(58)【調査した分野】(Int.Cl.,DB名)
第1の方向に尾根線が延びる山頂部と第1の方向に谷線が延びる谷底部とが、第1の方向に直交する第2の方向に交互に配設されると共に、前記山頂部と前記谷底部との間が中間部によってつながれることによって構成されたコルゲートフィンと、
前記コルゲートフィンを挟むように配設されかつ、前記コルゲートフィンの前記山頂部の表面及び前記谷底部の表面にそれぞれ当接した状態で、当該コルゲートフィンに接合されるよう構成されたチューブプレートと、を備え、
前記コルゲートフィンの前記中間部には、当該コルゲートフィンの表面よりも凸となりかつ、前記山頂部と前記谷底部との間で延びる複数の凸条部が、前記第1の方向に並設しており、
前記山頂部において前記チューブプレートに当接する前記表面、及び、前記谷底部において前記チューブプレートに当接する前記表面はそれぞれ、前記凸条部が設けられていない当接面に構成され、
前記各凸条部と、前記山頂部及び前記谷底部の当接面との間には、前記当接面から離れるに従い、前記コルゲートフィンの表面から次第に突出する徐変部が、前記凸条部に連続するように設けられているプレートフィン熱交換器。
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、特許文献1に記載されている熱交換器では、コルゲートフィンの山頂部又は谷底部の表面に、偏平チューブの外表面を当接させた状態で、コルゲートフィンと偏平チューブとを、ろう付けにより接合している。
【0005】
しかしながら、前述したように、このコルゲートフィンの表面には微細な凹凸が設けられていることから、凹凸した面と偏平チューブの外表面とが互いに当接することになる。その結果、この熱交換器では、コルゲートフィンと偏平チューブとの接合強度が低下してしまうという不都合がある。
【0006】
ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、熱交換器におけるコルゲートフィンの接合強度を高めることにある。
【課題を解決するための手段】
【0007】
ここに開示するプレートフィン熱交換器は、第1の方向に尾根線が延びる山頂部と第1の方向に谷線が延びる谷底部とが、第1の方向に直交する第2の方向に交互に配設されると共に、前記山頂部と前記谷底部との間が中間部によってつながれることによって構成されたコルゲートフィンと、前記コルゲートフィンを挟むように配設されかつ、前記コルゲートフィンの前記山頂部の表面及び前記谷底部の表面にそれぞれ当接した状態で、当該コルゲートフィンに接合されるよう構成されたチューブプレートと、を備える。
【0008】
そして、前記コルゲートフィンの前記中間部には、当該コルゲートフィンの表面よりも凸となりかつ、前記山頂部と前記谷底部との間で延びる複数の凸条部が、前記第1の方向に並設しており、前記山頂部において前記チューブプレートに当接する前記表面、及び、前記谷底部において前記チューブプレートに当接する前記表面はそれぞれ、前記凸条部が設けられていない当接面に構成され、前記各凸条部と、前記山頂部及び前記谷底部の当接面との間には、前記当接面から離れるに従い、前記コルゲートフィンの表面から次第に突出する徐変部が、前記凸条部に連続するように設けられている。
【0009】
この構成によると、チューブプレートとチューブプレートとの間に区画形成されるプレートフィン熱交換器の流路内に、コルゲートフィンが配設される。コルゲートフィンは、山頂部と谷底部とをつなぐ中間部が、流路内を複数のチャンネルに分割する。流体は、各チャンネル内を、第1の方向に流れる。
【0010】
このコルゲートフィンの中間部には、山頂部と谷底部との間で延びる凸条部が第1の方向、つまり流体の流れる方向に並んで複数設けられている。凸条部は、コルゲートフィンの表面に沿って流れる流体の乱流化を促進し、プレートフィン熱交換器の効率を高める。また、このプレートフィン熱交換器の流路内において流体が冷却される結果、当該流体が凝縮する場合には、コルゲートフィンの中間部に設けた複数の凸条部は、フィン表面の濡れ性を改善し、液滴の排出を促進する。さらに、フィン表面よりも凸となった凸条部は、コルゲートフィン自体の強度の向上にも寄与する。
【0011】
前記の構成のプレートフィン熱交換器ではまた、コルゲートフィンの山頂部及び谷底部においてチューブプレートに当接する表面が、凸条部が設けられていない当接面に構成されている。当接面に凹凸がないため、コルゲートフィンとチューブプレートとの当接面積が拡大して両者の密着性が高まる。その結果、コルゲートフィンとチューブプレートとの接合強度が高まる。これは、プレートフィン熱交換器の強度向上に有利になる。尚、山頂部の表面は、コルゲートフィンの外表面であり、谷底部の表面も、コルゲートフィンの外表面である。従って、谷底部の表面は、コルゲートフィンについて、山頂部の表面とは逆側の面に相当する。
【0012】
またコルゲートフィンにおいて、山頂部及び谷底部の当接面と、各凸条部との間には、当接面から離れるに従い、フィン表面から次第に突出する徐変部が、凸条部に連続するように設けられている。徐変部は、凸条部の一部として機能をして、前述した流体の乱流促進等に寄与する。従って、徐変部は、コルゲートフィンの山頂部及び谷底部に当接面を確保しつつ、凸条部をできるだけ広い範囲に亘って設けることを可能にする。その結果、コルゲートフィンとチューブプレートとの接合強度を高めつつ、凸条部により得られる様々な利点を、最大限に確保することが可能になる。
【0013】
前記コルゲートフィンの前記山頂部及び前記谷底部はそれぞれ、湾曲しており、前記徐変部は、前記山頂部及び前記谷底部の湾曲に沿うように設けられている、としてもよい。
【0014】
つまり、山頂部及び谷底部がそれぞれ湾曲していることによって、その横断面が、ほぼ正弦波のような形状を有するコルゲートフィンにおいては、徐変部を、山頂部及び谷底部の湾曲に沿うように設けることが好ましい。このことにより、凹凸の無い当接部を確保しつつ、凸条部をできるだけ広い範囲に亘って設けることが可能になる。
【0015】
前記コルゲートフィンと前記チューブプレートとは、ろう付けによって互いに接合されており、前記徐変部と前記チューブプレートとの間には、ろう付けの最中に、ろう材が集まることによって形成されるフィレットが設けられている、としてもよい。
【0016】
コルゲートフィンとチューブプレートとの接合部分は、その横断面においては、コルゲートフィンの表面が、山頂部又は谷底部から中間部に至る間でチューブプレートから次第に離れるようになる。コルゲートフィンとチューブプレートとをろう付けしたときには、ろう材が、表面張力によって、コルゲートフィンとチューブプレートとの接合部分に集まり、くさび形状のフィレットを形成する。
【0017】
前記構成のプレートフィン熱交換器では、コルゲートフィンに、凸条部及び徐変部が設けられており、このうち、徐変部は、コルゲートフィンとチューブプレートとの接合部分の近傍に位置している。徐変部はまた、コルゲートフィンの表面から突出する部分であるため、当該接合部分の近傍において、チューブプレートと徐変部との距離は、チューブプレートとコルゲートフィン表面との距離よりも短くなる。言い換えると、徐変部が設けられた箇所では、山頂部の当接面又は谷底部の当接面から離れても、チューブプレート表面との距離が比較的短い状態に維持される。そのため、徐変部とチューブプレートとの間にも、前述したコルゲートフィン表面とチューブプレートとの接合部分と同様に、表面張力によってろう材が集まってフィレットが形成されるものの、当該フィレットは、徐変部が設けられていない箇所のフィレットに比べて大型化する。こうしてコルゲートフィンにおいて第1の方向に並んで複数設けられる凸状部及び徐変部に対応して、大型のフィレットが複数形成される結果、コルゲートフィンとチューブプレートとのろう付け強度が向上する。このことは、前述したように、山頂部及び谷底部に凹凸の無い当接面を設けること、及び、コルゲートフィンに凸条部を設けることで、コルゲートフィン自体の強度が高まること、と組み合わさって、プレートフィン熱交換器の強度向上に有利になる。
【0018】
前記コルゲートフィンには、複数の溝状の凹凸を設ける折り目加工が施されており、前記凸条部及び徐変部は、前記折り目加工によって設けられた凹部分又は凸部分によって構成されている、としてもよい。
【0019】
コルゲートフィンに折り目加工を施すことによって、コルゲートフィンの中間部で、山頂部と谷底部との間で延びる凸条部を、第1の方向に並んで複数設けることが、容易に実現する。
【0020】
前記折り目加工によって設けられる溝状の凹凸は、前記コルゲートフィンにおいて前記第2の方向に延びており、前記コルゲートフィンの前記凸条部は、前記山頂部の尾根線及び前記谷底部の谷線に対して直交して配設されている、としてもよい。
【0021】
コルゲートフィンの中間部において、山頂部の尾根線及び谷底部の谷線に対して直交して配設される凸条部は、コルゲートフィン自体の強度を向上させる上で、特に有効である。
【0022】
ここに開示する技術はまた、熱交換器用のコルゲートフィンを製造する方法に係る。この製造方法は、薄板材に対して、所定の方向に延びる溝状の凹凸を交互に設ける折り目加工を施す工程と、第1の方向に尾根線が延びる山頂部と第1の方向に谷線が延びる谷底部とが、前記第1の方向に直交する第2の方向に交互に配設されるように、前記折り目加工が施された前記薄板材をコルゲートフィンに加工する工程と、を含む。
【0023】
そして、前記コルゲートフィンに加工している最中に、前記山頂部の表面及び前記谷底部の表面の前記凹凸を潰すことによって、前記山頂部及び前記谷底部に、前記凹凸が設けられていない面を形成する。
【0024】
この構成によると、薄板材に溝状の複数の凹凸を設ける折り目加工を施した後に、その薄板材をコルゲートフィンに加工することにより、溝状の凹凸が、前述した凸条部を構成するようになる。
【0025】
また、薄板材をコルゲートフィンに加工する時に、山頂部及び谷底部において薄板材の伸びが生じることと、山頂部及び谷底部を、それぞれ成形型によって、板厚方向に押圧することと、により、薄板材に予め設けられた凹凸を潰すことで、コルゲートフィンの山頂部の表面及び谷底部の表面に、凹凸が設けられていない面を形成する。凹凸の無い面を形成することに伴い、その面の近傍に、凸条部に連続する徐変部を設けることが可能になる。
【0026】
つまり、前記の製造方法は、山頂部及び谷底部の当接面と、中間部の複数の凸条部と、その当接面と各凸条部との間に徐変部とを備えたコルゲートフィンの製造に適している。
【発明の効果】
【0027】
以上説明したように、前記のプレートフィン熱交換器は、コルゲートフィンの中間部に複数の凸条部を設ける一方で、山頂部及び谷底部においてチューブプレートと当接する表面は、凹凸の無い当接面としかつ、その当接面の近傍に、凸条部に連続する徐変部を設けることにより、凸条部の機能を最大限に確保しつつも、コルゲートフィンとチューブプレートとの当接面積を大きくして、両者の接合強度を向上させることが可能になる。
【0028】
また、前記の熱交換器用コルゲートフィンの製造方法によれば、前述した凸条部及び徐変部を有しかつ、山頂部及び谷底部に凹凸の無い当接面を有するコルゲートフィンを容易に製造することが可能になる。
【発明を実施するための形態】
【0030】
以下、熱交換器の実施形態を図面に基づいて説明する。尚、以下に説明をする各図においては、理解容易のために各部の形状を誇張して描いている箇所があり、実際の形状とは、その細部において異なる場合もある。
【0031】
図1は、プレートフィン熱交換器1の構成を概念的に示す分解斜視図である。プレートフィン熱交換器1では、上下及び左右の方向性が実質的に存在しないが、説明の便宜上、
図1の紙面左手前と右奥とを結ぶ方向をX方向とし、
図1の紙面右手前と左奥とを結ぶ方向をY方向とし、
図1の紙面下と上とを結ぶ方向をZ方向とする。X方向、Y方向及びZ方向は互いに直交する。
図1に示すプレートフィン熱交換器(より正確には、熱交換器コア)1は、複数のチューブプレート2と複数のコルゲートフィン3とを交互に、Z方向に積層した上で、これらをろう付けにより接合して一体化することによって構成されている。
図1においては、理解容易のために、1つのコルゲートフィン3と、このコルゲートフィン3を挟む2つのチューブプレート2、2とだけを図示している。2つのチューブプレート2、2と、このチューブプレート2の、Y方向における両端部それぞれに配設される2つのサイドバー4、4とによって、このプレートフィン熱交換器1の対象流体(つまり、第1流体)が流れる第1流路11が区画される。第1流体との間で熱交換を行う第2流体が流れる第2流路は、
図1においては図示しないが、チューブプレート2、2を介して第1流路11に隣接している。つまり、第1流路11と第2流路とは、Z方向に隣り合っている。
【0032】
プレートフィン熱交換器1は、様々な用途で用いられる。例えば、第1流体と第2流体の間で熱交換を行い、第1流体又は第2流体を冷却する用途で用いられる。プレートフィン熱交換器1はまた、それとは逆に、第1流体又は第2流体を加熱する用途で用いられることもある。プレートフィン熱交換器1は、その用途によっては、流路内を流れる流体が冷却される結果、凝縮(液化)することもある。また、プレートフィン熱交換器1は、流路内を流れる流体が加熱される結果、蒸発(気化)することもある。
【0033】
チューブプレート2は、所定の厚みを有する平板状の部材である。チューブプレート2の厚みは、適宜の厚みに設定することが可能である。チューブプレート2は、熱伝導率の高い材料、例えば金属材料によって構成される。チューブプレート2は、具体的にはアルミニウム、アルミニウム合金、又は、ステンレスによって構成される。但し、ここに挙げた材料に限定されない。チューブプレート2は、第1流路11と、
図1において図示しない第2流路との間に介在し、第1流路11及び第2流路の一部を区画する。チューブプレート2はまた、第1流路11を流れる第1流体と、第2流路を流れる第2流体との間で伝熱を行う一次伝熱面を構成する。
【0034】
コルゲートフィン3は、所定の厚みを有する波板状の部材である。コルゲートフィン3もまた、熱伝導率の高い材料、例えば金属材料によって構成される。コルゲートフィン3は、具体的にはアルミニウム、アルミニウム合金、又は、ステンレスによって構成される。但し、ここに挙げた材料に限定されない。コルゲートフィン3は、第1及び第2流路内において、チューブプレート2に接合した状態で配設される。コルゲートフィン3は、第1及び第2流路内を、Y方向に複数のチャンネルに区画すると共に、二次伝熱面を構成する。
【0035】
図1、2の例では、コルゲートフィン3は、X方向に尾根線が延びる山頂部(つまり、トップ)31と、同じくX方向に谷線が延びる谷底部(つまり、ボトム)32とが、Y方向に交互に配設されて構成されている。
図1、2に示すコルゲートフィン3は、山頂部31は、概ね円弧状に湾曲している。また、谷底部32も、山頂部31と同様に、概ね円弧状に湾曲している。山頂部31と谷底部32との間を繋ぐ中間部33は、この例では、Z方向に対して傾斜した直線状である(
図5(a)も参照)。従って、ここに示すコルゲートフィン3の横断面は、全体として、概ね正弦波状の波形を有している。但し、コルゲートフィン3の波形状は、正弦波状であることには限らない。例えば中間部33の傾斜角度は適宜の角度に設定することが可能である。中間部33は、Z方向に延びるように、つまり、Z方向に対して傾斜しないようにしてもよい。また、コルゲートフィン3の谷底部32から山頂部31までのZ方向の高さA
1(つまり、波の振幅×2)、及び、コルゲートフィン3の山頂部31と山頂部31とのY方向距離P
1(つまり、波のピッチ)は、それぞれ適宜設定することが可能である。コルゲートフィン3の波の高さA
1は、当該コルゲートフィン3が配設される流路の高さによって決定される。また、コルゲートフィン3の波のピッチP
1は、プレートフィン熱交換器1の熱交換性能、及び、流路の圧力損失を含む様々な要因を考慮して決定される。
【0036】
このコルゲートフィン3の表面には、当該表面から凸設した凸条部34、及び、当該表面から凹陥した凹条部35が設けられている。凸条部34及び凹条部35の断面形状はそれぞれ、
図3(a)に示すように、例えば円弧状に湾曲した形状を有している。凸条部34と凹条部35とは、X方向に交互に配置される。尚、プレートフィン熱交換器1内に配設されたコルゲートフィン3においては、上下及び左右の方向性がないため、表面から凸設した凸条部34は、逆側から見れば、凹陥した凹条部になり得る。ここでは、
図3(a)に一点鎖線で示す基準に対して一方の側に凸となった部分を凸条部34とし、その基準に対して他方の側に凸となった部分を凹条部35とする。凸条部34及び凹条部35の湾曲形状は、
図3(a)に示す形状に限定されない。凸条部34及び凹条部35の湾曲形状の曲率は、適宜設定することが可能である。また、凸条部34及び凹条部35は、湾曲形状に限らず、
図3(b)に示すように、概ね三角形状にしてもよい。
【0037】
基準から凸条部34の凸端までの距離A
2、及び、基準から凹条部35の凹端までの距離A
2(つまり、波の振幅)は、適宜設定することが可能である。一例として、但し、これに限定されないが、コルゲートフィン3の板厚tに対して65%〜135%程度の範囲(つまり、0.65≦A
2/t≦1.35)となるように、設定してもよい。
【0038】
図1、2において凸条部34は、その最も凸となった部分を実線で示しており、凹条部35は、その最も凹となった部分を実線で示している。凸条部34及び凹条部35は、コルゲートフィン3における中間部33に設けられており、山頂部31及び谷底部32には設けられてない。各凸条部34及び各凹条部35は、それぞれ、
図2に示すように、コルゲートフィン3を平面視で見たとき(つまりZ方向に見たとき)に、Y方向に延びている。つまり、凸条部34及び凹条部35はそれぞれ、X方向に延びる山頂部31の尾根線及び谷底部32の谷線に直交している。また、複数の凸条部34、及び、複数の凹条部35は、山頂部31の尾根線及び谷底部32の谷線に沿って、X方向に交互に並んで配置している。凸条部34及び凹条部35のピッチP
2は、適宜設定することが可能である。
【0039】
尚、このような形状のコルゲートフィン3は、少なくとも第1流路11内に配設されている。このプレートフィン熱交換器1において、第2流路内に配設されるコルゲートフィンは、前記コルゲートフィン3と同じ形状であっても、コルゲートフィン3とは異なる形状であってもよい。
【0040】
中間部33に凸条部34及び凹条部35を有するコルゲートフィン3は、次の手順によって製造することが可能である。すなわち、
図4に示すように、コルゲートフィン3の材料である薄板状の部材30を用意し、その薄板状の部材30に対し、溝状の凹凸を設ける折り目加工を施す(工程P1参照)。折り目加工は、互いに噛み合う一対の成形ローラ5、5を用いて行うことが可能である。つまり、各成形ローラ5は、大径部と小径部とを有していて、そのローラ面は波形となるように構成されている。薄板状の部材30を、その一対の成形ローラ5、5の間を通過させることによって、当該部材30に、溝状の凹凸が多数設けられる。こうして設けられる凹部305及び凸部304は、それぞれY方向に延びると共に、X方向に並んだ縞状となる。この凸部304及び凹部305が、コルゲートフィン3における凸条部34及び凹条部35を構成する。尚、薄板状の部材30に対して凹凸を設ける折り目加工は、ローラ対を用いることに限らず、その他の公知の手法を用いることも可能である。ローラ対を利用した加工は、帯状の長い部材に対して連続して折り目加工を施すことが可能になるという利点がある。
【0041】
こうして折り目加工を施した薄板状の部材30を、コルゲートフィン3に加工する。コルゲートフィン3に加工する手法としては、公知の様々な手法を適宜採用することが可能である。一例として、但し、これに限定されないが、
図4の下図に仮想的に示すような、薄板状の部材30を挟み込む上下一対の成形歯(つまり、成形型)6、6を用いてもよい。具体的には、薄板状の部材30をY方向に移動させながら、上下一対の成形歯6、6を交互に作動させることによって、コルゲートフィン3の山頂部31及び谷底部32を、順次成形するようにしてもよい(工程P2参照)。
【0042】
このときに、折り目加工によって薄板状の部材30に設けた凹凸に対して直交する方向に、尾根線及び谷線が延びるよう、コルゲートフィン3の山頂部31及び谷底部32を設けるようにすれば、前述したように、コルゲートフィン3の尾根線及び谷線と、中間部33に設ける凸条部34及び凹条部35とを、互いに直交させることが可能になる。
【0043】
この成形時には、コルゲートフィン3の山頂部31及び谷底部32において、薄板状の部材30に予め設けた凸部304及び凹部305が潰れるようにする。つまり、成形時に、山頂部31及び谷底部32において材料が伸びることと、成形歯6、6によって、その山頂部31及び谷底部32の箇所を板厚方向に押圧することとを組み合わせて、山頂部31及び谷底部32の凹凸を潰す。こうすることで、完成後のコルゲートフィン3では、山頂部31及び谷底部32のそれぞれには、凸条部34及び凹条部35が設けられないことになり、これら山頂部31及び谷底部32を、凹凸の無い平らな面にすることが可能になる。この山頂部31及び谷底部32に設けられた平らな面は、
図5(a)及び(d)に示すように、チューブプレート2に当接する当接面310、320となる。
【0044】
また、
図5(a)及び(d)に示すように、山頂部31及び谷底部32において凹凸を潰すことに伴い、当接面310、320の近傍では、その当接面310、320から離れるに従い、フィン表面から次第に突出する徐変部341、351が、凸条部34及び凹条部35に連続するように設けられる。
【0045】
ここで
図5(a)に示す例で、凸条部34は、コルゲートフィン3の下側の面から凸設しており、その凸条部34に連続する徐変部341は、同図に示す谷底部32を挟んだY方向の両側に配設されている。この徐変部341は、谷底部32の当接面320から離れるに従い、フィン表面からの高さが次第に高くなる。この徐変部341は、下側のチューブプレート2の表面に近づくように設けられる。一方、当該凸条部34は、同図に示す山頂部31に対しては、その当接面310とは逆側に位置することになる。この場合、山頂部31の近傍には、当該凸条部34の徐変部は設けられない。前述の通り、山頂部31において凹凸が潰れることで、凸条部34の形成箇所において、当該山頂部31の当接面310の近傍(つまり、
図5(a)におけるコルゲートフィン3の上側の面)では、凹凸の無い状態となる。
【0046】
また、
図5(a)に仮想的に示すように、当該凸条部34に対してX方向に隣り合う凹条部35は、コルゲートフィン3の上側の面から凸設するようになる。そのため、山頂部31の近傍には、この凹条部35に連続する徐変部351が、山頂部31を挟んだY方向の両側に設けられることになる。この徐変部351は、山頂部31の当接面310から離れるに従い、フィン表面からの高さが次第に高くなる。この徐変部351は、上側のチューブプレート2の表面に近づくように設けられる。この凹条部35は、谷底部32に対しては、その当接面320とは逆側に位置することになる。この場合、谷底部32の近傍には、当該凹条部35の徐変部は設けられない。前述の通り、谷底部32において凹凸が潰れることで、凹条部35の形成箇所において、当該谷底部32の当接面320の近傍(つまり、
図5(a)におけるコルゲートフィン3の下側の面)では、凹凸の無い状態となる。
【0047】
このような徐変部341、351は、概ね円弧状に湾曲した山頂部31又は谷底部32の近傍で、その湾曲に沿うように設けられる。その結果、
図5(d)に拡大して示すように、徐変部341とチューブプレート2との距離hは、徐変部が設けられていない箇所(つまり、徐変部に対してX方向にずれている箇所)よりも短くなる。
図5(d)では、徐変部が設けられていない箇所はフィン表面で示されるが、徐変部341は、このフィン表面よりも凸である分、チューブプレート2との距離hが短くなる。このことを言い換えると、チューブプレート2との距離がhとなるフィン表面のY方向位置と、チューブプレート2との距離が同じhとなる徐変部341のY方向位置とを比較すれば、徐変部341のY方向位置の方が、当接面320からより離れる、ことになる。尚、図示は省略するが、凹条部35の徐変部351についても、同様である。
【0048】
前述したように、プレートフィン熱交換器1は、チューブプレート2とコルゲートフィン3とを、ろう付けによって互いに接合することによって構成される。つまり、チューブプレート2の表面にろう材が設けられた状態で、チューブプレート2とコルゲートフィン3とを交互に積層をすることにより、プレートフィン熱交換器を組み立てる。そうして、この組立後のプレートフィン熱交換器を、例えば真空炉内で減圧及び加熱をすることにより一体化する。このろう付けの最中に、コルゲートフィン3とチューブプレート2との接合箇所においては、表面張力によって、ろう材が集まり、くさび形状のフィレット7が形成される。
【0049】
ここで、
図5(d)に示すように、徐変部341(及び351)が形成されている箇所では、その徐変部341の分だけ、当接面320から離れても、チューブプレート2との距離が短い状態に維持される。そのため、徐変部341とチューブプレート2との間に形成されるフィレット7は、
図5(b)(c)に示すように、徐変部341が設けられていない箇所のフィレット7に比べて大型化する。尚、
図5(b)は、
図5(a)のb−b線断面図であり、
図5(c)は、
図5(a)示す山頂部31及び谷底部32でのフィレット形状を例示する図である。
図5(b)、(c)に示す一点鎖線は、凸条部34及び凹条部35の形成箇所を示しており、徐変部341、351は、この凸条部34及び凹条部35の形成箇所に設けられることになる。但し、
図5(a)を参照して説明したように、山頂部31の近傍には、凸条部34に連続する徐変部341は設けられず、同様に、谷底部32の近傍には、凹条部35に連続する徐変部351は設けられない。
【0050】
図5(c)の左側に示す谷底部32において、凸条部34の形成箇所では、徐変部341が設けられているため、谷底部32を挟んだY方向の両側それぞれで、ろう材が集まって大型のフィレットが形成される。その結果、フィレット7のY方向の長さが相対的に長くなり、それ以外の箇所では、フィレット7のY方向の長さが相対的に短くなる。より正確には、凸条部34の形成箇所で最も長くなり、凹条部35の形成箇所で最も短くなり、凸条部34と凹条部35との間でフィレット長さが変化する。
【0051】
また、
図5(c)の右側に示す山頂部31においては、凸条部34の形成箇所では、徐変部が設けられていないため、フィレットのY方向の長さが最も短くなり、凹条部35の形成箇所(
図5(a)において仮想的に示す箇所)では、徐変部351が設けられるため、その山頂部31を挟んだY方向の両側それぞれで、ろう材が集まる結果、フィレット7のY方向の長さが最も長くなる。そうして、凸条部34と凹条部35との間でフィレット長さが変化する。
図5(c)に示すように、山頂部31と谷底部32とでは、フィレット長さの変化の位相がずれることになる。
【0052】
ここで、
図5(c)においてフィレット7のY方向長さが最も短くなる箇所は、前述の通り、凸条部34又は凹条部35の徐変部341、351が設けられない箇所であり、この箇所は、凸条部34や凹条部35を設けてない従来形状のコルゲートフィンと同様の形状を有している。従って、このコルゲートフィン3は、従来構成と同程度のフィレット長さLを最低限、確保した上で、凸条部34に連続する徐変部341及び凹条部35に連続する徐変部351を設けることによって、従来構成よりも長いフィレット長さを得ることができるものである。その結果、コルゲートフィン3とチューブプレート2とのろう付け強度を、従来よりも高くすることが可能になる。
【0053】
また、コルゲートフィン3の中間部33に設けられた、Y方向に延びる凸条部34及び凹条部35はそれぞれ、コルゲートフィン3自体の強度を向上させる。
【0054】
そうした凸条部34及び凹条部35が設けられた中間部33に対し、コルゲートフィン3の山頂部31及び谷底部32では、凸条部34及び凹条部35が設けられていない当接面310、320が設けられている。この当接面310、320は、凹凸が無いため、コルゲートフィン3とチューブプレート2との当接面積を大きくする。
【0055】
こうして、当接面310、320によってコルゲートフィン3とチューブプレート2との当接面積が大きくなることと、徐変部341、351によってフィレット7が大型化することとによって、コルゲートフィン3とチューブプレート2との接合強度が高まる上に、凸条部34及び凹条部35によって、コルゲートフィン3自体の強度も高まることで、プレートフィン熱交換器1は、その強度が大幅に高まる。
【0056】
さらに、凸条部34及び凹条部35は、コルゲートフィン3の中間部33によって区画される各チャンネルにおいて、流体の流れ方向に並設されることから、フィン表面に沿って流れる流体の乱流化を促進し、プレートフィン熱交換器1の効率向上に寄与する。また、このプレートフィン熱交換器1内において、流体が凝縮するときには、フィン表面よりも凸となった凸条部34及び凹条部35が、コルゲートフィン3の表面の濡れ性を改善し、凝縮した液体をプレートフィン熱交換器1の外部に速やかに排出することを可能にする。
【0057】
徐変部341、351はまた、前述したろう材を集める機能の他にも、流体の流れ等に関しては、凸条部34及び凹条部35と同様の機能を果たし得るから、徐変部341、351を設けることによって、凸条部34及び凹条部35を、できるだけ広い範囲に亘って設けることが可能になる。
【0058】
尚、ここに開示する技術は、
図1〜5に示した構成のプレートフィン熱交換器1に適用されることに限らず、その他の様々な構成のプレートフィン熱交換器に適用することが可能である。
【0059】
図6は、コルゲートフィン3の凸条部34及び凹条部35に関する変形例を示している。すなわち、
図1〜5に示すコルゲートフィン3では、凸条部34及び凹条部35をそれぞれ、山頂部31の尾根線及び谷底部32の谷線に直交するように設けている。これに対し、
図6の変形例では、凸条部34及び凹条部35をそれぞれ、山頂部31の尾根線及び谷底部32の谷線に対して、所定の角度(但し、90°以外)で交差するように設けている。つまり、凸条部34及び凹条部35を、Y方向に対して傾けている。尚、凸条部34及び凹条部35の傾き角は、適宜設定することが可能である。
【0060】
このような構成のコルゲートフィン3は、同図の左側に示すように、先ず、薄板状の部材30に対し、斜めに傾いた、溝状の凹凸を設ける折り目加工を施し、その上で、同図の右側に示すように、当該部材30をコルゲートフィンに加工すればよい。尚、折り目加工及びコルゲートフィン加工は、適宜の、公知の手法を採用することが可能である。この変形例においても、フィン加工時に、折り目加工の際に設けた凹凸を潰すことによって、山頂部31及び谷底部32に平らな当接面を設けることにより、当接面と凸条部34及び凹条部35の間に徐変部を設けることが可能になる。従って、この変形例のコルゲートフィン3を用いて構成されたプレートフィン熱交換器も、前述したプレートフィン熱交換器1と同じ利点が得られる。
【0061】
また、凸条部34及び凹条部35を設けるコルゲートフィン3は、
図1〜5に示す正弦波状の横断断面を有するものに限らない。例えば
図7に示すような矩形波状の断面を有するコルゲートフィン3に対して、凸条部34及び凹条部35を設けてもよい。
【0062】
図7に示すような矩形波状のコルゲートフィン3は、それぞれ、ほぼ平板状に構成された山頂部31及び谷底部32と、その山頂部31と谷底部32とをつなぐと共に、Z方向に延びる中間部33とを備えて構成される。尚、中間部33は、Z方向に対して任意の角度で傾けてもよい。
【0063】
この矩形波状のコルゲートフィン3もまた、前述したように、薄板状の部材に対して、溝状の凹凸を設ける折り目加工を施した後、その薄板状の部材を、コルゲートフィンに加工することで製造可能である。そのフィン加工時に、山頂部31及び谷底部32の凹凸を潰すことによって、凸条部34と徐変部341(及び、
図7では図示しないが、凹条部と、その凹条部に連続する徐変部)を設けることが可能になる。
【0064】
矩形波状のコルゲートフィン3では、山頂部31と中間部33との間、及び、谷底部32と中間部33との間にアールが設けられる。徐変部341(及び凹条部に連続する徐変部)は、このアール部分に設けられる。矩形波状のコルゲートフィン3においても、徐変部341とチューブプレート2との距離が相対的に短くなるため、表面張力によって集まったろう材で形成されるフィレットは、相対的に大きくなる。よって、矩形波状のコルゲートフィン3を用いて構成されるプレートフィン熱交換器でも、前述したプレートフィン熱交換器1と同じ利点が得られる。
【0065】
尚、
図7に示す矩形波状のコルゲートフィン3に対して、凸条部34及び凹条部35は、
図1に示すようにY方向に延びて設けてもよいし、
図6に示すようにY方向に傾いて設けてもよい。
【0066】
また、前述した各構成では、コルゲートフィン3に対し凸条部34及び凹条部35の両方を設けるようにしている。これは、
図3を示して説明したように、一点鎖線で示す基準に対して一方の側に凸となった部分を凸条部34とし、その基準に対して他方の側に凸となった部分を凹条部35とすることである。これに対し、コルゲートフィンに、凸条部又は凹条部の一方のみを設けるようにしてもよい。つまり、基準に対していずれか一方の側に凸となる部分のみを、コルゲートフィンに設ける。このような構成のコルゲートフィンも、コルゲートフィン自体の強度を高めることが可能であると共に、その山頂部及び谷底部に当接面を設けることにより、コルゲートフィンとチューブプレート2との接合強度を高めることが可能になる。
【0067】
尚、凸条部又は凹条部の一方のみを設けたコルゲートフィンは、徐変部が、
図5(c)に示す山頂部31又は谷底部32のいずれか一方においてのみ設けられる。その結果、前述した大型のフィレット7も、山頂部31又は谷底部32のいずれか一方においてのみ形成されることになる。