメンス アクチエンゲゼルシヤフトの特許一覧

特許6223589漸進的摩耗ゾーンマルチレベルリッジアレイを備えるタービンアブレイダブル層
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6223589
(24)【登録日】2017年10月13日
(45)【発行日】2017年11月1日
(54)【発明の名称】漸進的摩耗ゾーンマルチレベルリッジアレイを備えるタービンアブレイダブル層
(51)【国際特許分類】
   F01D 11/12 20060101AFI20171023BHJP
   F02C 7/28 20060101ALI20171023BHJP
   F01D 25/00 20060101ALI20171023BHJP
【FI】
   F01D11/12
   F02C7/28 A
   F01D25/00 M
【請求項の数】10
【全頁数】39
(21)【出願番号】特願2016-554225(P2016-554225)
(86)(22)【出願日】2015年2月18日
(65)【公表番号】特表2017-508917(P2017-508917A)
(43)【公表日】2017年3月30日
(86)【国際出願番号】US2015016278
(87)【国際公開番号】WO2015130520
(87)【国際公開日】20150903
【審査請求日】2016年10月25日
(31)【優先権主張番号】14/188,958
(32)【優先日】2014年2月25日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】390039413
【氏名又は名称】シーメンス アクチエンゲゼルシヤフト
【氏名又は名称原語表記】Siemens Aktiengesellschaft
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100116403
【弁理士】
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100135633
【弁理士】
【氏名又は名称】二宮 浩康
(74)【代理人】
【識別番号】100162880
【弁理士】
【氏名又は名称】上島 類
(72)【発明者】
【氏名】コク−ムン タム
(72)【発明者】
【氏名】ヴィンセント ピー. ローレロ
(72)【発明者】
【氏名】チン−パン リー
(72)【発明者】
【氏名】グム サラム アザド
(72)【発明者】
【氏名】ニコラス エフ. マーティン ジュニア
(72)【発明者】
【氏名】デイヴィッド ジー. サンソム
(72)【発明者】
【氏名】ニール ヒッチマン
【審査官】 倉田 和博
(56)【参考文献】
【文献】 米国特許出願公開第2003/0175116(US,A1)
【文献】 特開昭54−103907(JP,A)
【文献】 特開2014−043858(JP,A)
【文献】 特開2011−132952(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 11/00 − 11/24
F01D 25/00
F02C 7/28
(57)【特許請求の範囲】
【請求項1】
タービンハウジングと、遠位先端を有するブレードを有するロータとを備えるタービンにおいてタービンエンジンブレード先端摩耗を低減する方法であって、前記ブレードは、前記タービンハウジングに回転可能に取り付けられておりかつブレード回転方向にブレード先端周方向移動経路において移動し、
当該方法は、
概して円弧状のアブレイダブル構成部材を、前記ブレード先端と向き合って間隔を空けた関係で前記ハウジングに挿入し、前記アブレイダブル構成部材と前記ブレード先端との間にブレード間隙を規定し、前記アブレイダブル構成部材は、
前記タービンハウジングに結合するための支持面と、
該支持面に結合されたアブレイダブル表面であって、前記タービンブレード先端周方向移動経路の近くでの向きのために適応されている、アブレイダブル表面と、
該アブレイダブル表面の少なくとも60%にわたって延びかつ前記アブレイダブル表面から突出した、向き合った連続的な第1および第2のリッジの交互の列であって、前記第1のリッジは、前記第2のリッジの第2リッジ高さよりも大きな第1リッジ高さを有する、第1および第2のリッジの交互の列と、を備え、
前記ブレード先端と前記アブレイダブル構成部材との接触時に、最初は、より高い第1のリッジの先端のみを削りながら、削られていない第1のリッジを残し、第2のリッジは、前記ブレード先端と前記アブレイダブル表面との間のブレード先端ガス流を阻止するように、前記タービンエンジンを運転し、
前記ブレード先端と前記アブレイダブル構成部材とのその後の接触が、前記第1のリッジの残りの部分または前記第2のリッジを削るように、前記タービンエンジンを運転する
ことを含む、タービンエンジンブレード先端摩耗を低減する方法。
【請求項2】
前記アブレイダブル構成部材は、少なくとも一対の向き合った第1および第2のリッジに対して横方向に向けられかつ少なくとも一対の向き合った第1および第2のリッジに接続された複数の第3のリッジをさらに備え、該第3のリッジは、前記第1のリッジと前記第2のリッジとの間のブレード先端空気流漏れを阻止するように適応されている、請求項1記載の方法。
【請求項3】
標準始動モードにおける前記ブレード先端と前記アブレイダブル構成部材との接触が前記第1のリッジのみを削り、
急速始動モードにおける前記ブレード先端と前記アブレイダブル構成部材との接触が、前記第1のリッジを削り、その後、前記第2のリッジのうちの少なくとも1つを削るように、
前記タービンエンジンを標準始動モードまたは急速始動モードで運転することをさらに含む、請求項2記載の方法。
【請求項4】
タービンエンジンであって、
タービンハウジングと、
該タービンハウジングに回転可能に取り付けられたブレードを有するロータであって、前記ブレードは、遠位先端を有しておりかつブレード先端周方向移動経路においてブレード回転方向に移動する、ロータと、
アブレイダブル構成部材と、を備え、
前記アブレイダブル構成部材は、
前記タービンハウジングに結合するための支持面と、
前記ブレード先端周方向移動経路の近くの向き合った間隔を空けた向きのために適応された、前記支持面に接続されたアブレイダブル表面と、
該アブレイダブル表面の少なくとも60%にわたって延びかつ前記アブレイダブル表面から突出した、向き合った連続的な細長い第1および第2のリッジの交互の列と、を備え、前記第1のリッジは、前記第2のリッジの第2リッジ高さよりも大きい第1リッジ高さを有し、
前記第1リッジ高さは、前記アブレイダブル構成部材の経路内への前記遠位先端の第1の移動が前記第1のリッジのみの削りを生じさせるように選択されており、
前記第2リッジ高さは、前記アブレイダブル構成部材の経路内への前記遠位先端のその後の移動が、存在するならば残りの前記第1のリッジを削り、その後、前記第2のリッジのうちの少なくとも1つを削るように選択されていることを特徴とする、タービンエンジン。
【請求項5】
前記アブレイダブル構成部材は、少なくとも一対の向き合った前記第1および第2のリッジに対して横方向に向けられかつ少なくとも一対の向き合った前記第1および第2のリッジに接続された複数の第3のリッジをさらに備える、請求項4記載のタービンエンジン。
【請求項6】
前記エンジンは、
標準始動モードにおける前記ブレード先端と前記アブレイダブル構成部材との接触が第1のリッジのみを削り、
急速始動モードにおける前記ブレード先端と前記アブレイダブル構成部材との接触が、前記第1のリッジを削り、その後、前記第2のリッジのうちの少なくとも1つを削るように、
標準始動モードおよび急速始動モードの両方で始動することができる、請求項4記載のタービンエンジン。
【請求項7】
前記第1のリッジおよび前記第2のリッジは、個々に、異なる高さの複数の摩耗ゾーンを有する、請求項4記載のタービンエンジン。
【請求項8】
タービンアブレイダブル構成部材であって、
タービンケーシングに結合された支持面と、
該支持面に結合されかつ回転するタービンブレード先端周方向移動経路の近くで向かい合った間隔を空けた向きのために適応されたアブレイダブル表面と、
該アブレイダブル表面の少なくとも60%にわたって延びかつ前記アブレイダブル表面から突出した、向き合った連続的な細長い第1および第2のリッジの交互の列であって、前記第1のリッジは、前記第2のリッジの第2リッジ高さよりも大きい第1リッジ高さを有する、第1および第2のリッジの交互の列と、を備え、
前記第1および第2のリッジのそれぞれは、前記回転するブレード先端周方向移動経路における同じ回転するタービンブレード先端から、第1の間隙距離と、該第1の間隙距離とは異なる第2の間隙距離とに配置されるように構成されていることを特徴とする、タービンアブレイダブル構成部材。
【請求項9】
少なくとも一対の向き合った第1および第2のリッジに対して横方向に向けられかつ少なくとも一対の向き合った第1および第2のリッジに接続された複数の第3のリッジをさらに備え、該第3のリッジは、交互の第1および第2のリッジの少なくとも1つの列を飛ばし、アブレイダブル表面を横切って横方向にずらされている、請求項8記載の構成部材。
【請求項10】
前記リッジは、非対称の断面を有する、請求項8記載の構成部材。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願との相互参照
本願を含む以下の米国特許出願が同時に出願された:
ここに出願されかつ出願番号(未知)が割り当てられた、事件番号2013P18846USの「TURBINE ABRADABLE LAYER WITH PROGRESSIVE WEAR ZONE TERRACED RIDGES」
ここに出願されかつ出願番号(未知)が割り当てられた、事件番号2013P19613USの「TURBINE ABRADABLE LAYER WITH PROGRESSIVE WEAR ZONE MULTI DEPTH GROOVES」
ここに出願されかつ出願番号(未知)が割り当てられた、事件番号2013P19614USの「TURBINE ABRADABLE LAYER WITH PROGRESSIVE WEAR ZONE HAVING A FRANGIBLE OR PIXELATED NIB SURFACE」
ここに出願されかつ出願番号(未知)が割り当てられた、事件番号2013P19615USの「TURBINE ABRADABLE LAYER WITH ASYMMETRIC RIDGES OR GROOVES」
ここに出願されかつ出願番号(未知)が割り当てられた、事件番号2013P20416USの「TURBINE ABRADABLE LAYER WITH ZIG-ZAG GROOVE PATTERN」
ここに出願されかつ出願番号(未知)が割り当てられた、事件番号2013P20415USの「TURBINE ABRADABLE LAYER WITH NESTED LOOP GROOVE PATTERN」。
【0002】
本願は、その他の上記に引用した関連出願の全てを、参照により、関連出願の内容が本明細書に完全に包含されるものとして援用する。
【0003】
発明の背景
1.発明の分野
本発明は、ガスまたは蒸気タービンエンジンを含む、アブレイダブル面を有するタービンエンジン用のアブレイダブル面に関し、また、エンジンブレード先端摩耗およびブレード先端漏れを減じる方法に関する。特に、本発明の様々な実施形態は、複数の鉛直方向の漸進的な摩耗ゾーンを有する、異なる前方および後方リッジおよび溝の平面図形パターンおよび/または輪郭を備えるアブレイダブル面に関する。摩耗ゾーンは、構造的剛性、空気流ダイナミクス、熱的および熱的浸食抵抗性、およびタービンブレード先端からの削りかすの搬出のためのアブレイダブル面の近傍の下側層を有する。摩耗ゾーンは、ブレード先端摩耗を減じながら所望のブレード先端間隙を保存する上側層を有する。本発明の実施形態に従って構成された摩耗ゾーンリッジ/溝平面図形および輪郭は、タービンエンジン効率を高めるためブレード先端漏れを減じる。
【0004】
2.従来技術の説明
ガスタービンエンジンおよび蒸気タービンエンジンを含む公知のタービンエンジンは、タービンケーシングまたはハウジングによって周方向に包囲された、軸取付けされたタービンブレードを有する。タービンブレードを流過する高温ガスはブレード回転を生ぜしめ、このブレード回転は、高温ガス内の熱エネルギを機械的仕事に変換し、この機械的仕事は、発電機などの回転機械に動力を提供するために利用可能である。図1図6を参照すると、ガスタービンエンジン80などの公知のタービンエンジンは、多段圧縮機セクション82と、燃焼器セクション84と、多段タービンセクション86と、排出システム88とを有する。大気圧吸気が、タービンエンジン80の軸方向長さに沿って概して流れ矢印Fの方向で圧縮機セクション82に引き込まれる。吸気は、回転する圧縮機ブレードの複数の列によって圧縮機セクション82において次第に加圧され、対応する圧縮機ベーンによって燃焼器セクション84へ方向付けられ、この燃焼器セクション84において燃料と混合され、点火される。点火された燃料/空気混合物は、今度は元々の吸気よりも高い圧力および速度で、タービンセクション86における連続した列R1,R2等へ方向付けられる。エンジンのロータおよび軸90は、圧縮機82およびタービン86セクションにおいて、遠位ブレード先端94において終わる翼断面形状タービンブレード92の複数の列を有する。簡便かつ簡略にするため、エンジンにおけるタービンブレードおよびアブレイダブル層のさらなる説明は、タービンセクション86の実施形態および用途に焦点を絞るが、同様の構成は圧縮機セクション82にも適用可能である。各ブレード92は、凹面輪郭の高圧側96と、凸面状の低圧側98とを有する。燃焼流れ方向Fに流れる高速・高圧の燃焼ガスは、ブレード92に回転運動を付与し、ロータを回転させる。公知のように、ロータ軸に付与された機械的動力の一部は、有効仕事を行うために利用可能である。燃焼ガスは、ロータの半径方向遠位においてはタービンケーシング100によって、ロータの近位では空気シール102によって拘束されている。図2に示された第1列セクションを参照すると、それぞれの上流ベーン104および下流ベーン106は、上流燃焼ガスをタービンブレード92の前縁の入射角に対してほぼ平行に方向付け、ブレードの後縁から出る下流燃焼ガスを方向転換する。
【0005】
ブレード先端94の近くの、タービンエンジン80のタービンケーシング100は、複数の扇形のアブレイダブル構成部材110によって被覆されており、各アブレイダブル構成部材110は、ケーシング内に保持されかつケーシングに結合された支持面112と、ブレード先端間隙Gによってブレード先端と向き合って間隔を空けた関係にあるアブレイダブル基板120とを有する。アブレイダブル基板は、多くの場合、高い熱的抵抗性および熱的腐食抵抗性を有しかつ高い燃焼温度において構造的一体性を維持する金属/セラミック材料から構成されている。アブレイダブル面120の金属セラミック材料は、多くの場合、タービンブレード先端94の材料よりも削られやすいので、ブレード先端間隙Gは、良くても早すぎるブレード先端摩耗を、より悪い場合にはその状況がエンジン損傷を生じ得る、2つの向き合った構成部材間の接触を回避するように維持されている。幾つかの公知のアブレイダブル構成部材110は、モノリシックの金属/セラミックアブレイダブル基板120を備えて構成されている。その他の公知のアブレイダブル構成部材110は、米国特許第6641907号明細書に記載されているように、より小さな粒子のセラミックフィラーによって包囲された、緊密にパックされた中空セラミック球状粒子の複数の層の破砕性傾斜断熱材(FGI)セラミック層が結合されたセラミック支持面112を有する、複合マトリックス複合(CMC)構造を備えて構成されている。異なる特性を有する球状粒子は、基板120に成層されており、概してより容易に削られやすい球体は、ブレード先端94の摩耗を減じるために上層を形成している。別のCMC構造は米国特許出願公開第2008/0274336号明細書に記載されており、表面は、中空セラミック球体の間に、切断された溝付きのパターンを有する。溝は、ブレード先端94がアブレイダブル面と接触したとしても、潜在的なブレード先端94の摩耗を減じるように、アブレイダブル面材料の断面積を減じることが意図されている。その他の一般的に公知のアブレイダブル構成部材110は、アブレイダブル基板層120を形成する溶射されたセラミック/金属層が提供された金属ベース層支持面112を備えて構成されている。より詳細に説明するように、溶射された金属層は、潜在的なブレード先端94の摩耗を減じるためにアブレイダブル面材料の断面を減じるように、溝、凹所またはリッジを有してもよい。
【0006】
ブレード先端94の早すぎる摩耗またはアブレイダブル面120との接触を防止するという要望に加え、図3に示したように、理想的な空気流およびパワー効率のために、各ブレード先端94は、望ましくは、高圧ブレード側96と低圧ブレード側98との間および燃焼流れ方向Fで軸方向のブレード先端空気流漏れLを最小限に減じるために、できるだけ小さなアブレイダブル構成部材110に対する均一なブレード先端間隙G(理想的にはゼロ間隙)を有する。しかしながら、製造および運転のトレードオフは、ゼロよりも大きなブレード先端間隙Gを要求する。このようなトレードオフは、相互に作用する構成部材の公差の積み重ねを含み、これにより、許容できる半径方向長さ公差の、より高い端部に構成されたブレードと、許容できる半径方向公差の、下側端部に構成されたアブレイダブル構成部材のアブレイダブル面120とが、運転中に過剰に互いに衝突しない。同様に、エンジン組立て中の小さな機械的整合ばらつきは、ブレード先端間隙の局所的ばらつきを生じる可能性がある。例えば、何メートルものタービンケーシングアブレイダブル基板120の内径を有する、何メートルもの軸方向長さのタービンエンジンにおいて、非常に小さな機械的整合ばらつきが、数ミリメートルの局所的ブレード先端間隙Gばらつきを生じる可能性がある。
【0007】
タービンエンジン80の運転中、タービンエンジンケーシング100は、図4および図6に示したような、非円形(例えば卵形)の熱的ゆがみを生じ得る。エンジンは、パワーを発生するために燃焼させられ、その後、数千時間の発電後に保守のために冷却されるので、ケーシング100の熱的ゆがみポテンシャルが、タービンエンジン80の運転サイクルの間に増大する。一般的に、図6に示したように、より大きなケーシング100およびアブレイダブル構成部材110のゆがみが、横方向で右124および左128の周方向位置(すなわち、3:00および9:00)と比較して、最も上側122および最も下側126のケーシング周方向位置(すなわち、6:00および12:00位置)において生じる傾向がある。例えば、図4に示したように、6:00位置におけるケーシング歪みがアブレイダブル基板120とのブレード先端接触を生ぜしめるならば、ブレード先端のうちの1つまたは複数は運転中に摩耗されることがあり、ブレード先端間隙を、局所的に、タービンケーシング100の様々な他のより変形させられてない周方向部分において、理想的な間隙Gから、図5に示したようなより大きな間隙GWへ増大させる。過剰なブレード間隙GWの歪みは、ブレード先端漏れLを増大させ、高温燃焼ガスを、タービンブレード92の翼から離れるように逸らせ、タービンエンジンの効率を低下させる。
【0008】
過去には、平坦なアブレイダブル面基板120が利用され、ブレード先端間隙Gの仕様は、伝統的に、少なくとも最小限の全体的な間隙を提供するように選択され、これにより、タービン構成部材製造公差積み重ね、組立て整合ばらつきおよび熱的ゆがみの広い範囲においてブレード先端94およびアブレイダブル面基板の接触を防止する。これにより、比較的広い伝統的な間隙Gの仕様が、先端/基板接触によって犠牲にされたエンジン効率を回避するように選択される。燃料保存のためにエンジン効率を高めるという商業的な要望は、より小さなブレード先端間隙Gの仕様を推進した。このブレード先端間隙Gの仕様は、好適には、2mm以下、望ましくは1mmに近い。
【0009】
ブレード先端/基板接触の可能性を減じるために、溶射された金属/セラミックアブレイダブル面を備える金属ベース層支持部を有するアブレイダブル構成部材は、図7図11に示したような三次元の平面図形輪郭を備えて構成されている。図7および図10の典型的な公知のアブレイダブル面構成部材130は、タービンケーシング100に接続するための金属ベース層支持部131を有し、この金属ベース層支持部131には、溶射された金属/セラミック層が堆積させられており、かつ公知の堆積または除去材料加工法によって三次元リッジおよび溝輪郭に形成されている。特に、これらの引用された図面において、複数のリッジ132はそれぞれ、共通の高さHRの遠位リッジ先端面134を有しており、この遠位リッジ先端面134は、ブレード先端94と、遠位リッジ先端面134との間にブレード先端間隙Gを規定する。各リッジは、側壁135および136をも有する。側壁135および136は、基板表面137から延びており、連続するリッジの向き合った側壁の間に溝138を規定している。リッジ132は、連続するリッジの中心線の間に平行な間隔SRを備えて配置されており、溝幅WGを規定している。アブレイダブル構成部材の表面対称性により、溝深さDGはリッジ高さHRに対応する。中実平滑表面アブレイダブルと比較して、リッジ132は、より小さな断面を有し、かつブレード先端間隙Gがブレード先端94を1つまたは複数の先端134と接触させるほど小さくなったときに、より制限された削り接触を有する。しかしながら、比較的高い、広い間隔のリッジ132は、従来の連続的な平坦なアブレイダブル面と比較して、リッジの間の溝138内へのブレード漏れLを許容する。ブレード先端漏れLを減じるための努力において、リッジ132および溝138は、燃焼流れF(図示せず)の方向に水平に、または、図7に示したようにアブレイダブル面137の幅を横切って対角に向けられており、これにより、漏れを阻止する傾向がある。図8に示されたその他の公知のアブレイダブル構成部材140は、溝148を十字形パターンに配置しており、平坦な、等しい高さのリッジ先端144を備えた菱形のリッジ平面図形142を画成している。付加的な公知のアブレイダブル構成部材は、図9および図11に示された、三角形の丸みづけられたまたは平坦な先端の三角形リッジ152を使用している。図9および図11のアブレイダブル構成部材150において、各リッジ152は、平坦なリッジ先端154において終わった対称的な側壁155,156を有する。全てのリッジ先端154は、共通の高さHRを有し、基板表面157から突出している。溝158は、湾曲しており、ブレード先端94の反り線と同じ平面図形輪郭を有する。湾曲した溝158は、図7および図8に示したようにアブレイダブル構成部材の線形の溝138または148よりも、形成するのが困難である。
【0010】
過去のアブレイダブル構成部材設計は、ブレード先端とアブレイダブル面との接触により生じるブレード先端摩耗と、タービンエンジン運転効率を低下させるブレード先端漏れとの大きな妥協を必要としていた。エンジン運転効率を最適化させることは、ブレード先端間隙を通過する空気漏れを妨げ、初期エンジン性能およびエネルギ保存を高めるために、減じられたブレード先端間隙および滑らかな一貫して平坦なアブレイダブル表面トポロジーを必要としていた。増大したガスタービン運転効率および柔軟性のための別の動機において、より急速なフルパワー増大(40〜50Mw/分のオーダ)を要求するいわゆる「急速始動」モードエンジンが構成された。急激な増大率は、より急速な熱的および機械的成長およびより大きなゆがみおよび回転構成部材と固定の構成部材との成長率のより大きな不適合により生じる、リングセグメントのアブレイダブルコーティング内へのブレード先端の潜在的なより大きな突入を悪化させた。これは、ひいては、「標準」始動サイクルのためにのみ構成されたエンジンのために要求されるブレード先端間隙よりも、早すぎるブレード先端摩耗を回避するために、「急速始動」モードエンジンにおいて、より大きなタービン先端間隙を必要としていた。したがって、設計選択として、より急速な始動/より低い運転効率のより大きなブレード先端間隙または標準始動/より大きな運転効率のより小さなブレード先端間隙をバランスさせることが必要とされていた。従来、標準または急速始動エンジンは、両設計の異なる必要とされるブレード先端間隙パラメータを提供するために、異なる構成を必要としていた。標準または急速始動方式にかかわらず、エンジン効率最適化のためのブレード先端間隙を減じることは、最終的に、早すぎるブレード先端摩耗のリスクを生じ、ブレード先端間隙を拡開させ、最終的に、エンジン運転サイクルの間の長期的なエンジン性能効率を低下させる。前記のセラミックマトリックス複合材(CMC)のアブレイダブル構成部材設計は、ブレード先端摩耗を低減するために、より柔軟な上部アブレイダブル層を使用することによって、空気流制御の利点と、平坦な表面輪郭アブレイダブル面の小さなブレード先端間隙とを維持しようと努めた。米国特許出願公開第2008/0274336号明細書のアブレイダブル構成部材も、上側層の中空セラミック球体の間に溝を組み入れることによって、ブレード先端摩耗を減じようと努めた。しかしながら、溝寸法は、本来、球体破壊を防止するために球体の詰込み間隔および直径によって制限されていた。リッジ先端とブレード先端との間の潜在的なこすれ接触表面積を減じながら、ブレード先端間隙を減じるための妥協的解決策として、溶射された基板輪郭に均一な高さのアブレイダブル表面リッジを付加することは、早すぎるブレード先端摩耗/増大するブレード先端間隙の可能性を低減したが、ただし、それはリッジの間の溝内への増大したブレード先端漏れという犠牲を払っていた。上述のように、溝内への漏れ空気流を遮断または制御することを試みるためにリッジ配列の平面図形における向きを変化させることによってブレード先端漏れ流を減じる試みがなされてきた。
【0011】
発明の概要
本発明の様々な実施形態の目的は、ブレード先端摩耗を過剰に生ぜしめない形式で、構成部材公差積み重ね、組立て整合ばらつき、1つまたは複数のエンジン運転サイクルの間に進行するブレード/ケーシング変形などの要因によって生ぜしめられる局所的ばらつきにもかかわらずブレード先端間隙を低減および制御することによって、エンジン効率性能を高めることである。
【0012】
アブレイダブル表面とブレード先端とが互いに接触する局所的な摩耗ゾーンにおいて、本発明の様々な実施形態の目的は、これらのゾーンにおける最小限のブレード先端漏れを維持しかつこれらの局所的な摩耗ゾーンの外側に比較的狭いブレード先端間隙を維持しながらブレード先端摩耗を最小限に減じることである。
【0013】
本発明のその他の実施形態の目的は、潜在的に増大した数の局所的なブレード先端/アブレイダブル表面接触ゾーンから生じ得る早すぎるブレード先端摩耗のリスクを過剰に生じることなくタービン運転効率を高めることである。
【0014】
本発明のさらに別の実施形態の目的は、ブレード先端漏れを阻止および/または方向転換させる、アブレイダブル表面のリッジおよび溝の複合的な別個の前方および後方輪郭および平面図形配列を利用することである。
【0015】
本発明の付加的な実施形態の目的は、回転するタービンブレードに衝突またはタービンブレードを削らないように、削られた材料およびその他の粒子状物質を軸方向にタービンを通ってアブレイダブル表面に沿って搬送するための溝チャネルを提供することである。
【0016】
本発明の様々な実施形態において、タービンケーシングアブレイダブル構成部材は、タービンブレード翼高圧側から低圧側へではなく溝内へ下流へのブレード先端空気流漏れを低減、方向転換および/または遮断するために、明確な前方上流および後方下流の複合マルチ方向溝と、鉛直方向に突出したリッジプラットフォームパターンとを有する。平面図形パターン実施形態は、明確な前方上流(ゾーンA)および後方下流パターン(ゾーンB)を有する複合マルチ溝/リッジパターンである。これらの組み合わされたゾーンAおよびゾーンBのリッジ/溝配列平面図形は、局所的なブレード漏れ方向Lでタービンブレード翼の圧力側から翼の吸込側へ向かうガス流漏れを直接に妨害するために、溝内に捕捉されたガス流を下流燃焼流F方向へ方向付ける。前方ゾーンは、概して、前縁と、タービン80の軸線に対して平行な線が、翼の圧力側表面に対してほぼ接線方向となるカットオフポイントにおけるブレード翼の弦中間との間に規定されており、翼の軸方向全長のほぼ3分の1〜2分の1である。配列パターンの残りは、後方ゾーンBを含む。後方下流ゾーンBの溝およびリッジは、ブレード回転方向Rとは反対方向に角度を成して配向されている。角度の範囲は、関連するタービンブレード92の反り線または後縁角度の約30%〜120%である。
【0017】
本発明の他の様々な実施形態では、アブレイダブル構成部材は、第1の下側摩耗ゾーンと第2の上側摩耗ゾーンとを有する鉛直方向に突出したリッジまたはリブを備えて構成されている。アブレイダブル面の近位のリッジの第1の下側ゾーンは、リッジの間の溝内へのブレード先端空気流漏れを低減、方向転換および/または遮断するように調節された平面図形配列および突出部によって、エンジン空気流特性を最適化するように構成されている。リッジの下側ゾーンは、アブレイダブル構成部材および表面の、機械的および熱的構造的一体性、熱的抵抗性、熱的耐腐食性および摩耗寿命を高めるように最適化されてもいる。リッジ上側ゾーンは、下側ゾーンの上方に形成されており、下側ゾーンよりも容易に削れやすくすることによって、ブレード先端間隙および摩耗を最小限にするように最適化されている。アブレイダブル構成部材の様々な実施形態は、下側ゾーンのリブ構造よりも小さな断面積を有する上側サブリッジまたは尖端によって、上側ゾーンのより容易な削りやすさを提供する。幾つかの実施形態では、上側サブリッジまたは尖端は、小さなブレード先端接触の際に曲がるか、さもなければたわむようにおよび/またはより大きなブレード先端接触の際には摩耗および/またはせん断するように形成されている。他の実施形態では、上側ゾーンサブリッジまたは尖端は、1つまたは複数のブレード先端と局所的に接触したこれらの尖端のみが摩耗され、局所的な摩耗ゾーンの外側の他のものはそのままにとどまるように、上側摩耗ゾーンの配列にピクセル化されている。リッジの上側ゾーン部分は摩耗されるが、上側ゾーン部分は、従来公知のモノリシックリッジよりもブレード先端摩耗を生じにくい。本発明の幾つかの実施形態では、上側ゾーンリッジ部分が摩耗されたとき、残りの下側リッジ部分は、ブレード先端漏れを制御することによってエンジン効率を保持する。局所的なブレード先端間隙がさらに減じられた際、ブレード先端は、その位置における下側リッジ部分を摩耗させる。しかしながら、その下側リッジ部分の局所的な摩耗領域の外側の比較的高いリッジは、エンジン性能効率を保持するために、より小さなブレード先端間隙を維持する。付加的に、マルチレベル摩耗ゾーン輪郭により、1つのタービンエンジン設計が、標準または「急速始動」モードで運転されることができる。急速始動モードで運転される場合、エンジンは、下側摩耗ゾーンの空力機能を保存しながら、過剰なブレード先端摩耗のより少ない可能性とともに、上側摩耗ゾーン層を摩耗する傾向を有する。同じエンジンが標準始動モードで運転される場合、アブレイダブル上側および下側摩耗ゾーンの両方が効率的なエンジン運転のために保存されるさらに高い可能性が存在する。3つ以上の層から成る摩耗ゾーン(例えば、上側、中間および下側の摩耗ゾーン)を、本発明の実施形態に従って構成されたアブレイダブル構成部材において使用することができる。
【0018】
幾つかの本発明の実施形態では、リッジおよび溝の輪郭および平面図形配列は、ブレード先端漏れを低減するように選択された選択的な向き角度および/または横断面輪郭を備えた多層の溝を形成することによって、アブレイダブル構成部材にわたって局所的にまたは全体的に調整されている。幾つかの実施形態では、アブレイダブル構成部材表面の平面図形配列およびリッジおよび溝の輪郭は、向上したブレード先端漏れ空気流制御を提供するが、公知のアブレイダブル構成部材よりも単純な製造技術をも促進する。
【0019】
これらのおよびその他の提案された目的のうちの幾つかは、本発明の1つまたは複数の実施形態において、タービンケーシングに結合するための支持表面と、支持表面に結合されたアブレイダブル基板であって、回転タービンブレード先端の周方向移動経路の近くにおける向かい合って間隔を空けた向きのために適応された基板表面を有する、アブレイダブル基板とを特徴とする、タービンアブレイダブル構成部材によって達成される。基板表面は、基板表面の少なくとも60%にわたって延びた、基板表面から突出した、向かい合った、連続的な細長い第1および第2のリッジの交互の列を特徴とする。第1のリッジは、第2のリッジの第2リッジ高さよりも大きい第1リッジ高さを有する。
【0020】
本発明のその他の実施形態は、タービンハウジングと、タービンハウジングに回転可能に取り付けられたブレードを備えるロータとを有するタービンであって、ブレードの遠位先端は、ブレード回転方向でかつタービンハウジングに関して軸方向でブレード先端周方向移動経路を形成している、タービンを提供することによって、タービンエンジンブレード先端摩耗を減じる方法に関する。概して円弧状のアブレイダブル構成部材が、ブレード先端に対して向かい合って間隔を空けた関係でハウジングに挿入され、アブレイダブル構成部材とブレード先端との間にブレード間隙を規定する。挿入されたアブレイダブル構成部材は、タービンケーシングに結合するための支持表面と、支持表面に結合されたアブレイダブル基板であって、回転タービンブレード先端の周方向移動経路の近くにおける向きのために適応された基板表面を有する、アブレイダブル基板とを特徴とする。アブレイダブル構成部材の基板表面は、基板表面の少なくとも60%にわたって延びた、基板表面から突出した、向かい合った、連続的な細長い第1および第2のリッジの交互の列を特徴とする。第1のリッジは、第2のリッジの第2リッジ高さよりも大きい第1リッジ高さを有する。タービンエンジンは、ブレード先端とアブレイダブル表面とのあらゆる接触が最初はより高い第1のリッジ先端を削るように運転される。残りの削られない第1のリッジと、第2のリッジとは、ブレード先端と基板表面との間のブレード先端ガス流を阻止する。
【0021】
本発明の付加的な実施形態は、タービンハウジングと、タービンハウジングに回転可能に取り付けられたブレードを備えるロータであって、ブレードの遠位先端は、ブレード回転方向でかつタービンハウジングに関して軸方向でブレード先端周方向移動経路を形成している、ロータと、アブレイダブル構成部材とを特徴とするタービンエンジンに関する。アブレイダブル構成部材は、タービンケーシングに接続するための支持表面と、支持表面に接続されたアブレイダブル基板であって、回転タービンブレード先端の周方向移動経路の近くにおける向かい合って間隔を空けた向きのために適応された基板表面を有する、アブレイダブル基板とを特徴とする。基板表面は、基板表面の少なくとも60%にわたって延びた、基板表面から突出した、向かい合った、連続的な細長い第1および第2のリッジの交互の列を特徴とする。第1のリッジは、第2のリッジの第2リッジ高さよりも大きい第1リッジ高さを有する。
【0022】
本発明のそれぞれの目的および特徴は、当業者によって、あらゆる組合せまたは準組合せにおいて共同でまたは複数で適用されてよい。
【0023】
本発明の教示は、添付の図面に関連した以下の詳細な説明を考察することによって容易に理解することができる。
【図面の簡単な説明】
【0024】
図1】典型的な公知のガスタービンエンジンの部分的な軸方向の断面図である。
図2図1のタービンエンジンのブレード先端部とアブレイダブル構成部材との間のブレード先端間隙Gを示す、第1列タービンブレードおよびベーンの詳細な断面立面図である。
図3】全てのブレードと、エンジンアブレイダブル面に沿った全ての周方向の向きとの間の理想的な均一なブレード先端間隙Gを有する、公知のタービンエンジンの半径方向断面概略図である。
図4】12:00の最も上側の周方向位置と、6:00の最も下側の周方向位置とにおけるブレード先端部とアブレイダブル面との接触を示す、円形ではない公知のタービンエンジンの半径方向断面概略図である。
図5】元々の設計仕様ブレード先端間隙Gよりも大きな過剰ブレード先端間隙GWを有しながら作動させられた公知のタービンエンジンの半径方向断面概略図である。
図6】ブレード先端部摩耗をより生じやすい周方向ゾーンと、ブレード先端部摩耗をより生じにくいゾーンとを強調した、公知のタービンエンジンの半径方向断面概略図である。
図7】タービンエンジンアブレイダブル面のための公知のリッジおよび溝パターンの平面図である。
図8】タービンエンジンアブレイダブル面のための公知のリッジおよび溝パターンの平面図である。
図9】タービンエンジンアブレイダブル面のための公知のリッジおよび溝パターンの平面図である。
図10図7および図9のそれぞれの断面C−Cに沿って見たタービンエンジンアブレイダブル面のための公知のリッジおよび溝パターンの断面立面図である。
図11図7および図9のそれぞれの断面C−Cに沿って見たタービンエンジンアブレイダブル面のための公知のリッジおよび溝パターンの断面立面図である。
図12】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の「ホッケースティック」状のリッジおよび溝パターンの平面図である。
図13】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の「ホッケースティック」状のリッジおよび溝パターンの平面図である。
図14】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の「ホッケースティック」状のリッジおよび溝パターンの平面図である。
図15】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の「ホッケースティック」状のリッジおよび溝パターンの平面図である。
図16】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の「ホッケースティック」状のリッジおよび溝パターンの平面図である。
図17】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の「ホッケースティック」状のリッジおよび溝パターンの平面図である。
図18】本発明の別の典型的な実施形態による、タービンブレード回転方向と一致した鉛直方向に向けられたリッジまたはリブ配列を有する、タービンエンジンアブレイダブル面のための別の「ホッケースティック」状リッジおよび溝と、タービンブレードの概略的な重なりとの、平面図である。
図19】本発明の別の典型的な実施形態による、タービンブレード回転方向と一致した鉛直方向に向けられたリッジまたはリブ配列を有する、タービンエンジンアブレイダブル面のための別の「ホッケースティック」状リッジおよび溝と、タービンブレードの概略的な重なりとの、平面図である。
図20図12図17に示されたタイプのそれぞれの典型的な連続溝ホッケースティックアブレイダブル面輪郭と、図18および図19に示されたタイプの、中断する鉛直リッジホッケースティックアブレイダブル面輪郭を備えたスプリット溝とのための、前縁から後縁までのシミュレーションされたブレード先端漏れ質量フラックスの比較グラフである。
図21】本発明の別の典型的な実施形態による、交差するリッジおよび溝を有する、アブレイダブル面のための別の「ホッケースティック」状リッジおよび溝パターンと、タービンブレードの概略的な重なりとの平面図である。
図22】本発明の別の典型的な実施形態による、タービンエンジンの軸流方向でアブレイダブル面を横切って横方向にずらされた鉛直方向に向けられたリッジを有する、図18および図19と同様の、アブレイダブル面のための別の「ホッケースティック」状リッジおよび溝パターンの平面図である。
図23】本発明の別の典型的な実施形態による、タービンエンジンの軸流方向においてアブレイダブル面を横切って水平に向けられたリッジおよび溝配列を有する、アブレイダブル面のための「ジグザグ」状リッジおよび溝パターンの平面図である。
図24】本発明の別の典型的な実施形態による、アブレイダブル面を横切って対角に向けられたリッジおよび溝配列を有する、アブレイダブル面のための「ジグザグ」状リッジおよび溝パターンの平面図である。
図25】本発明の別の典型的な実施形態による、アブレイダブル面を横切ってV字形リッジおよび溝配列を有する、アブレイダブル面のための「ジグザグ」状リッジおよび溝パターンの平面図である。
図26】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の重ね合わされたループ状のリッジおよび溝パターンの平面図である。
図27】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の重ね合わされたループ状のリッジおよび溝パターンの平面図である。
図28】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の重ね合わされたループ状のリッジおよび溝パターンの平面図である。
図29】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の重ね合わされたループ状のリッジおよび溝パターンの平面図である。
図30】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の迷路または螺旋状のリッジおよび溝パターンの平面図である。
図31】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の迷路または螺旋状のリッジおよび溝パターンの平面図である。
図32】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の迷路または螺旋状のリッジおよび溝パターンの平面図である。
図33】タービンブレードの概略的な重なりと共に示す、本発明の典型的な実施形態による、タービンエンジンアブレイダブル面の迷路または螺旋状のリッジおよび溝パターンの平面図である。
図34】本発明の別の典型的な実施形態による、タービンエンジンアブレイダブル面のための湾曲したリブ移行セクション構成リッジおよび溝パターンを備える合成角と、タービンブレードの概略的な重なりとの平面図である。
図35】本発明の別の典型的な実施形態による、タービンエンジンアブレイダブル面のための湾曲したリブ移行セクション構成リッジおよび溝パターンを備える合成角と、タービンブレードの概略的な重なりとの平面図である。
図36】本発明の図34および図35のタイプの湾曲リブ移行セクション構成リッジおよび溝パターンアブレイダブル面を備えるそれぞれの典型的な合成角、図7に示されたタイプの典型的な公知の対角リッジおよび溝パターン、および公知の軸方向に整列してリッジおよび溝パターンアブレイダブル面アブレイダブル面輪郭のための前縁から後縁までのシミュレーションされたブレード先端漏れ質量フラックスの比較グラフである。
図37】本発明の典型的な実施形態による、標準または「急速始動」エンジンモードにおいて使用するのに適した、アブレイダブル面のための複数高さリッジ輪郭構成および対応する溝パターンの平面図である。
図38図37のC−Cに沿って見た図37のアブレイダブル面の実施形態の断面図である。
図39】本発明の実施形態によるブレード先端漏れLとブレード先端境界層流れとを示す、図37および図38の移動するブレード先端部およびアブレイダブル面実施形態の概略的な立面断面図である。
図40】本発明の実施形態によるブレード先端間隙G、溝およびリッジの複数高さ寸法を示す、図39と同様の概略的な立面断面図である。
図41】本発明の実施形態によるブレード先端間隙G、溝およびリッジの複数高さ寸法を示す、図39と同様の概略的な立面断面図である。
図42図11と同様の公知のアブレイダブル面のリッジおよび溝輪郭の立面断面図である。
図43】本発明の実施形態による、アブレイダブル面のための複数高さ段状輪郭リッジ構成および対応する溝パターンの立面断面図である。
図44】アブレイダブル面のための複数高さ段状輪郭リッジ構成および対応する溝パターンの別の実施形態の立面断面図である。
図45】本発明の実施形態による、アブレイダブル面のための複数深さ溝輪郭構成および対応するリッジパターンの立面断面図である。
図46】本発明の実施形態による、アブレイダブル面のための非対称輪郭リッジ構成および対応する溝パターンの立面断面図である。
図47】本発明の実施形態による、アブレイダブル面のための非対称輪郭リッジ構成および複数深さ平行溝輪郭パターンの透視図である。
図48】本発明の実施形態による、アブレイダブル面のための非対称輪郭リッジ構成および複数深さ交差溝輪郭パターンの透視図であり、上側の溝はリッジ先端部に対して長手方向に先端づけされている。
図49】アブレイダブル面のための非対称輪郭リッジ構成および複数深さ交差溝輪郭パターンの、本発明の別の実施形態の透視図であり、上側の溝はリッジ先端部に対して垂直でありかつ長手方向に傾斜させられている。
図50】本発明の別の実施形態による、アブレイダブル面のための対称輪郭リッジにおける複数深さ平行溝輪郭構成の断面の立面断面図である。
図51】本発明の1つの実施形態による、アブレイダブル面のための対称輪郭リッジにおける複数深さ平行溝輪郭構成のそれぞれの立面断面図であり、上側の溝はリッジ先端部に対して横方向に傾斜させられている。
図52】本発明の1つの実施形態による、アブレイダブル面のための対称輪郭リッジにおける複数深さ平行溝輪郭構成のそれぞれの立面断面図であり、上側の溝はリッジ先端部に対して横方向に傾斜させられている。
図53】非対称で非平行の壁リッジおよび複数深さ溝を有する、本発明の実施形態によるアブレイダブル面の透視図である。
図54】本発明の代替的な実施形態による、アブレイダブル面のための台形輪郭リッジにおける複数深さ平行溝輪郭構成のそれぞれの立面断面図であり、上側の溝はリッジ先端部に対して垂直であるまたは横方向に傾斜させられている。
図55】本発明の代替的な実施形態による、アブレイダブル面のための台形輪郭リッジにおける複数深さ平行溝輪郭構成のそれぞれの立面断面図であり、上側の溝はリッジ先端部に対して垂直であるまたは横方向に傾斜させられている。
図56】本発明の代替的な実施形態による、アブレイダブル面のための台形輪郭リッジにおける複数深さ平行溝輪郭構成のそれぞれの立面断面図であり、上側の溝はリッジ先端部に対して垂直であるまたは横方向に傾斜させられている。
図57】本発明の実施形態による、アブレイダブル面のためのマルチレベル交差溝パターンの平面図である。
図58】本発明の1つの実施形態による、段状輪郭アブレイダブル面リッジの透視図であり、上側レベルリッジは、下側リッジ平坦部から突出したピクセル状に起立した尖端を有する。
図59図58のC−Cに沿って見た、下側リッジ平坦部から突出したピクセル状の起立した尖端の列の立面図である。
図60】本発明の1つの実施形態による、図59の起立した尖端の代替的な実施形態であり、尖端先端部の近位の尖端部分は、層の下方の材料とは異なる物理的特性を有する材料の層から構成されている。
図61図58のピクセル状上側尖端実施形態の概略的な平面図であり、タービンブレード先端部はブレード回転中に先端をたわませる。
図62図58のピクセル状の上側尖端実施形態の概略的な立面図であり、タービンブレード先端部はブレード回転中に、起立した尖端の全部または一部をせん断し、下側リッジおよびその平坦部をそのままに残し、ブレード先端間隙によってブレード先端から半径方向に間隔を置かれている。
図63図58のピクセル状上側尖端実施形態の概略的な立面図であり、タービンブレード先端は、ブレード回転中に、起立する尖端の全部をせん断し、下側リッジ部分の平坦部面を摩耗させている。
【0025】
理解を容易にするために、複数の図面に共通の同じ要素を示すために、可能である場合には、同じ参照符号が使用されている。図面は実寸ではない。寸法、断面、流体流れ、タービンブレード回転、軸方向または半径方向の向きおよび流体圧力のための以下の共通の符号は、本明細書に記載された様々な本発明の実施形態を通じて利用されている。
A アブレイダブル面の前方または上流ゾーン
B アブレイダブル面の後方または下流ゾーン
C−C アブレイダブル横断面
G アブレイダブル溝深さ
F タービンエンジンを通る流れ方向
G タービンブレード先端からアブレイダブル面までの間隙
W 摩耗したタービンブレード先端からアブレイダブル面までの間隙
R アブレイダブルリッジ高さ
L タービンブレード先端漏れ
P アブレイダブル面の平面図または平面図形
P タービンブレードのより高圧の側
S タービンブレードのより低圧の側または吸込側
R タービンブレード回転方向
1 タービンエンジンのタービンセクションの第1列
2 タービンエンジンのタービンセクションの第2列
R アブレイダブルリッジ中心線の間隔
G アブレイダブル溝の幅
R アブレイダブルリッジの幅
α タービンエンジンの軸方向寸法に対するアブレイダブル溝平面図形角度
β 鉛直または垂直のアブレイダブル面に対するアブレイダブルリッジ側壁の角度
γ アブレイダブルリッジ高さに対するアブレイダブル溝の前後の傾斜角
Δ アブレイダブルリッジの長手方向軸線に対するアブレイダブル溝のスキュー角
ε アブレイダブル面および/またはリッジ表面に対するアブレイダブル上側溝の傾斜角
Φ アブレイダブル溝円弧角
【0026】
詳細な説明
本明細書に記載された本発明の実施形態は、ガスタービンエンジンを含むタービンエンジン用のアブレイダブル構成部材において容易に利用することができる。様々な実施形態において、タービンケーシングのアブレイダブル構成部材は、ブレード先端空気流漏れを、タービンブレード翼の高圧側から低圧側へではなく、下流に溝内へ低減、方向転換および/または遮断するために、明確な前方上流および後方下流の複合的な複数の向きの溝と、鉛直方向に突出したリッジとの平面図形パターンを有する。平面図形パターン実施形態は、明確な前方上流(ゾーンA)および後方下流パターン(ゾーンB)を有する複合的な複数溝/リッジパターンである。これらの組み合わされたゾーンAおよびゾーンBのリッジ/溝配列平面図形は、局所的なブレード漏れ方向Lでのタービン翼圧力側から翼の吸込側へ向かうガス流漏れを直接に妨害するために、溝内に捕捉されたガス流を下流燃焼流Fの方向へ方向付ける。前方ゾーンは、概して、前縁と、タービン軸線に対して平行な線が、翼の圧力側表面に対してほぼ接線方向であるカットオフポイントにおけるブレード翼の弦中間との間に規定されており、ほぼ翼の軸方向全長の3分の1〜2分の1である。配列パターンの残りは、後方ゾーンBを含む。後方下流ゾーンBの溝およびリッジは、ブレードの回転方向Rとは反対方向に角度を成して向けられている。角度の範囲は、関連するタービンブレード92の反り線または後縁角度の約30%〜120%である。
【0027】
本発明の様々な実施形態では、アブレイダブル構成部材の溶射されたセラミック/金属のアブレイダブル層が、第1の下側摩耗ゾーンと第2の上側摩耗ゾーンとを有する鉛直方向に突出したリッジまたはリブを備えて構成されている。溶射されたアブレイダブル面の近くのリッジの第1の下側ゾーンは、リッジの間の溝内へのブレード先端空気流漏れを低減、方向転換および/または遮断するように調節された平面図形配列および突出部によって、エンジン空気流特性を最適化するように構成されている。幾つかの実施形態では、溶射されたアブレイダブル層の上側摩耗ゾーンは、下側摩耗ゾーンの高さまたはリッジ全高の約3分の1〜3分の2である。リッジおよび溝は、ブレード先端漏れ流を方向転換するためにおよび/または製造を容易にするために、可変の対称的および非対称の断面輪郭および平面図形配列を備えて、溶射されたアブレイダブル層に構成されている。幾つかの実施形態では、溝幅は、リッジ幅または(複数幅の積層リッジが設けられているならば)下側リッジ幅の約3分の1〜3分の2である。様々な実施形態では、リッジの下側ゾーンは、アブレイダブル構成部材および表面の機械的および熱的構造的一体性、熱的抵抗性、熱的耐腐食性および摩耗寿命を高めるように最適化されてもいる。リッジ上側ゾーンは、下側ゾーンの上方に形成されており、下側ゾーンよりも容易に削りやすくすることによって、ブレード先端間隙および摩耗を最小限にするように最適化されている。溶射されたアブレイダブル層のアブレイダブル構成部材の様々な実施形態は、下側ゾーンのリブ構造よりも小さな断面積を有する上側サブリッジまたは尖端によって、上側ゾーンのより容易な削りやすさを提供する。幾つかの実施形態では、上側サブリッジまたは尖端は、小さなブレード先端接触の際には曲がるか、さもなければたわむように、および/またはより大きなブレード先端接触の際には摩耗および/またはせん断するように形成されている。他の実施形態では、上側ゾーンのサブリッジまたは尖端は、1つまたは複数のブレード先端と局所的に接触したこれらの尖端のみが摩耗され、局所的な摩耗ゾーンの外側の他のものはそのままにとどまるように、上側摩耗ゾーンの配列にピクセル化されている。リッジの上側ゾーン部分は摩耗されるが、上側ゾーン部分は、従来公知のモノリシックリッジよりもブレード先端摩耗を生じにくい。本発明の幾つかの実施形態では、上側ゾーンリッジ部分が摩耗されたとき、残りの下側リッジ部分は、ブレード先端漏れを制御することによってエンジン効率を保持する。局所的なブレード先端間隙がさらに減じられた場合、ブレード先端は、その位置における下側リッジ部分を摩耗させる。しかしながら、その下側リッジ部分の局所的な摩耗領域の外側の比較的高いリッジは、エンジン性能効率を保持するために、より小さなブレード先端間隙を維持する。3つ以上の層から成る摩耗ゾーン(例えば、上側、中間および下側の摩耗ゾーン)を、本発明の実施形態に従って構成されたアブレイダブル構成部材において使用することができる。
【0028】
幾つかの本発明の実施形態では、溶射されたアブレイダブル層におけるリッジおよび溝の輪郭および平面図形配列は、ブレード先端漏れを低減しかつリッジ断面を変化させるように選択された、選択的な向き角度および/または断面輪郭を備えた多層の溝を形成することによって、アブレイダブル構成部材にわたって局所的にまたは全体的に調整されている。幾つかの実施形態では、アブレイダブル構成部材の表面の平面図形配列およびリッジおよび溝の輪郭は、向上したブレード先端漏れ空気流制御を提供するが、公知のアブレイダブル構成部材よりも単純な製造技術をも促進する。
【0029】
幾つかの実施形態では、アブレイダブル構成部材およびそのアブレイダブル面は、公知の組成の多層の溶射されたセラミック材料から、金属支持層における公知の層パターン/寸法で構成されている。実施形態では、リッジは、アブレイダブル面において、(マスクなしでまたはマスクを介して)溶射する公知の付加プロセス、層プリント、または(下側に位置する付加的な支持構造を用いてまたは用いずに)セラミックまたは金属/セラミック材料を金属基板に提供することによって、構成されている。溝は、隣接する付加されたリッジ構造の間の空所に形成されている。他の実施形態では、溝は、公知のプロセス(例えば機械加工、研削、水ジェットまたはレーザ切断またはこれらのいずれかの組み合わせ)を用いて、溶射された基板から材料を削るまたは除去することによって形成されており、溝の壁部は、別個のリッジを形成している。付加されたリッジおよび/または除去された材料溝の組み合わせは、本明細書に記載された実施形態において使用されてもよい。アブレイダブル構成部材は、タービンエンジンケーシングに結合するように適応された公知の支持構造と、ボンドコーティングベース、サーマルコーティング、および耐熱性トップコーティングの1つまたは複数の層などの公知のアブレイダブル表面材料組成とを備えて構成されている。例えば、上側摩耗ゾーンは、この上側摩耗ゾーンのすぐ下側における別の溶射された層またはその他のシーケンシャル層とは異なる組成および物理的特性を有する溶射されたアブレイダブル材料から構成することができる。
【0030】
様々な溶射された、金属支持層アブレイダブル構成部材のリッジおよび溝の輪郭および本明細書に記載された溝およびリッジの配列は、本発明の実施形態および特徴の全ての可能な組み合わせが本明細書に詳細に明確に説明されていないとしても、種々のタービン用途の性能要求を満足させるように組み合わせることができる。
【0031】
アブレイダブル面の平面図形
典型的な本発明の実施形態のアブレイダブル面のリッジおよび溝の平面図形パターンが、図12図37および図57に示されている。アブレイダブル面全体を横切って均一な公知のアブレイダブル平面図形パターンとは異なり、本発明の平面図形パターン実施形態の多くは、明確な前方上流(ゾーンA)および後方下流パターン(ゾーンB)を有する複合的な複数溝/リッジパターンである。これらの組み合わされたゾーンAおよびゾーンBリッジ/溝配列の平面図形は、局所的なブレード漏れ方向Lでのタービン翼圧力側から翼の吸込側へ向かってガス流漏れを直接に妨害するために、溝内に捕捉されたガス流を下流燃焼流F方向へ方向付ける。前方ゾーンは、概して、前縁と、タービン80の軸線に対して平行な線が、翼の圧力側表面に対してほぼ接線方向であるカットオフポイントにおけるブレード92の翼の弦中間との間に規定されている。より全体的な概要透視図から、前方ゾーンAの軸方向長さは、概して、翼の軸方向全長の約3分の1〜2分の1として規定されている。配列パターンの残りは、後方ゾーンBを含む。本発明の実施形態に従って、3つ以上の軸方向に向けられた平面図形配列を構成することができる。例えば、アブレイダブル構成部材表面に、前方、中間および後方のリッジ/溝配列平面図形を構成することができる。
【0032】
図12〜19、21、22、34、35、37および57に示された実施形態は、ホッケースティック状平面図形パターンを有する。前方上流ゾーンAの溝およびリッジは、タービン80内の燃焼ガス軸流方向Fに対してほぼ平行(±10%)に整列させられている(図1参照)。後方下流ゾーンBの溝およびリッジは、ブレード回転方向Rとは反対方向に角度を成して向けられている。角度の範囲は、関連するタービンブレード92の反り線または後縁角度の約30%〜120%である。設計上の都合のために、下流角度選択は、タービンブレード高圧または低圧平均(線形平均線)側壁表面または反り角度(例えば、ゾーンBにおいて始まり、ブレード後縁において終わる、高圧側における図14の角度αB2を参照)、後縁角度(例えば、図15の角度αB1を参照);前縁と後縁との間の角度一致接続(例えば、図14の角度αB1を参照);またはαB3などのこのようなブレードジオメトリ確立角度の間のいずれかの角度、のいずれかに一致するように選択することができる。ホッケースティック状リッジおよび溝配列平面図形パターンは、完全に水平または対角の公知の平面図形配列パターンのように比較的容易にアブレイダブル面に形成されるが、流体流れシミュレーションにおいて、ホッケースティック状パターンは、これらの公知の一方向平面図形パターンのいずれよりも少ないブレード先端漏れを生じる。ホッケースティック状パターンは、公知のアブレイダブル構成部材リッジおよび溝パターンを形成するために従来使用されてきた公知の切断/切削または付加式層構成方法によって形成される。
【0033】
図12では、アブレイダブル構成部材160は、軸流タービン軸流方向Fに対して±10度以内の角度αAに向けられた前方リッジ/リッジ先端162/164Aおよび溝168Aを有する。後方リッジ/リッジ先端162B/164Bおよび溝168Bは、ほぼタービンブレード92の後縁角度である角度αBで向けられている。図12に概略的に示したように、前方リッジ162Aは前方ゾーンAブレード漏れ方向を遮断し、後方リッジ162Bは後方ゾーンBブレード漏れLを遮断する。ブレード先端漏れLを遮断および妨害するために、水平のスペーサリッジ169が、ブレード92の設置面積全体にわたって、アブレイダブル構成部材表面167の周囲に沿って、軸方向に周期的に向けられているが、公知の設計の平坦な連続的な表面とは異なり、アブレイダブル面は、ブレード先端接触および摩耗を生じ得る潜在的な表面積を減じる。
【0034】
図13のアブレイダブル構成部材170の実施形態は、図12の実施形態と同様であり、タービン燃焼ガス流方向Fに対してほぼ平行に向けられた前方部分リッジ172A/174Aおよび溝178Aを備える一方で、後方リッジ172B/174Bおよび溝178Bは、ゾーンBにおいて始まるタービンブレード92の圧力側とブレード後縁との間に形成された角度とほぼ等しい角度αBで向けられている。図12の実施形態と同様に、ブレード先端漏れLを遮断および妨害するために、水平スペーサリッジ179は、ブレード92の設置面積全体にわたって、アブレイダブル構成部材表面167の周囲に沿って軸方向に周期的に向けられている。
【0035】
図14のアブレイダブル構成部材180の実施形態は、図12および図13のものと同様であり、タービン燃焼ガス流方向Fに対してほぼ平行に向けられた前方部分リッジ182A/184Aおよび溝188Aを備える一方、後方リッジ182B/184Bおよび溝188Bは選択的に角度αB1からαB3までのいずれかで向けられている。角度αB1は、ブレード92の前縁と後縁との間に形成された角度である。図13に示したように、角度αB2は、後方ゾーンBと向かい合った関係にあるタービンブレード92の高圧側の部分に対してほぼ平行である。図14に示したように、後方リッジ182B/184Bおよび溝188Bは、実際には、角度αB2の約50%の角度αB3で向けられている。図12の実施形態と同様に、ブレード先端漏れLを遮断および妨害するために、水平スペーサリッジ189は、ブレード92の設置面積全体にわたって、アブレイダブル構成部材表面187の周囲に沿って軸方向に周期的に向けられている。
【0036】
図15のアブレイダブル構成部材190の実施形態では、前方リッジ192A/194Aおよび溝198Aおよび角度αAは、図14のものと同様であるが、後方リッジ192B/194Bおよび溝198Bは、図14よりも狭い間隔および幅を有する。図15に示された後方リッジ192B/194Bおよび溝198Bの代替的な角度αB1は、図12における角度αBのように、タービンブレード92の後縁角度と一致している。図13に示したように、実際の角度αB2は、後方ゾーンBと向かい合った関係にあるタービンブレード92の高圧側の部分に対してほぼ平行である。代替的な角度αB3および水平スペーサリッジ199は、図14のものと一致するが、角度またはスペーサリッジの他の配列を利用することができる。
【0037】
代替的なスペーサリッジパターンが、図16および図17に示されている。図16の実施形態では、アブレイダブル構成部材200は、タービンブレード92の軸方向設置面積全体にわたって延びた全長スペーサリッジ209と、全長リッジの間に挿入された付加的な前方スペーサリッジ209Aとの配列を有する。付加的な前方スペーサリッジ209Aは、前縁の近くのブレード92の部分におけるブレード先端漏れの付加的な遮断を提供する。図17の実施形態では、アブレイダブル構成部材210は、全長スペーサリッジ219のパターンと、前方スペーサリッジ219Aおよび後方スペーサリッジ219Bの周方向にずらされた配列とを有する。周方向にずらされたリッジ219A/219Bは、ブレード92がアブレイダブル構成部材210の表面を摺動するときに、早すぎるブレード先端摩耗を生じるおそれがある摺動中の連続的な接触の可能性なしにブレード先端漏れの周期的な遮断または妨害を提供する。
【0038】
水平スペーサリッジの配列がこれまで説明されているが、本発明のその他の実施形態は、鉛直スペーサリッジを含む。特に、図18および図19のアブレイダブル構成部材220の実施形態は、前方リッジ222Aを有し、前方リッジ222Aの間には溝228Aが設けられている。これらの溝は、前方リッジ222Aを互いに接続する、ずらされた前方鉛直リッジ223Aによって中断されている。鉛直では、図18に示したように、ずらされた前方鉛直リッジ223Aは、左から右へ下方に傾斜した一連の対角配列を形成している。全長鉛直スペーサリッジ229は、前方ゾーンAと後方ゾーンBとの間の移行ゾーンTにおいて向けられている。後方リッジ222Bおよび溝228Bは、角度を成して向けられており、前方リッジ222Aおよび溝228Aを備えるホッケースティック状平面図形配列を完成させている。ずらされた後方鉛直リッジ223Bは、前方鉛直リッジ223Aと同様に配列されている。鉛直方向リッジ223A/Bおよび229は、図12図17の中断されていない全長溝実施形態の場合にさもなければ生じる、前方部分から後方部分へのアブレイダブル構成部材220の溝を横切る概して軸方向の空気流漏れを妨害するが、それは、鉛直方向リッジのうちの1つとのそれぞれの潜在的なこすり接触箇所における増大したブレード先端摩耗の潜在的な欠点を伴う。ずらされた鉛直リッジ223A/Bは、妥協として、タービンブレード先端のための潜在的な360度摺動面を導入することなしに、溝228A/Bを通る軸方向空気流を周期的に妨害する。連続的な鉛直リッジ229のための潜在的な360度こすり面接触は、リッジ222A/Bまたは223A/Bに対するリッジ鉛直高さを短くすることによって減じることができるが、前方溝228Aと後方溝228Bとの間の移行ゾーンTにおけるある程度の軸流妨害能力を依然として提供する。
【0039】
図20は、連続的な溝を備えるホッケースティック状リッジ/溝パターン配列平面図形(実線)と、ずらされた鉛直リッジによって中断された分割溝(点線)との、シミュレーションされた流体流比較を示している。合計ブレード先端漏れ質量フラックス(それぞれの線の下側の領域)は、連続溝配列パターンの場合よりも、分割溝配列パターンの場合に小さい。
【0040】
溝における空気流を妨害するずらされたリッジは、ブレード回転方向Rで鉛直に整列させられなくてもよい。図21に示したように、アブレイダブル構成部材230は、前方リッジおよび後方リッジの連続的な列の間を接続しかつ溝238A/B内の下流への流れを周期的に遮断するリッジ233A/Bの角度づけられたパターン(αA,αB)によって中断された、それぞれの前方および後方のリッジ232A/Bおよび溝238A/Bのパターンを有する。図18の実施形態のように、アブレイダブル構成部材230は、前方ゾーンAと後方ゾーンBとの間の移行部に配置された、連続的な鉛直に整列させられたリッジ239を有する。リッジ232Aおよび233A/Bの交差する角度づけられた配列は、前縁から後縁までのタービンブレード軸方向長さに沿った高圧側96から低圧側98への局所的なブレード先端漏れLを有効に遮断する。
【0041】
図12図19および図21に示されたスペーサリッジ169,179,189,199,209,219,229,239等の実施形態は、同じアブレイダブル構成部材配列において異なる相対高さを有してもよく、構成部材内の他のリッジ配列のうちの1つまたは複数とは異なる高さを有してもよい。例えば、スペーサリッジ高さが、アブレイダブル面における他のリッジの高さよりも小さいとするならば、スペーサリッジはブレード先端には接触しないが、依然として、隣接する中断された溝に沿って空気流を妨害するように機能することができる。
【0042】
図22は、ホッケースティック状平面図形パターンのアブレイダブル構成部材240の代替的な実施形態であり、別個の前方ゾーンAおよび後方ゾーンB、もしくはゾーンを互いに分割するためにいかなる鉛直リッジも有することなく移行部Tにおいて交差するリッジ242A/Bおよび溝248A/Bパターンの実施形態概念を組み合わせている。すなわち、溝248A/Bは、アブレイダブル構成部材240の前縁または後縁から、対応するタービンブレードの軸方向スイープによってカバーされる後方の最も下流のエッジ(流れ方向Fの矢印を参照)までの連続的な複合的な溝を形成している。ずらされた鉛直リッジ243A/Bは、1つの軸方向位置において(回転矢印Rの方向で)アブレイダブル面と対応する回転ブレードとの潜在的な連続的な削り接触なしに、各溝を通る軸方向流れを中断する。しかしながら、小さな鉛直リッジ243A/Bによって周期的にのみ中断されている、連続的な直線的な溝248A/Bの比較的長い延びは、ウォータージェット浸食またはその他の公知の製造技術による容易な製造を提供する。アブレイダブル構成部材240の実施形態は、空気流性能、ブレード先端摩耗および製造容易性/コストの間の良好な主観的設計妥協を提供する。
【0043】
図23図25は、ジグザグパターンを有するアブレイダブル構成部材リッジおよび溝平面図形配列の実施形態を示している。ジグザグパターンは、リッジを形成するためにアブレイダブル面基板に材料の1つまたは複数の層を付加することによって、または公知のレーザまたはウォータージェット切断法などによって基板に溝を形成することによって形成される。図23において、アブレイダブル構成部材250の基板表面257は、258’において始まり、258’’において終わった、基板表面257に形成された連続的な溝258を有しており、交互のフィンガ状の互いの間に位置するリッジ252のパターンを形成している。その他の溝およびリッジのジグザグパターンがアブレイダブル構成部材に形成されてもよい。図24の実施形態に示したように、アブレイダブル構成部材260は、基板表面267に形成された、268’において始まり、268’’において終わった、連続的なパターンの対角に向けられた溝268を有しており、角度方向に向けられたリッジ262を残している。図25において、アブレイダブル構成部材実施形態270は、基板表面277に一対の溝278Aおよび278Bによって形成されたV字形またはホッケースティック状の二重ゾーン複数溝パターンを有する。溝278は、278’において始まり、278’’において終わる。基板表面全体277にV字形またはホッケースティック状パターンを完成させるために、278A’において始まり、278A’’において終わった第2の溝278Aが、アブレイダブル構成部材270の下側の左側部分に形成されている。図12〜19、21および22のアブレイダブル実施形態においてなされたように、それぞれのブレード先端漏れLの流れ方向付け前方および後方リッジ272Aおよび272Bが、アブレイダブル面277のそれぞれの前方および後方ゾーンに形成されている。溝258,268,278または278Aは、連続的に形成されていなくてもよく、溝の軸方向全長を通るガス流を阻止するために、図18および図19の実施形態のリッジ223A/Bのような遮断リッジを有してもよい。
【0044】
図26図29は、重ねられたループパターンを有するアブレイダブル構成部材リッジおよび溝平面図形配列の実施形態を示している。重ねられたループパターンは、リッジを形成するためにアブレイダブル面基板に材料の1つまたは複数の層を付加することによって、または公知のレーザまたはウォータージェット切断法などによって基板に溝を形成することによって形成される。図26のアブレイダブル構成部材280の実施形態は、水平に向けられたスペーサリッジ289によって分離された、鉛直に向けられた重ねられたループパターン281の配列を有する。各ループパターン281は、重ねられた溝288A〜288Eと、中央リッジ282Aおよびループリッジ282B〜282Eを含む対応する相補的なリッジとを有する。図27において、アブレイダブル構成部材280’は、前方ゾーンAにおける重ねられたループ281Aと、後方ゾーンBにおける重ねられたループ281Bとのパターンを有する。重ねられたループ281Aおよび281Bは、水平方向289および鉛直方向289Aの両方でスペーサリッジによって分離されている。図28のアブレイダブル実施形態280’’において、重ねられたループ281’’の水平部分は、角度αで向けられている。図29のアブレイダブル実施形態280’’’において、重ねられた、概して水平方向または軸方向のループ281A’’’および281B’’’は、別々の前方ゾーンAおよび後方ゾーンB配列においてそれぞれの角度αAおよびαBで配列されている。前方および後方の角度、ならびにループ寸法は、各ゾーンにおけるブレード先端漏れを最小限に減じるために変更されてもよい。
【0045】
図30図33は、重ねられたループパターンと同様の螺旋状迷路パターンを有するアブレイダブル構成部材リッジおよび溝平面図形配列の実施形態を示している。迷路パターンは、リッジを形成するためにアブレイダブル面基板に材料の1つまたは複数の層を付加することによって形成される。代替的に、これらの関連する図面に示されているように、迷路パターンは、公知のレーザまたはウォータージェット切断法などによって基板に溝を形成することによって形成される。図30のアブレイダブル構成部材290の実施形態は、水平に向けられたスペーサリッジ299によって分離された、それぞれ291Aにおいて始まり、291Bにおいて終わる、鉛直に向けられた重ねられた迷路パターン291の配列を有する。図31において、アブレイダブル構成部材290’は、前方ゾーンAにおける重ねられた迷路291Aと、後方ゾーンBにおける重ねられた迷路291Bとのパターンを有する。重ねられた迷路291Aおよび291Bは、水平方向299’および鉛直方向293’の両方でスペーサリッジによって分離されている。図32のアブレイダブル実施形態290’’において、重ねられた迷路291’’の水平部分は、角度αで向けられている。図33のアブレイダブル実施形態290’’’において、迷路291A’’’および291B’’’のほぼ水平の部分は、別々の前方ゾーンAおよび後方ゾーンB配列においてそれぞれの角度αAおよびαBで配列されているのに対し、ほぼ鉛直の部分は、ブレード回転スイープと整列させられている。前方および後方の角度αAおよびαB、ならびに迷路寸法は、各ゾーンにおけるブレード先端漏れを最小限に減じるために変更されてもよい。
【0046】
図34および図35は、移行ゾーンTにおいて対応する湾曲したリッジ302Tおよび溝308Tのパターンによって接続された、それぞれの前方ゾーンAおよび後方ゾーンBにおける別個かつ明確なマルチ配列されたリッジ302A/302Bおよび溝308A/308Bパターンを備えるアブレイダブル構成部材300の実施形態に関する。この典型的な実施形態パターンでは、溝308A/B/Tは、対応するリブ302A/B/Tを包囲する、アブレイダブル構成部材300の表面内の閉ループとして形成されている。リブ間の間隔SRA,SRBおよびSRTならびに対応する溝間隔は、局所的なブレード先端漏れを最小限に減じるために、構成部材表面を横切って軸方向および鉛直方向で変化してもよい。本明細書においてさらに詳細に説明するように、リブおよび溝の断面輪郭は、非対称であってもよく、局所的なブレード先端漏れを減じるために、アブレイダブル構成部材300の表面に対して異なる角度で形成されていてもよい。図36は、アブレイダブル構成部材における比較可能な深さのリッジおよび溝輪郭の比較可能な流体ダイナミクスシミュレーションを示している。実線は、図34および図35のタイプのアブレイダブル構成部材におけるブレード先端漏れを表している。点線は、軸方向または水平方向に向けられたリブおよび溝のみを有する従来のタイプのアブレイダブル構成部材表面を表している。点線は、対応するタービンブレード92の後縁角度と整列した、対角に向けられたリブおよび溝のみを備える図7の構成部材と同様の、従来のアブレイダブル構成部材を表している。アブレイダブル構成部材300は、従来公知のタイプの一方向のアブレイダブル面リッジおよび溝パターンのそれぞれの漏れよりも少ないブレード先端漏れを生じる。
【0047】
アブレイダブル面リッジおよび溝断面輪郭
典型的な本発明の実施形態のアブレイダブル面リッジおよび溝断面輪郭が、図37,41および図43,63に示されている。アブレイダブル面全体にわたって均一な高さを有する公知のアブレイダブル断面輪郭パターンとは異なり、溶射されたアブレイダブル層に形成された本発明の断面輪郭の多くは、明確な上側摩耗ゾーン(ゾーンI)および下側摩耗ゾーン(ゾーンII)を有する複合的なマルチ高さ/深さリッジおよび溝パターンを有する。下側ゾーンIIは、エンジン空気流および構造的特性を最適化するのに対し、上側ゾーンIは、下側ゾーンよりも容易に削りやすいことによってブレード先端間隙および摩耗を最小限に減じる。アブレイダブル構成部材の様々な実施形態は、下側ゾーンリブ構造よりも小さな断面積を有する上側サブリッジまたは尖端を備える上側ゾーンのより容易な削れやすさを提供する。幾つかの実施形態では、上側サブリッジまたは尖端は、小さなブレード先端接触の際に曲がるか、さもなければたわむように、かつ、より大きなブレード先端接触の際には摩耗および/またはせん断するように形成されている。他の実施形態では、上側ゾーンサブリッジまたは尖端は、1つまたは複数のブレード先端と局所的に接触したこれらの尖端のみが摩耗され、局所的な摩耗ゾーンの外側の他のものはそのままにとどまるように、上側摩耗ゾーンの配列にピクセル化されている。リッジの上側ゾーン部分は摩耗されるのに対し、従来公知のモノリシックリッジよりもブレード先端摩耗を生じにくく、複合中空セラミック球体マトリックス向きおよび直径の物理的制約の周囲に輪格付けを要求するCMC/FGIアブレイダブル構成部材構成の柔軟性を形成するより大きな輪郭を提供する。本発明の幾つかの実施形態では、上側ゾーンリッジ部分が摩耗されたとき、残りの下側リッジ部分は、ブレード先端漏れを制御することによってエンジン効率を保持する。局所的なブレード先端間隙がさらに減じられた際、ブレード先端は、その位置における下側リッジ部分を摩耗させる。しかしながら、その下側リッジ部分の局所的な摩耗領域の外側の比較的高いリッジは、エンジン性能効率を保持するために、より小さなブレード先端間隙を維持する。
【0048】
本発明の幾つかの実施形態の漸進的摩耗ゾーン構成により、ブレード先端間隙Gは、これまでの許容可能な公知の寸法よりも減じることができる。例えば、公知の許容可能なブレード間隙Gの設計仕様が1mmであるならば、摩耗ゾーンIにおけるより高いリッジの高さを増大することができ、これにより、ブレード先端間隙は0.5mmに減じられる。摩耗ゾーンIIのための境界を確立する下側リッジは、下側リッジの遠位先端部分がブレード先端から1mmだけ離間させられるような高さに設定されている。この形式では、日常的なタービン運転のために、50%だけより厳密なブレード先端間隙Gが確立され、ゾーンIにおける上側リッジとのブレード接触によって生ぜしめられるある程度の潜在的摩耗を許容する。ゾーンIIにおける継続的な局所的な漸進的なブレード摩耗は、ブレード先端が下側ゾーンに到達した時に初めて開始するが、いかなる場合にも、1mmのブレード先端間隙Gは、公知のブレード先端間隙仕様よりも悪くならない。幾つかの典型的な実施形態では、上側ゾーンIの高さは、下側ゾーンIIの高さの約3分の1〜3分の2である。
【0049】
図37図41のアブレイダブル構成部材310は、アブレイダブル面317から突出し、支持面311によって構造的に支持された交互の高さの湾曲したリッジ312Aおよび312Bを有する。溝318は、交互の高さのリッジ312A/Bを分離しており、リッジ側壁315A/Bおよび316A/Bによって規定されている。摩耗ゾーンIは、より高いリッジ312Aのそれぞれの先端314Aから、より低いリッジ312Bのそれぞれの先端314Bまで形成されている。摩耗ゾーンIIは、先端314Bから基板表面317まで形成されている。タービン運転条件(図39および図40)において、より高いリッジ先端312Aと、ブレード先端94との間にブレード間隙Gが維持される。ブレード間隙Gが維持されるが、ブレード漏れLは、ブレード92において回転方向(矢印R)へ、(圧力PPにおける)ブレード96のより高圧側から、(圧力PSにおける)ブレード98の低いまたは吸込み加圧側へ移動する。ブレード先端94の下のブレード漏れLは、より高いリッジ312Aと中間のより低いリッジ312Bとの向かい合った対の間に部分的に捕捉され、ブレード漏れにさらに抵抗する遮断旋回パターンを形成する。ブレード先端間隙Gが、タービンケーシング100の歪みによりいずれか1つまたは複数のブレードのために減じられると、ブレード先端94とアブレイダブル構成部材310との間の、迅速エンジン始動モードまたはその他の理由の初期接触が、より高いリッジ先端314Aにおいて生じる。さらにゾーンIにある間、ブレード先端94は、交互にずらされたより高いリッジ312Aのみをこする。ブレード間隙Gが次第に小さくなると、より高いリッジ312Aは、ゾーンIを通じて完全に摩耗され、ゾーンIIにおけるより低いリッジ先端314Bに接触し始めるまで削られる。ゾーンIIになると、タービンブレード先端94は、局所的な摩耗ゾーンにおいて、残りのリッジ314A/Bの全てをこするが、タービンケーシングの他の局所的な部分においては、ブレード先端間隙Gの減少は生じなくてよく、上側リッジ312Aは、完全な高さのまま変化しなくてよい。すなわち、アブレイダブル構成部材310の交互高さリブ構成は、ゾーンIおよびII内に局所的な摩耗を提供するが、これらの局所的な領域においてブレード先端間隙Gおよびブレード先端漏れLの空力的制御を保持し、ここでは、タービンケーシング100またはブレード92のゆがみが生じない。標準または急速始動または両方のエンジン運転モードが望まれる場合、より高いリッジ312Aが、クリアランスの一次的な層を形成し、最も小さなブレード先端間隙Gを備え、典型的には、より低い傾斜レートを利用するかまたはウォームスタートを行わない機械のための最善のエネルギ効率クリアランスを提供する。概して、より低いリッジ先端314Bのためのリッジ高さHRBは、より高いリッジ先端314Aの高さHRAの25%〜75%である。図41に示された実施形態において、連続するより高いリッジ312Aの間の中心線間隔SRAは、連続するより低いリッジ312Bの間の中心線間隔SRBと等しい。3つ以上のリッジ高さを有する、複数高さリッジのその他の中心線間隔およびパターンを使用することができる。
【0050】
上側および下側摩耗ゾーンを備えたリッジおよび溝輪郭の他の実施形態は、図42における従来のアブレイダブル150の公知の単一高さリッジ構造と比較して、図43および図44の段状のリッジ輪郭を有する。公知の単一高さリッジアブレイダブル150は、タービンケーシング100に結合されたベース支持部151と、基板表面157と、平坦なリッジ先端154において終わった内方へ傾斜した側壁155,156を有する対称的なリッジ152と、を有する。リッジ先端154は、共通の高さを有しており、向かい合い間隔を空けたブレード先端94とブレード先端間隙Gを形成している。リッジ152の間に溝158が形成されている。リッジ間隔SR、溝幅WG、およびリッジ幅WRは、特定の用途のために選択される。比較として、図43および図44の段状のリッジ輪郭は、リッジ構造において2つの別個の上側および下側の摩耗ゾーンを利用する。
【0051】
図43のアブレイダブル構成部材320は、支持面321と、アブレイダブル面327とを有し、アブレイダブル面327には、別個の2層のリッジ、すなわち下側リッジ322Bと上側リッジ322Aとが配置されている。下側リッジ322Bは、高さHRBの平坦部324Bにおいて終わった一対の側壁325Bおよび326Bを有する。上側リッジ322Aは、平坦部324Bに形成されており、平坦部324Bから突出しており、高さHRAおよび幅WRの遠位リッジ先端324Aにおいて終わった側壁325Aおよび326Aを有する。リッジ先端324Aは、向かい合って間隔を空けたブレード先端94とブレード先端間隙Gを形成している。摩耗ゾーンIIはアブレイダブル面327から平坦部324Bまで鉛直方向に延びており、摩耗ゾーンIは平坦部324Bからリッジ先端324Aまで鉛直方向に延びている。図43における2つの最も右側のリッジ322A/Bは、結合した共通の側壁326A/Bを備える非対称の輪郭を有するが、向かい合った側壁325Aおよび325Bは、互いに横方向にずれており、幅WPの平坦部324Bによって分離されている。溝328は、リッジ322A/Bの間に形成されている。最も左側のリッジ322A’/B’は、対称的な輪郭を有する。下側リッジ322B’は、平坦部324B’において終わった一対の収束する側壁325B’および326B’を有する。上側リッジ322A’は平坦部324B’上に中心合わせされており、上側リッジ側壁325A’および326A’に対して等しい幅のオフセットWP’を残している。上側リッジ先端324A’は、幅WR’を有する。リッジ間隔SRおよび溝幅WGは、所望のブレード先端漏れ空気流制御を提供するように選択されている。本明細書に記載されたアブレイダブル構成部材リッジおよび溝輪郭の幾つかの典型的な実施形態では、溝幅WGは、下側リッジ幅の約3分の1〜3分の2である。図43に示されたリッジおよび溝は対称的に間隔を置かれているが、段状の摩耗ゾーンIおよびIIを形成する種々のリッジ断面輪郭を含む、その他の離間輪郭が選択されてもよい。
【0052】
図44は、鉛直に向けられた平行な側壁335A/Bおよび336A/Bを有するリッジ332A/Bを備えた、別の段状の輪郭のアブレイダブル構成部材330を示している。下側リッジはリッジ平坦部334Bにおいて終わっており、このリッジ平坦部334B上に、上側リッジ332Aが向けられており、リッジ先端334Aにおいて終わっている。幾つかの用途では、ブレード先端間隙における空気流制御のために、鋭い角を有する輪郭を形成する、鉛直に向けられた側壁と平坦な先端/平坦部とを使用することが望ましいことがある。上側摩耗ゾーンIは、リッジ先端334Aとリッジ平坦部334Bとの間にあり、下側摩耗ゾーンは、平坦部とアブレイダブル面337との間にある。図43のアブレイダブル実施形態320と同様に、図44に示されたリッジおよび溝は対称的に間隔を置かれているが、段状の摩耗ゾーンIおよびIIを形成する種々のリッジ断面輪郭を含む、その他の離間輪郭が選択されてもよい。
【0053】
段状リッジ構成アブレイダブル構成部材の別の置換または種類において、別々の上側および下側摩耗ゾーンIおよびIIは、図45に示されたアブレイダブル340の輪郭において用いられるように、複数の溝深さ、溝幅およびリッジ幅を使用することによって形成されていてもよい。下側リブ342Bは、アブレイダブル面347に関連して摩耗ゾーンIIを規定するリブ平坦部344Bを有する。リブ平坦部344Bは、共通の高さのリブ先端344Aにおいて終わった、一対の向かい合った、横方向で側面を成した上側リブ342Aを支持している。摩耗ゾーンIは、リブ先端344Aと平坦部344Bとの間に規定されている。アブレイダブル構成部材340の輪郭を形成するための便利な方法は、平坦な表面のアブレイダブル基板に、それぞれの深さDGAおよびDGBに二重の深さの溝348Aおよび348Bを切削することである。リッジ間隔SR、溝幅WGA/GB、リッジ先端344Aの幅WRは、所望のブレード先端漏れ空気流制御を提供するように選択されている。図45に示されたリッジおよび溝は対称的に間隔を置かれているが、段状の摩耗ゾーンIおよびIIを形成する種々のリッジ断面輪郭を含む、その他の離間輪郭が選択されてもよい。
【0054】
図46に示したように、あるタービン用途では、鉛直に向けられた、鋭いエッジの上流側壁356と、基板表面357から延びかつリッジ先端354において終わった、傾斜した反対側の下流側壁355とを備える、非対称輪郭アブレイダブルリッジ352を有するアブレイダブル構成部材350の実施形態を採用することによってブレード先端漏れを制御することが望ましい場合がある。ブレード漏れLは、最初、鉛直の側壁356によって妨害される。しかしながら、一部の漏れ空気流Lは、ブレードの高圧ブレード側96から低圧吸込みブレード側98へ流れるときにリッジ先端354と、向かい合ったブレード先端94との間で圧縮される。この漏れ流は、下方へ傾斜したリッジ壁355をたどり、そこで、漏れ流は次の下流リッジの鉛直側壁356によってブレード回転方向Rとは反対に方向転換される。今では逆方向に流れる漏れ空気Lは、ブレード回転方向Rのさらなる到来する漏れ空気流Lに抵抗する。図46に示された寸法的基準は、前に説明した図の基準の説明と一貫している。図46のアブレイダブル構成部材実施形態350は、他の前に説明したアブレイダブル構成部材輪郭の漸進的な摩耗ゾーンIおよびIIを採用していないが、このようなゾーンは、他の以下に説明する非対称輪郭リブ実施形態に組み込まれてもよい。
【0055】
リブに溝を切削することによって、非対称のリブまたはあらゆるその他のリブ輪郭に、漸進的な摩耗ゾーンを組み込むことができ、これにより、溝切削部の側面を成す残りの直立したリブ材料は、残りの下側に位置するリブよりも、小さな水平横断面積を有する。望ましくないブレード先端漏れを減じることによってタービンエンジンの空気流特性を高めるように調整されてもよい溝の向きおよび輪郭は、本明細書において以下で説明される図47の実施形態に示されている。この形式では、溶射されたアブレイダブル構成部材表面は、高められた空気流特性および減じられた潜在的ブレード先端摩耗の両方を備えて構成されている。なぜならば、ブレード先端は、より削られやすい上側摩耗ゾーンIの幾つかの部分にのみ接触するからである。下側摩耗ゾーンIIは、溝深さよりも低い下側リブ構造に残る。ここで、漸進的摩耗ゾーンを形成するために使用される、アブレイダブル構成部材リッジおよび溝輪郭のその他の典型的な実施形態を説明する。前に説明した実施形態と共通の、これらの付加的な実施形態における構造的特徴および構成部材寸法基準は、さらなる詳細な説明なしに同じ一連の参照番号および符号で識別されている。
【0056】
図47は、図46のアブレイダブル構成部材350のリブ断面輪郭を有する、アブレイダブル構成部材360を示しているが、このアブレイダブル構成部材360は、リッジ先端364の間に形成された溝368Aおよびリッジ362の間に基板表面367まで形成された溝368Bの、二重レベル溝を含んでいる。上側の溝368Aは、摩耗ゾーンIを有する、より浅い深さDGの横方向リッジを形成しているのに対し、溝深さよりも下側のリッジ362の残りは、下側摩耗ゾーンIIを有する。このアブレイダブル構成部材実施形態360では、上側の溝368Aは、リッジ362の長手方向軸線に対して平行に向けられており、かつリッジ先端364の表面に対して垂直であるが、空気流制御を最適化するためにおよび/またはブレード先端摩耗を最小限に減じるために、その他の溝の向き、輪郭および深さが採用されてもよい。
【0057】
図48のアブレイダブル構成部材370の実施形態では、複数の上側溝378Aは、リッジ先端374に対して角度γで前後に傾斜させられており、深さDGAと、平行な溝側壁とを有する。上側摩耗ゾーンIは、溝378Aの底部とリッジ先端374との間に形成されており、下側摩耗ゾーンIIは、上側摩耗ゾーンの下側に、基板表面377まで形成されている。図49の代替的な実施形態では、アブレイダブル構成部材380は、リッジ382の長手方向軸線およびリッジの側壁385/386に対して角度Δで傾斜させられた矩形の輪郭を備える上側溝388Aを有する。図示された上側溝388Aは、リッジ先端384の表面に対して垂直でもある。上側摩耗ゾーンIは、溝深さDGAより上側にあり、摩耗ゾーンIIは、その溝深さより下側に基板表面387まで位置する。簡略にするために、構造的特徴および寸法の残りは、図48および図49において、前述のアブレイダブル面輪郭実施形態と同じ慣行でラベル付けされており、同じ前述の機能、目的および関係を有する。
【0058】
図50図52に示したように、上側の溝は、平行な側壁を有さなくてもよく、リッジ先端表面に対して異なる角度で向けられていてもよい。上側の溝は、変化した断面輪郭を有するリッジにおいて利用されてもよい。アブレイダブル構成部材実施形態390,400および410のリッジは、リッジ先端において収束する対称的な側壁を有する。二重高さ溝を有する前述の実施形態のように、それぞれの上側摩耗ゾーンIは、リッジ先端から溝深さDGの底部まで位置し、下側摩耗ゾーンIIは、溝底部から基板表面まで位置している。図50において、上側溝398Aは、基板表面に対して垂直であり(ε=90°)、溝側壁は、角度Φで拡開している。図51において、溝408Aは、基板表面に対して角度+εで傾斜させられており、図52における溝418Aは、基板表面に対して−εで傾斜させられている。両方のアブレイダブル構成部材実施形態400および410において、上側溝側壁は、角度Φで拡開している。簡略にするために、構造的特徴および寸法の残りは、図50図52において、前述のアブレイダブル面輪郭実施形態と同じ慣行でラベル付けされており、同じ前述の機能、目的および関係を有する。
【0059】
図53図56において、図示されたアブレイダブルリッジ実施形態は、選択的な上側および下側摩耗ゾーンをも有しながら、選択的な空気流制御のために、台形の断面輪郭と、様々な向きの上側溝を備えるリッジ先端とを有する。図53において、アブレイダブル構成部材430の実施形態は、下側の溝438Bによって分離された、非対称な断面輪郭を備えるリッジ432の配列を有する。各リッジ432は、角度β1で傾斜した第1の側壁435と、角度β2で傾斜した第2の側壁436とを有する。各リッジ432は、リッジ長手方向軸線に対して平行でかつリッジ先端434に対して垂直な上側溝438Aを有する。上側溝438Aの深さは、上側摩耗ゾーンIの下限を規定しており、リッジ432の残りの高さは、下側摩耗ゾーンIIを規定している。
【0060】
図54図56において、それぞれのリッジ422,442および452の断面は、角度βで向けられた平行な側壁425/445/455および426/446/456を備える台形である。右側の壁部426/446/456は、ブレード回転方向とは反対方向に傾くように向けられており、これにより、2つの隣接するリッジの間の中間下側溝428B/448B/458B内に捕捉された空気も、図46の非対称なアブレイダブル輪郭350において示しかつ説明したように、タービンブレードの上流高圧側96からタービンブレードの低圧吸込側98へのブレード先端漏れ方向に対抗して、ブレード回転方向とは反対方向に方向転換される。それぞれの上側溝428A/448A/458Aの向きおよび輪郭も、空気流漏れを方向付け、かつ上側摩耗ゾーンIを形成するように変更されている。溝輪郭は、選択的に、拡開を有さない平行な側壁から、変化する深さDGの、リッジ先端表面に対する変化する角度向きεにおける、角度Φの負または正の拡開までの範囲において、変化させられている。図54において、上側溝428Aは、リッジ先端424の表面に対して垂直に向けられている(ε=90°)。図55および図56において、それぞれの上側溝448Aおよび458Aは、その対応するリッジ先端表面に対して角度+/−εで向けられている。
【0061】
図57は、マルチレベル溝および上側/下側摩耗ゾーンを有するアブレイダブル構成部材460の平面図形を示しており、前方Aおよび後方Bのリッジ462A/462Bは、それぞれの角度αA/Bで向けられた下側溝468A/Bによって分離されている。図49の実施形態に示されたタイプの前方および後方の上側の部分深さ溝463A/Bの配列が、リッジ462A/Bのそれぞれの配列に形成されており、それぞれの角度βA/Bでリッジおよび全深さ溝468A/Bを横断するように向けられている。上側の部分深さ溝463A/Bは、アブレイダブル構成部材460の上側摩耗ゾーンIの鉛直方向境界を規定しており、これらの部分深さ上側溝より下側のリッジの残りの部分は、下側摩耗ゾーンIIの鉛直方向境界を規定している。
【0062】
溶射されたアブレイダブル構成部材の構成により、上側摩耗ゾーンIの溶射されたアブレイダブル材料の断面および高さは、図58に示したように、リッジの上部において、CMC/FGIアブレイダブル構成部材の構成における中空セラミック球体の周囲に溝を形成する前述の幾何学的制限、および金属のアブレイダブル構成部材の支持構造を使用するという設計的利点なしに、マイクロリブまたは尖端の配列を規定することによって、ブレード先端侵入の様々な程度に一致するように構成することができる。アブレイダブル構成部材470は、前述の金属支持面471を有し、下側溝およびリッジの配列は、下側摩耗ゾーンIIを形成している。特に、下側リッジ472Bは、リッジ平坦部474Bにおいて終わった側壁475Bおよび476Bを有する。下側溝478Bは、リッジ側壁475Bおよび476Bならびに基板表面477によって規定されている。マイクロリブまたは先端472Aは、公知の付加プロセスによってまたは下側リッジ472B内に交差する溝478Aおよび478Cの配列を形成することによって、さもなければCMC/FGIアブレイダブル構成部材設計に課されるあらゆる中空球体一体性保持ジオメトリ制約なしに、下側リッジ平坦部474Bに形成される。図58の実施形態では、尖端472Aは、共通の高さのリッジ先端474Aにおいて終わった直立した側壁475A,475C,476Aおよび476Cによって規定された正方形またはその他の矩形の断面を有する。例えば台形または六角形の断面を含む、その他の尖端472Aの断面平面形状を利用することができる。様々な局所的な断面および高さを含む尖端配列を利用することもできる。
【0063】
図60の代替的な実施形態では、直立したピクセル化された尖端472A’の遠位リブ先端474A’は、下側の溶射された材料482とは異なる物理的特性および/または組成を有する溶射された材料480から構成されている。例えば、上側遠位材料480は、下側材料482よりも削られやすいまたは削られにくい削り特性を備えて構成することができる(例えば、より柔軟またはより多孔質またはその両方)。この形式では、ブレード先端間隙Gは、ブレード先端漏れを減じるために従来公知のアブレイダブル構成部材において使用されるよりも小さくなるように設計することができ、これにより、材料480へのあらゆる局所的なブレード侵入は、このような接触がより起こりやすくなるとしても、ブレード先端を摩耗しにくい。この形式では、タービンエンジンは、より小さなブレード先端間隙を備えて設計することができ、これは、ブレード摩耗に大きな影響を与えることなく、タービンエンジンの作動効率、および標準モードまたは急速始動モードにおいて運転される能力を高める。
【0064】
尖端472Aおよび溝478A/Cの寸法境界は、図58および図59に識別されており、前の実施形態に記載されたものと一貫する。概して、尖端472Aの高さHRAは、ブレード尖端間隙Gの約20%〜100%、または下側リッジ472Bおよび尖端472Aの合計リッジ高さの約3分の1〜3分の2の範囲である。尖端472Aの断面は、尖端高さHRAの約20%〜50%の範囲である。尖端材料構成および表面密度(中心線間隔SRA/RBおよび溝幅WGAによって定量化される)は、アブレイダブル構成部材470の耐摩耗性、耐熱性、構造的安定性および空気流特性を平衡させるように選択される。例えば、制御された密度の溶射されたセラミックのアブレイダブルにおいて製造された複数の小さな幅の尖端472Aは、高温ガスに対する高い漏れ保護を提供する。これは、高侵入傾向領域においてのみ、または完全エンジンセットであることができる。付加的なシールが必要とされ、これは、リッジの幅を増大させることによってではなく、リッジの低い強度を維持する複数のリッジの増大を介して行われることが提案されている。典型的な尖端中央線間隔SRA/RBまたは尖端472Aの構造および配列パターン密度選択は、ピクセル化された尖端が、様々なモードにおいて、図61および図63に示されているようなブレード先端94の侵入の変化する深さに応答することを可能にする。
【0065】
図61において、ゼロまたは実際には負のブレード先端間隙Gが存在する。なぜならば、タービンブレード先端94は、ピクセル化された尖端472Aのリッジ先端474Aに接触しているからである。ブレード先端94の接触侵入は、ピクセル化された尖端472Aをたわませる。図62において、アブレイダブル構成部材470内へのより深いブレード先端侵入が存在し、尖端472Aが下側リブ平坦部474Bを摩耗、破損またはせん断し、それらの間に残りのブレード先端間隙を残す。この形式では、残留破損尖端スタブ472Aとの最小限のブレード先端接触が(あるとすれば)存在するが、摩耗ゾーンIIにおける下側リッジ472Bは、ブレード先端漏れの空気流制御を維持する。図63では、ブレード先端94は、摩耗ゾーンIIにおける下側リブ472Bの下側リッジ平坦部474B内へ突入している。標準モードまたは急速始動モードでの始動が可能なエンジンの例に戻ると、代替的な実施形態では、尖端472Aは、交互の高さHRAのパターンで配列することができる。すなわち、より高い尖端は標準始動のために最適化されており、より低い尖端は急速始動のために最適化されている。急速始動モードでは、交互の尖端472Aのうちの高い方は破損し、ブレード先端間隙Gの維持のために、交互の尖端のうちの低い方を残す。壊れやすいリブまたは尖端を有する典型的な溶射されたアブレイダブル構成部材は、1よりも大きい、高さHRA対幅WRAの比を有する。通常、リッジまたは尖端の最高点において測定した幅WRAは、0.5〜2mmであり、その高さHRAは、エンジン侵入ニーズによって決定され、1よりも大きい、高さ対幅の比(HRA/WRA)を維持する。付加的なシールが必要とされ、これは、リッジの幅WRAを増大させることによってではなく、複数のリッジまたは尖端の増大を介して(すなわち、リッジの低い強度を維持する、狭い幅の尖端またはリッジのより大きな分布密度)を介して行われることが提案される。低速アブレイダブルシステムを必要とするエンジンにおけるゾーンのために、リッジまたは尖端の幅と溝の幅との比(WRA/WGA)は、好適には1未満である。通常は容易なブレード先端切削性を必要としないエンジンアブレイダブル構成部材表面ゾーンまたは領域のために、アブレイダブル面断面輪郭は、好適には、空力的封止能力のために最大化されている(例えば、1よりも大きなリッジ/尖端と溝幅との比を有する、本発明の表面平面図形および断面輪郭の実施形態を適用することによる、小さなブレード先端間隙Gおよび最小化されたブレード先端漏れ)。
【0066】
周方向アブレイダブル面内へのブレード深さ侵入の複数のモードは、様々な位置においてあらゆるタービンエンジンにおいて生じ得る。したがって、あらゆる局所的な周方向位置におけるアブレイダブル面構成は、ブレード侵入の起こりやすい程度を補償するように選択的に変化させられてよい。例えば、図3図6におけるガスタービンエンジン80の典型的な公知の周方向摩耗ゾーンパターンを再び参照すると、3:00および6:00位置におけるブレード先端間隙Gは、12:00および9:00周方向位置のこれらの摩耗パターンよりも小さくてよい。12:00および6:00位置におけるより大きな摩耗を予想すると、下側リッジ高さHRBは、最悪の場合の最小ブレード先端間隙Gと、ピクセル化されたまたはその他の上側摩耗ゾーンIリッジ構造高さHRAと、断面深さとを確立するように選択することができ、尖端間隔密度は、ブレード先端94をアブレイダブル表面層内へ侵入させることがある、より小さいまたは最小限の起こりやすいアブレイダブル構成部材およびケースのゆがみが存在するタービンケーシングの周囲のその他の周方向位置における小さな「最善の場合の」ブレード先端間隙Gを確立するように選択することができる。一例として図62の脆いリッジ472Aを使用すると、苛酷なエンジン運転条件の間(例えば、エンジンが急速始動モードにあるとき)、ブレード94は、脆いリッジ472Aまたは472A’に衝突し、高負荷下でのリッジ破損は、衝突ゾーンのみにおいて間隙を増大させ、最適でないアブレイダブル条件におけるブレード先端摩耗を制限する。概して、アブレイダブル構成部材における上側摩耗ゾーンIのリッジ高さは、理想的なブレード先端間隙が0.25mmであるように選択することができる。3:00および9:00のタービンケーシング周方向摩耗ゾーン(例えば、図6の124および128)は、エンジン運転サイクルを通じて所望の0.25mmブレード先端間隙を維持しやすいが、他の周方向位置において、タービンケーシング/アブレイダブル構成部材のゆがみのより高い可能性が存在する。下側リッジ高さは、そのリッジ先端を、1.0mmの理想的なブレード先端間隙に設定するように選択されてもよく、これにより、より高い摩耗ゾーンにおいて、ブレード先端は、摩耗ゾーンI内へのみより深く摩耗し、下側摩耗ゾーンIIのための境界を設定する下側リッジ先端には接触しない。最善の計算にもかかわらず、ブレード先端が摩耗ゾーンII内へ摩耗し続けたとしても、結果的なブレード先端摩耗運転条件は、従来公知のアブレイダブル層構成よりも悪くない。しかしながら、アブレイダブル層の周囲の局所的な周方向位置の残りにおいて、タービンは、より小さいブレード先端間隙Gとともに、ひいてはより高い運転効率でうまく運転しており、ブレード先端における不都合な増大した摩耗はほとんどまたは全く生じない。
【0067】
様々な実施形態の利点
タービンアブレイダブル構成部材の様々な実施形態が本明細書において説明されている。多くの実施形態は、回転するタービンブレードの軸方向スパンを横切って、局所的なブレード先端漏れおよびその他の空気流制御のための別個の前方および後方の平面図形リッジおよび溝配列を有する。実施形態のリッジおよび溝パターンおよび配列のうちの多くは、製造が容易な直線的なセグメントを備えて、時には前方および後方ゾーンの間に湾曲した移行部分を備えて、構成されている。多くの実施形態は、リッジ構造において漸進的な鉛直摩耗ゾーンを確立し、これにより、確立された上側ゾーンは下側摩耗ゾーンよりも削られやすい。比較的削られやすい上側ゾーンは、ブレード先端摩耗のリスクを低減するが、所望の小さなブレード先端間隙を確立し、保存する。下側摩耗ゾーンは、空気流制御、熱的摩耗および比較的小さな熱的削れに焦点を置いている。多くの実施形態では、局所的な空気流制御および複数の鉛直摩耗ゾーンの両方が、アブレイダブル構成部材に組み込まれている。
【0068】
本発明の教示を含んだ様々な実施形態がここに図示および説明されているが、当業者は、さらにこれらの教示を含んだ多くのその他の変更された実施形態を容易に考え出すことができる。発明は、詳細な説明に示されたまたは図面に例示された構成部材の構成および配置の典型的な実施形態の詳細にその適用が制限されない。発明は、他の実施形態が可能であり、様々な形式で実現または実施することができる。例えば、様々なリッジおよび溝輪郭は、特定のエンジン用途の周囲に沿って局所的に変化させられてもよい様々な平面図形配列において組み込まれてもよい。また、本明細書で使用される表現および用語は、説明のためであり、限定と見なされるべきではないことが理解されるべきである。すなわち、本明細書における「包含する」、「含む」または「有する」の使用およびその変形は、以後に挙げるアイテム、その均等物、および付加的なアイテムを内包することが意図されている。そうでないことが明示または限定されない限り、「取り付けられた」、「結合された」、「支持された」および「連結された」という用語およびその変形は、広く使用され、直接的および間接的な取付け、結合、支持および連結を包含する。さらに、「結合された」および「連結された」は、物理的または機械的な結合または連結に制限されない。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18-19】
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34-35】
図36
図37
図38
図39
図40
図41
図42
図43
図44
図45
図46
図47
図48
図49
図50
図51
図52
図53
図54
図55
図56
図57
図58
図59
図60
図61
図62
図63