特許第6226033号(P6226033)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社明電舎の特許一覧

<>
  • 特許6226033-電界放射装置および電界放射方法 図000002
  • 特許6226033-電界放射装置および電界放射方法 図000003
  • 特許6226033-電界放射装置および電界放射方法 図000004
  • 特許6226033-電界放射装置および電界放射方法 図000005
  • 特許6226033-電界放射装置および電界放射方法 図000006
  • 特許6226033-電界放射装置および電界放射方法 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6226033
(24)【登録日】2017年10月20日
(45)【発行日】2017年11月8日
(54)【発明の名称】電界放射装置および電界放射方法
(51)【国際特許分類】
   H01J 35/06 20060101AFI20171030BHJP
   H01J 1/304 20060101ALI20171030BHJP
   H05G 1/00 20060101ALI20171030BHJP
【FI】
   H01J35/06 A
   H01J1/304
   H05G1/00 E
【請求項の数】11
【全頁数】17
(21)【出願番号】特願2016-125036(P2016-125036)
(22)【出願日】2016年6月24日
【審査請求日】2017年3月21日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000006105
【氏名又は名称】株式会社明電舎
(74)【代理人】
【識別番号】100086232
【弁理士】
【氏名又は名称】小林 博通
(74)【代理人】
【識別番号】100092613
【弁理士】
【氏名又は名称】富岡 潔
(74)【代理人】
【識別番号】100104938
【弁理士】
【氏名又は名称】鵜澤 英久
(72)【発明者】
【氏名】高橋 大造
(72)【発明者】
【氏名】畠中 道大
【審査官】 杉田 翠
(56)【参考文献】
【文献】 特開平03−156846(JP,A)
【文献】 特開2008−311174(JP,A)
【文献】 特開2011−119084(JP,A)
【文献】 国際公開第2010/013772(WO,A1)
【文献】 特開2011−008998(JP,A)
【文献】 特開2011−258470(JP,A)
【文献】 国際公開第03/080180(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01J1/30−1/316
1/46−1/48
9/02
27/00−27/26
35/00−35/32
37/04
37/06−37/08
37/248
H05G1/00−1/70
(57)【特許請求の範囲】
【請求項1】
筒状の絶縁体の両端側が封止されて当該絶縁体の内壁側に真空室が形成された真空容器と、
真空室の一端側に位置し、当該真空室の他端側に対向する電子発生部を有したエミッタと、
エミッタの電子発生部の外周側に位置しているガード電極と、
真空室の他端側に位置し、エミッタの電子発生部に対向して設けられたターゲットと、
エミッタを真空室の両端方向に対し移動自在に支持する可動自在なエミッタ支持部と、
エミッタ支持部に接続され当該エミッタ支持部を操作する操作部と、を備え、
操作部によってエミッタ支持部が操作されて、エミッタの電子発生部とターゲットとの両者間の距離が変化し、任意の距離でエミッタが位置決め固定され、
ガード電極のターゲット側には、エミッタの電子発生部が接離する小径部が形成され、
当該位置決め固定の状態で、エミッタの電子発生部が電界放射することを特徴とする電界放射装置。
【請求項2】
エミッタ支持部は、操作部によって両端方向に移動自在な移動体を介して、エミッタを支持し、
操作部は、螺合軸が移動体の軸心と同一方向に延在するように当該移動体の一端側に螺合接続し回動自在に支持されている調整螺子部を備え、
操作部により調整螺子部が回動して移動体が両端方向に移動し、エミッタの電子発生部とターゲットとの両者間の距離が変化し、任意の距離でエミッタが位置決め固定されることを特徴とする請求項1記載の電界放射装置。
【請求項3】
調整螺子部には、当該調整螺子部を回動させるモータが、絶縁体を介して接続されていることを特徴とする請求項2記載の電界放射装置。
【請求項4】
エミッタ支持部は、操作部によって両端方向に移動自在な移動体を介して、エミッタを支持し、
操作部は、移動体の軸心に沿って往復動自在で当該移動体の一端側に接続されたピストンを備え、
操作部によりピストンが往復動して移動体が両端方向に移動し、エミッタの電子発生部とターゲットとの両者間の距離が変化し、任意の距離でエミッタが位置決め固定されることを特徴とする請求項1記載の電界放射装置。
【請求項5】
ピストンは、絶縁体を介して移動体に接続されていることを特徴とする請求項4記載の電界放射装置。
【請求項6】
移動体は、エミッタの電子発生部の反対側において両端方向に延在した形状であることを特徴とする請求項2〜5の何れかに記載の電界放射装置。
【請求項7】
ガード電極のターゲット側に、真空室の横断方向に延出して当該真空室の両端方向においてエミッタの電子発生部の周縁部と交叉する縁部が形成されていることを特徴とする請求項1〜の何れかに記載の電界放射装置。
【請求項8】
真空室の両端方向に伸縮自在なベローズを有し、そのベローズの一端側がエミッタ支持部に支持され、他端側が真空容器に支持されていることを特徴とする請求項1〜の何れかに記載の電界放射装置。
【請求項9】
真空室のエミッタとターゲットとの間に、グリッド電極が設けられていることを特徴とする請求項1〜の何れかに記載の電界放射装置。
【請求項10】
請求項1〜の何れかに記載の電界放射装置の電界放射方法であって、
電界放射電流の出力は、操作部を操作することにより、エミッタの電子発生部とターゲットとの両者間の距離を変更し任意の距離でエミッタを位置決め固定して設定し、
当該位置決め固定の状態でエミッタの電子発生部から電界放射することを特徴とする電界放射方法。
【請求項11】
電界放射電流の出力は、管電圧を変更せずに設定することを特徴とする請求項10記載の電界放射方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、X線装置,電子管,照明装置等の種々の機器に適用される電界放射装置および電界放射方法に関するものである。
【背景技術】
【0002】
X線装置,電子管,照明装置等の種々の機器に適用される電界放射装置の一例としては、真空容器の真空室において互いに対向した方向に位置(所定距離隔てて位置)するエミッタ(炭素等を用いてなる電子源)とターゲットとの間に電圧印加し、エミッタの電界放射(電子を発生させて放出)によって電子線を放出し、その放出した電子線をターゲットに衝突させて所望の機能(例えばX線装置の場合はX線の外部放出による透視分解能)を発揮する構成が知られている。
【0003】
また、例えば、エミッタとターゲットとの間にグリッド電極等を介在させて3極管構造としたり、エミッタの電子発生部(ターゲットに対向する側に位置し電子を発生する部位)の表面を曲面状にしたり、エミッタと同電位のガード電極を当該エミッタの外周側に配置する等により、エミッタから放出される電子線の分散を抑制することが検討されている(例えば特許文献1,2)。
【0004】
前述のような電圧印加により、エミッタの電子発生部のみから電子を発生させて電子線を放出することが望ましいが、真空室内に不要な微小突起や汚れ等が存在していると、意図しない閃絡現象を起こし易くなり、耐電圧性等が得られず、所望の機能を発揮できなくなる虞がある。
【0005】
例えば真空室内のガード電極等(ターゲット,グリッド電極,ガード電極等;以下、単にガード電極等と適宜称する)において、局部的な電界集中を起こし易い部位が形成(例えば加工において形成された微小突起等)されている場合、ガス成分(例えば真空容器内に残存するガス成分)を吸着している場合、電子を発生させ易い元素が含まれている場合(適用する材料中に含まれている場合)等が挙げられる。このような場合、例えばガード電極にも電子発生部が形成され、電子の発生量が不安定になり、電子線が分散し易くなり、例えばX線装置の場合にはX線等の焦点はずれ等を起こす虞もある。
【0006】
そこで、閃絡現象の抑制を図る手法(電子の発生量を安定化させる手法)として、例えばガード電極等に電圧(高電圧等)を印加(例えばガード電極とグリッド電極に印加)し放電を繰り返す電圧放電コンディショニング処理(改質(再生);以下、単に改質処理と適宜称する)を施す手法が検討されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2008−150253公報
【特許文献2】特開2011−8998公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、前述のような改質処理の電圧を単にガード電極等に印加すると、エミッタの電界放射(例えば改質処理が行われる前に電界放射)も起こり易く、当該ガード電極等が十分に改質処理されない虞がある。
【0009】
本発明は、かかる技術的課題を鑑みてなされたものであって、エミッタの電界放射を抑制しながらガード電極等の改質処理を行うことができ、また、電界放射電流の出力を容易に設定でき、電界放射特性の向上に貢献可能な技術を提供することにある。
【課題を解決するための手段】
【0010】
この発明に係る電界放射装置,電界放射方法は、前記の課題を解決できるものである。電界放射装置の一態様は、筒状の絶縁体の両端側が封止されて当該絶縁体の内壁側に真空室が形成された真空容器と、真空室の一端側に位置し、当該真空室の他端側に対向する電子発生部を有したエミッタと、エミッタの電子発生部の外周側に位置しているガード電極と、真空室の他端側に位置し、エミッタの電子発生部に対向して設けられたターゲットと、エミッタを真空室の両端方向に対し移動自在に支持する可動自在なエミッタ支持部と、エミッタ支持部に接続され当該エミッタ支持部を操作する操作部と、を備え、操作部によってエミッタ支持部が操作されて、エミッタの電子発生部とターゲットとの両者間の距離が変化し、任意の距離でエミッタが位置決め固定され、当該位置決め固定の状態で、エミッタの電子発生部が電界放射することを特徴とする。
【0011】
エミッタ支持部は、操作部によって両端方向に移動自在な移動体を介して、エミッタを支持し、操作部は、螺合軸が移動体の軸心と同一方向に延在するように当該移動体の一端側に螺合接続し回動自在に支持されている調整螺子部を備え、操作部により調整螺子部が回動して移動体が両端方向に移動し、エミッタの電子発生部とターゲットとの両者間の距離が変化し、任意の距離でエミッタが位置決め固定されるものであっても良い。また、調整螺子部には、当該調整螺子部を回動させるモータが、絶縁体を介して接続されているものであっても良い。
【0012】
また、エミッタ支持部は、操作部によって両端方向に移動自在な移動体を介して、エミッタを支持し、操作部は、移動体の軸心に沿って往復動自在で当該移動体の一端側に接続されたピストンを備え、操作部によりピストンが往復動して移動体が両端方向に移動し、エミッタの電子発生部とターゲットとの両者間の距離が変化し、任意の距離でエミッタが位置決め固定されるものであっても良い。また、ピストンは、絶縁体を介して移動体に接続されているものでも良い。
【0013】
また、移動体は、エミッタの電子発生部の反対側において両端方向に延在した形状であっても良い。
【0014】
また、ガード電極のターゲット側に、小径部が形成されているものであっても良い。また、ガード電極のターゲット側に、真空室の横断方向に延出して当該真空室の両端方向においてエミッタの電子発生部の周縁部と交叉する縁部が形成されているものであっても良い。
【0015】
また、真空室の両端方向に伸縮自在なベローズを有し、そのベローズの一端側がエミッタ支持部に支持され、他端側が真空容器に支持されているものであっても良い。
【0016】
また、真空室のエミッタとターゲットとの間に、グリッド電極が設けられているものであっても良い。
【0017】
前述の電界放射装置を用いた電界放射方法の一態様としては、電界放射電流の出力は、操作部を操作することにより、エミッタの電子発生部とターゲットとの両者間の距離を変更し任意の距離でエミッタを位置決め固定して設定し、当該位置決め固定の状態でエミッタの電子発生部から電界放射することを特徴とする。また、電界放射電流の出力は、管電圧を変更せずに設定するものであっても良い。
【発明の効果】
【0018】
以上示したように本発明によれば、エミッタの電界放射を抑制しながらガード電極等の改質処理を行うことができ、また、電界放射電流の出力を容易に設定でき、電界放射装置の特性の向上に貢献可能となる。
【図面の簡単な説明】
【0019】
図1】本実施形態によるX線装置10を示す概略説明図(真空室1両端方向に縦断した断面図(エミッタ3が放電可能領域mに位置している場合))。
図2】本実施形態によるX線装置10を示す概略説明図(真空室1両端方向に縦断した断面図(エミッタ3が無放電領域nに位置している場合))。
図3】本実施形態によるガード電極5の一例を示す概略説明図(図1の一部の拡大図で縁部52の替わりに小径部51を有した図)。
図4】本実施形態においてエミッタ3が放電可能領域mに位置する場合の放電時距離dを説明するための概略説明図((A)は放電時距離が0、(B)は放電時距離dが所定の大きさの場合)。
図5】本実施形態によるX線装置10Aを示す概略説明図(真空室1両端方向に縦断した断面図(エミッタ3が放電可能領域mに位置している場合))。
図6】本実施形態によるX線装置10Bを示す概略説明図(真空室1両端方向に縦断した断面図(エミッタ3が放電可能領域mに位置している場合))。
【発明を実施するための形態】
【0020】
本発明の実施形態における電界放射装置は、絶縁体の両端側が封止されて形成された真空室において、単に、互いに対向して位置するエミッタおよびターゲットを備えたり、エミッタの電子発生部の外周側にガード電極を備えた構成とするのではなく、エミッタを真空室の両端方向(以下、単に両端方向と適宜称する)に対し移動自在に支持する可動自在なエミッタ支持部を備え、その支持部の可動によりエミッタの電子発生部とターゲットとの間の距離を変化できるように構成したものである。
【0021】
また、エミッタ支持部(例えば後述の移動体の一端側)に接続され当該エミッタ支持部を操作する操作部を備え、その操作部の操作により、エミッタの電子発生部とターゲットとの両者間の距離を変化でき、任意の距離でエミッタを位置決め固定した状態で、当該エミッタの電子発生部から電界放射できるように構成したものである。
【0022】
従来手法によりガード電極等を改質処理する場合、前述のようにガード電極等に対し単に高電圧を印加する手法の他に、ガード電極等を真空雰囲気下で放置し吸着ガスを取り除く手法が知られている。この手法は、例えば、真空容器に大口径排気管を設けて電界放射装置(以下、従来装置と称する)を構成し、その大口径排気管を介して当該真空室を高温真空状態にすることにより、当該真空室のガード電極等の吸着ガスを放出し、その後、当該真空室を大気雰囲気下に戻し大口径排気管を介して当該真空室内にエミッタ等を配置し、当該真空室を封止し再度真空状態にする手法である。
【0023】
しかしながら、前述のような大口径排気管を設けた真空容器において、真空室の高温真空状態を長時間保つことは困難であり、再度真空状態にするまでの間にガスがガード電極等に再吸着する虞もあり、ガード電極等に形成された粗い表面については改質(滑らかに)することができない。また、大口径排気管により、真空容器が大型化し、製造工数の増加や製品コストの上昇を招くことも考えられる。
【0024】
一方、本実施形態のような電界放射装置の構成によれば、前述の従来手法を適用しなくてもガード電極等の改質処理を行うことが可能となる。当該改質処理を行う場合、操作部によりエミッタ支持部を操作し、エミッタを放電可能領域(電界放射する領域;後述の図1等では放電可能領域m)から無放電領域(放電電界以下;後述の図1等では無放電領域n)に移動(電子発生部とターゲットとの間の距離を長くする方向に移動)させることにより、エミッタの電界放射を抑制した状態(例えば後述の図2に示すように、エミッタの電子発生部とガード電極との両者を互いに離反した状態(両者間に隙間を形成))にし、その状態でガード電極等に電圧を印加して改質処理を行うことができ、例えばガード電極等の表面が溶解平滑化されることになる。これにより、所望の耐電圧を得ることが可能となる。また、前述のように電界放射を抑制した状態であれば、改質処理の際にエミッタに対しては負荷が掛からないようにすることができる。
【0025】
したがって、本実施形態の改質処理によれば、例えばガード電極等の表面に微小突起等が存在していても、その表面を滑らかにすることが可能となる。また、ガス成分(例えば真空容器内に残存するガス成分)を吸着している場合には、当該吸着ガスが放出されることになる。さらに、電子を発生させ易い元素が含まれている場合には、前記の溶解平滑化により、当該元素をガード電極等の内部に留めることができ、当該元素に起因する電子発生を抑制することが可能となる。そして、電界放射装置においては、電子の発生量が安定し易くなる。
【0026】
前述のようにガード電極等を改質処理した後は、再び操作部によりエミッタ支持部を操作し、エミッタを無放電領域から放電可能領域に移動(電子発生部とターゲットとの間の距離を短くする方向に移動)させることにより、エミッタの電子発生部とガード電極との両者間を狭めた状態(例えば、エミッタの電子発生部とガード電極とが近接または接触した状態)にすることができる。そして、エミッタ(電子発生部)の電界放射が可能な状態となり、電界放射装置の所望の機能を発揮(X線装置の場合はX線照射等)できることになる。
【0027】
ここで、電界放射電流(エミッタからターゲットに放出される電子線の流れ)の出力(X線強度等;以下、単に電流出力と適宜称する)は、製品歩留まり等の機差を無視できるものと仮定すると、電流電圧特性により、電界放射に係る電圧値によって定められることになる。
【0028】
この電流出力を所望の大きさに調整して設定する手法としては、例えばエミッタとグリッド電極との間の電圧(以下、単にEG電圧と適宜称する)を変更して行う従来手法があるが、当該調製前後において管電圧(例えばEG電圧と後述のTG電圧の総和)も変更されてしまうため、管電圧の変更を望まない用途の場合には、適当ではない手法である。この従来手法において、EG電圧と、ターゲットとグリッドとの間の電圧(以下、単にTG電圧と適宜称する)と、の両者を制御(フィードバック制御等)しながら徐々に変更することにより、管電圧の変更を抑制できる可能性はあるが、電流出力の調整を複雑化してしまう虞がある。また、グリッド電極を持たない構成の電界放射装置の場合、電界放射電流が管電圧に大きく依存している構成となるため、従来手法では、管電圧の変更を抑制しながら電流出力を調整することは困難となる虞がある。
【0029】
一方、本実施形態においては、操作部によりエミッタ支持部を操作して、エミッタを放電可能領域に移動させる場合、当該放電可能領域の両端方向の幅(後述の図1等では放電可能領域mの幅)に応じて、エミッタの電子発生部とガード電極との両者間の距離(以下、単に放電時距離と適宜称する;後述の図4ではd)を変更することが可能である。この放電時距離の大きさによってエミッタに係る電界も異なり、例えば放電時距離が大きくなるに連れて(エミッタが放電可能領域のうち一端側に近づくに連れて)電界は小さくなり、当該放電時距離が小さくなるに連れて(エミッタが放電可能領域のうち他端側に近づくに連れて)電界は大きくなる。そして、前述のような電界に応じた大きさの電流出力が発生することとなる。
【0030】
すなわち、本実施形態によれば、操作部を介して放電時距離を適宜変更することにより、たとえグリッド電極を持たない構成であっても、管電圧が変更しないように抑制(例えば管電圧を一定に)しながら、電流出力を所望の大きさに容易に調整(例えば従来手法と比較して容易に調整)して設定することが可能である。また、管電圧の変更の可否等の用途に限定されることが無いため、電界放射装置の汎用性の向上に貢献可能となる。
【0031】
管電圧の変更が可能な用途の場合、本実施形態においては、前述のように単に放電時距離を変更するだけでなく、従来手法を併用し、EG電圧や管電圧を変更したり、管電圧制御を適宜実施しても良い。これにより、電流出力の調整幅が従来手法よりも広くなり、電界放射装置の汎用性の向上により貢献可能となる。例えば、製品歩留まり等の機差によって電界放射特性が製品仕様と異なっている場合であっても、本実施形態のような電流出力の調整を実施する等により、製品仕様と同等の電界放射特性を発揮することが可能となる。
【0032】
本実施形態の電界放射装置は、前述のようにエミッタを両端方向に対して移動自在に支持するエミッタ支持部や、エミッタ支持部に接続され当該エミッタ支持部を操作する操作部等を備え、エミッタの電子発生部とターゲットとの間の距離を変化させることができ、また、放電時距離を変更し電流出力を所望の大きさに調整して設定できる構成であれば、例えば各種分野の技術常識を適宜適用する等により、多彩な変更が可能なものであって、その一例として以下に示すものが挙げられる。
【0033】
≪電界放射装置の実施例1≫
図1図2の符号10は、本実施形態の電界放射装置を適用したX線装置の一例を示すものである。X線装置10においては、筒状の絶縁体2の一端側の開口21と他端側の開口22とが、それぞれエミッタユニット30とターゲットユニット70とにより封止(例えば蝋付けして封止)されて、絶縁体2の内壁側に真空室1を有した真空容器11が構成されている。エミッタユニット30(後述のエミッタ3)とターゲットユニット70(後述のターゲット7)との間には、当該真空室1の横断方向(両端方向に対して交差する方向;以下、単に横断方向と適宜称する)に延在するグリッド電極8が設けられている。
【0034】
絶縁体2は、例えばセラミック等の絶縁材料を用いて成り、エミッタユニット30(後述のエミッタ3)とターゲットユニット70(後述のターゲット7)とを互いに絶縁し、内部に真空室1を形成できるものであれば、種々の形態を適用することができる。例えば、図示するように同心状に配置された2つの円筒状の絶縁部材2a,2bの両者間にグリッド電極8(例えば後述の引出端子82)を介在させた状態で、当該両者を蝋付け等により互いに組み付けて構成されたものが挙げられる。
【0035】
エミッタユニット30は、ターゲットユニット70(後述するターゲット7)に対向する部位に電子発生部31を有したエミッタ3と、エミッタ3を両端方向に対し移動自在に支持する可動自在なエミッタ支持部4と、エミッタ3の電子発生部31の外周側に位置しているガード電極5と、を備えている。エミッタ支持部4には、当該エミッタ支持部4を操作するための操作部6が接続されている。
【0036】
エミッタ3においては、前述のように電子発生部31を有し、電圧印加により電子発生部31から電子を発生し、図示するように電子線L1を放出できるもの(放射体)であれば、種々の形態を適用することが可能である。具体例としては、例えば炭素等(カーボンナノチューブ等)の材料を用いてなるものであって、図示するように塊状に成形された、または薄膜状に蒸着させたエミッタ3を適用することが挙げられる。電子発生部31においては、ターゲットユニット70(後述するターゲット7)に対向する側の表面を凹状(曲面状)にして、電子線L1を集束し易くすることが好ましい。
【0037】
エミッタ支持部4においては、前述のようにエミッタ3を両端方向に対して移動自在に支持できるものであって、後述の操作部6によって操作されて可動するものであれば、種々の形態を適用することが可能である。具体例としては、ガード電極5の内側において両端方向に延在した柱状で当該柱状一端側(開口21側)にフランジ部41が形成され他端側(開口22側)にてエミッタ3を支持(例えば、エミッタ3における電子発生部31の反対側を、かしめや溶着等により固着して支持)する移動体40と、両端方向に伸縮自在で真空容器11に支持(例えば図示するようにガード電極5を介して絶縁体2に支持)されたベローズ42と、を備えた構成が挙げられる。
【0038】
このように移動体40,ベローズ42を備えたエミッタ支持部4の場合、そのエミッタ支持部4を後述の操作部6によって操作することにより、ベローズ42が伸縮しながら移動体40が両端方向に移動し、その結果、エミッタ3も両端方向に移動することになる。また、エミッタ支持部4は、種々の材料を適用して構成することができ、特に限定されるものではないが、例えばステンレス(SUS材等)や銅等のように導電性の金属材料を用いてなるものが挙げられる。
【0039】
ベローズ42は、前述のように両端方向に伸縮自在なものであれば、種々の形態を適用することが可能であり、例えば薄板状金属材料等を適宜加工して成形されたものが挙げられる。具体例としては、図示するように、移動体40の外周側を包囲するように両端方向に延在する蛇腹状筒壁43を有した構成が挙げられる。
【0040】
また、図中のベローズ42の支持構成の場合、一端側が移動体40のフランジ部41に蝋付け等により取り付けられ、他端側がガード電極5の内側(図中では後述の段差部53)に蝋付け等により取り付けられて、真空室1と大気側(真空容器11外周側)とを区分し当該真空室1を気密に保持できる構成となっているが、これに限定されるものではない。すなわち、ベローズ42の一端側がエミッタ支持部4に支持(例えば移動体40やフランジ部41に支持)され、他端側が真空容器11に支持(例えばガード電極5の内側や後述のフランジ部50に支持)され、前述のように両端方向に伸縮自在であって、真空室1と大気側(真空容器11外周側)とを区分し当該真空室1を気密に保持できる構成(真空容器11の一部を形成する構成)であれば、種々の形態を適用することが可能である。
【0041】
ガード電極5においては、前述のようにエミッタ3の電子発生部31の外周側に位置するように設けられたものであって、エミッタ支持部4の可動によって移動するエミッタ3の電子発生部31が接離し、当該ガード電極5とエミッタ3とが近接または接触した状態(例えば図1に示す状態)の場合に、当該エミッタ3から放出される電子線L1の分散を抑制できるものであれば、種々の形態を適用することが可能である。
【0042】
ガード電極5の具体例としては、例えばステンレス等(SUS材等)の材料を用いてなり、エミッタ3の外周側で真空室1の両端方向に延在した筒状で、両端方向の一端側に形成されたフランジ部50を介して絶縁体2の開口21の端面21aに支持され、当該両端方向の他端側(すなわち後述のターゲット7側)がエミッタ3と接離する構成が挙げられる。
【0043】
このガード電極5のエミッタ3と接離する構成は、特に限定されるものではない。例えば図3に示すように両端方向の他端側に小径部51を形成した構成であっても良いが、図1図2に示したように、真空室1の横断方向内側に延出し当該真空室1の両端方向においてエミッタ3の電子発生部31の周縁部31aと交叉する縁部52が形成された構成も挙げられる。また、小径部51および縁部52の両方を形成した構成(図示省略)も挙げられる。
【0044】
このような接離構成のガード電極5を備えた場合、エミッタ支持部4の可動により、エミッタ3が当該ガード電極5の内側(筒状内壁側)において両端方向に移動し、エミッタ3の電子発生部31が小径部51あるいは縁部52に接離することになる。また、縁部52を備えた構成の場合には、当該ガード電極5にエミッタ3が近接または接触する場合に、電子発生部31の周縁部31aが、縁部52よって覆われて保護されることになる。
【0045】
図中のガード電極5の場合、一端側から他端側に近づくに連れて階段状に縮径された形状により、当該ガード電極5の内側に段差部53が形成されている。このような段差部53に前記ベローズ42の他端側を取り付けることにより、当該取付作業が容易となり、その取付構造も安定したものとなる。
【0046】
また、図中のガード電極5のように一端側から他端側に近づくに連れて縮径された形状によれば、エミッタ3の電子発生部31が、小径部51あるいは縁部52に向かって案内されながら、ガード電極5の内側を移動することにもなる。また、図中のガード電極5のように、当該ガード電極5の内側にベローズ42を収容できる構成であれば、そのベローズ42に対する真空容器11の外周側からの衝撃等を抑制(ベローズ42を保護し損傷等を抑制)することが可能となる。さらに、X線装置10の小型化にも貢献できる。
【0047】
また、エミッタ3の電子発生部31の周縁部31aの見かけ上の曲率半径を大きくなるようにし、電子発生部31(特に周縁部31a)で起こり得る局部的な電界集中を抑制したり、その電子発生部31から他の部位に対する閃絡を抑制できる形状とすることが挙げられる。例えば、図示するガード電極5のように、両端方向の他端側に凸の曲面部51aを有した形状が挙げられる。
【0048】
なお、図中のガード電極5の場合、外周側にゲッター54が溶接等により取り付けられているが、そのゲッター54の取付位置や材質等は特に限定されるものではない。
【0049】
操作部6においては、前述のようにエミッタ支持部4に接続され当該エミッタ支持部4を操作できるものであって、当該操作により、エミッタ3の電子発生部31とターゲット7との両者間の距離を変化させることができ、エミッタ3の電子発生部31が放電可能領域mまたは無放電領域nに位置するように移動させて位置決め固定したり、図4に示すように放電可能領域m内において電子発生部31とガード電極5との両者間の放電時距離dが任意の距離となるように設定できる構成であれば、種々の形態を適用することが可能である。
【0050】
例えば図1図2の操作部6の場合、移動体40の一端側に回動自在に支持されているボルト等の調整螺子部61と、その調整螺子部61を回動自在に支持する有底筒状の軸受部62と、を備えたものであって、調整螺子部61の先端側(ターゲット7側)の柱状の雄螺子部61aが、移動体40の一端側に形成され螺合軸(雄螺子部61aと螺合する軸)が当該移動体40の軸心と同一方向に延在している雌螺子穴40aに、螺合して接続された螺子機構による構成となっている。
【0051】
軸受部62においては、移動体40の両端方向の移動を妨げないように当該移動体40の一端側を包覆し、有底筒状開口側の端面62aがフランジ部50に対し蝋付け等によって取り付けられて支持されている。また、軸受部62の底部62bを前述の螺合軸に沿って貫通するように穿設されている軸受孔62cにより、雄螺子部61aの根元側と螺子頭部61bとの間を回動自在に支持する構成となっている。また、軸受孔62cの一端側からは、調整螺子部61の螺子頭部61bが突出(一端側に突出)しており、例えば作業者等が把持して操作することにより、調整螺子部61を緩締方向に回動できる構成となっている。
【0052】
図1のような操作部6の場合、調整螺子部61を締める方向に回動させると、移動体40は両端方向のうち一端側に移動し、当該調整螺子部61を緩める方向に回動させると、当該移動体40は他端側(ターゲット側)に移動することになる。また、調整螺子部61の回動を固定した状態にすることにより、移動体40は位置決め固定、すなわちエミッタ3が位置決め固定された状態となる。
【0053】
次に、ターゲットユニット70は、エミッタ3の電子発生部31に対向するターゲット7と、絶縁体2の開口22の端面22aに支持されるフランジ部70aと、を備えている。
【0054】
ターゲット7においては、エミッタ3の電子発生部31から放出された電子線L1が衝突し、図示するようにX線L2等を放出できるものであれば、種々の形態を適用することが可能である。図中のターゲット7においては、エミッタの電子発生部31に対向する部位に、電子線L1に対して所定角度で傾斜する交差方向に延在した傾斜面71が形成されている。この傾斜面71に電子線L1が衝突することにより、X線L2は、電子線L1の照射方向から折曲した方向(例えば図示するように真空室1の横断面方向)に、照射されることになる。
【0055】
グリッド電極8においては、前述のようにエミッタ3とターゲット7との間に介在し、当該グリッド電極8を通過する電子線L1を適宜制御できるものであれば、種々の形態のものを適用することが可能である。例えば図示するように、真空室1の横断方向に延在し電子線L1が通過する通過孔81aを有した電極部(例えばメッシュ状の電極部)81と、絶縁体2を貫通(真空室1横断方向に貫通)する引出端子82と、を備えた構成が挙げられる。
【0056】
以上示したように構成されたX線装置10によれば、操作部6の調整螺子部61を緩締方向に回動してエミッタ支持部4を適宜操作(移動体40を両端方向に移動できるように操作)することにより、エミッタ3の電子発生部31とターゲット7との間の距離を変化させることができる。例えば図2に示したように、電子発生部31が放電可能領域mから無放電領域nに移動し電界放射を抑制された状態であれば、ガード電極5,ターゲット7,グリッド電極8等において所望の改質処理が可能となる。また、例えば前述の大口径排気管を設けた従来装置と比較すると、小型化することが容易であり、製造工数の低減や製品コストの低減を図ることも可能となる。
【0057】
≪X線装置10のガード電極等の改質処理および電界放射方法の一例≫
前述のX線装置10のガード電極5等を改質処理する場合、まず、操作部6において調整螺子部61を締める方向に回動してエミッタ支持部4を操作し、移動体40を一端側に移動させることにより、図2に示すようにエミッタ3を無放電領域nに移動させ、電子発生部31の電界放射を抑制した状態にする。この場合、エミッタ3の電子発生部31とガード電極5の縁部52(なお、図3の場合は小径部51)との両者は、互いに離反(エミッタ3を無放電領域(放電電界以下)に移動)した状態となる。この図2に示すような状態であれば、例えばガード電極5とグリッド電極8(引出端子82等)との間や、ターゲット7とグリッド電極8との間などに所望の改質時電圧を適宜印加することにより、ガード電極5等において放電が繰り返され、当該ガード電極5等が改質処理(例えばガード電極5の表面が溶解平滑化)されることになる。
【0058】
前述の改質処理の後の電界放射方法としては、操作部6において調整螺子部61を緩める方向に回動してエミッタ支持部4を操作し、移動体40を他端側に移動させることにより、図1に示すようにエミッタ3を無放電領域nから放電可能領域mに移動させ、電子発生部31の電界放射が可能な状態にする。この場合、エミッタ3の電子発生部31とガード電極5の縁部52との両者が近接または接触することにより、エミッタ3から放出される電子線L1の分散を抑制できる状態となる。
【0059】
この図1に示すような状態で、エミッタ3の電子発生部31とガード電極5とが互いに同電位で、例えばエミッタ3とターゲット7との間に所望の電圧を印加することにより、エミッタ3の電子発生部31から電子が発生して電子線L1が放出され、その電子線L1がターゲット7に衝突することにより、そのターゲット7からX線L2が放出される。
【0060】
以上示したような改質処理により、X線装置10においてガード電極5からの閃絡現象(電子の発生)を抑制することができ、当該X線装置10の電子発生量を安定させることができる。また、電子線L1を集束形電子束とすることができ、X線L2の焦点も収束し易くなり、高い透視分解能を得ること可能となる。
【0061】
また、電界放射方法においては、前述のように放電可能領域mにエミッタ3を移動させる場合に、操作部6を介して、エミッタ3の電子発生部31とガード電極5の縁部52との両者間の放電時距離dを適宜調整することにより、電流出力を所望の大きさに調整して設定することが可能となる。
【0062】
≪電界放射装置の実施例2≫
図5の符号10Aは、本実施形態の電界放射装置を適用したX線装置の他例を示すものである。なお、図1図4に示したものと同様のものには同一符号を用いる等により、その詳細な説明を適宜省略する。
【0063】
X線装置10Aは、X線装置10と同様の構成であって、操作部6において、調整螺子部61を回動させるモータ63を備えた構成となっている。モータ63は、調整螺子部61の一端側から所定距離を隔て、駆動軸63aが調整螺子部61の螺合軸と同心状に位置するように、絶縁性の筒状支柱63bを介して軸受部62の底部62bの周縁側に蝋付け等により取り付けられて支持されている。また、モータ63の駆動軸63aと調整螺子部61の螺子頭部61bとは、絶縁体(絶縁カップリング等)63cを介して接続されている。
【0064】
以上示したように構成されたX線装置10Aによれば、モータ63の駆動力によって、操作部6の調整螺子部61を緩締方向に回動してエミッタ支持部4を適宜操作(移動体40を両端方向に移動できるように操作)することにより、エミッタ3の電子発生部31とターゲット7との間の距離を変化させることができる。そして、X線装置10と同様に(例えば図2に示したように)、電子発生部31が放電可能領域mから無放電領域nに移動し電界放射を抑制された状態であれば、ガード電極5,ターゲット7,グリッド電極8等において所望の改質処理が可能となる。また、例えば前述の大口径排気管を設けた従来装置と比較すると、小型化することが容易であり、製造工数の低減や製品コストの低減を図ることも可能となる。
【0065】
≪X線装置10Aのガード電極等の改質処理および電界放射方法の一例≫
前述のX線装置10Aのガード電極5等を改質処理する場合、モータ63の駆動力により、操作部6の調整螺子部61を締める方向に回動してエミッタ支持部4を操作し、移動体40を一端側に移動させることにより、X線装置10と同様に(図2に示すように)、エミッタ3を無放電領域nに移動させ、電子発生部31の電界放射を抑制した状態にすることができる。そして、例えばガード電極5とグリッド電極8(引出端子82等)との間や、ターゲット7とグリッド電極8との間などに所望の改質時電圧を適宜印加することにより、当該ガード電極5等が改質処理(例えばガード電極5の表面が溶解平滑化)されることになる。
【0066】
また、前述の改質処理の後の電界放射方法としては、モータ63の駆動力により、操作部6の調整螺子部61を緩める方向に回動してエミッタ支持部4を操作し、移動体40を他端側に移動させることにより、X線装置10と同様に(図1に示すように)、エミッタ3を無放電領域nから放電可能領域mに移動させ、電子発生部31の電界放射が可能な状態にすることができる。
【0067】
以上示したような改質処理されたX線装置10Aは、X線装置10と同様に、ガード電極5からの閃絡現象(電子の発生)を抑制したり電子発生量を安定させることができ、電子線L1を集束形電子束としX線L2の焦点も収束し易くなることから、高い透視分解能を得ること可能となる。
【0068】
また、電界放射方法においても、前述のように放電可能領域mにエミッタ3を移動させる場合に、操作部6を介して、エミッタ3の電子発生部31とガード電極5の縁部52との両者間の放電時距離dを適宜調整することにより、電流出力を所望の大きさに調整して設定することが可能となる。
【0069】
≪電界放射装置の実施例3≫
図6の符号10Bは、本実施形態の電界放射装置を適用したX線装置の他例を示すものである。なお、図1図4に示したものと同様のものには同一符号を用いる等により、その詳細な説明を適宜省略する。
【0070】
X線装置10Bは、X線装置10,10Aのように螺子機構による操作部6を適用したものとは異なるものであって、例えば図6に示すエアシリンダ64のような往復動機構による操作部6Bを適用した構成である。
【0071】
この操作部6Bは、エミッタ支持部4の移動体40を両端方向に往復動させるエアシリンダ64を備えた構成となっている。エアシリンダ64は、移動体40の一端側(図中ではフランジ部41の内周側に位置する突出部41a)から所定距離を隔て、ピストン64aの軸が移動体40の軸心に沿って延在して位置(図6では移動体40の軸心と同心状に位置)するように、絶縁性の筒状支柱64bを介してフランジ部50に蝋付け等により取り付けられて支持されている。また、ピストン64aと移動体40(図中では突出部41a)とは、絶縁体64cを介して接続されている。
【0072】
以上示したように構成されたX線装置10Bによれば、エアシリンダ64の往復動力によって、操作部6Bのピストン64aを両端方向に往復動してエミッタ支持部4を適宜操作(移動体40を両端方向に移動できるように操作)することにより、エミッタ3の電子発生部31とターゲット7との間の距離を変化させることができる。そして、X線装置10と同様に(例えば図2に示したように)、電子発生部31が放電可能領域mから無放電領域nに移動し電界放射を抑制された状態であれば、ガード電極5,ターゲット7,グリッド電極8等において所望の改質処理が可能となる。また、例えば前述の大口径排気管を設けた従来装置と比較すると、小型化することが容易であり、製造工数の低減や製品コストの低減を図ることも可能となる。
【0073】
≪X線装置10Bのガード電極等の改質処理および電界放射方法の一例≫
前述のX線装置10Bのガード電極5等を改質処理する場合、エアシリンダ64の往復動力によって、操作部6Bのピストン64aを当該エアシリンダ64内に後退し、移動体40を一端側に移動させることにより、X線装置10と同様に(図2に示すように)、エミッタ3を無放電領域nに移動させ、電子発生部31の電界放射を抑制した状態にすることができる。そして、例えばガード電極5とグリッド電極8(引出端子82等)との間や、ターゲット7とグリッド電極8との間などに所望の改質時電圧を適宜印加することにより、当該ガード電極5等が改質処理(例えばガード電極5の表面が溶解平滑化)されることになる。
【0074】
また、前述の改質処理の後の電界放射方法としては、エアシリンダ64の往復動力によって、操作部6Bのピストン64aを当該エアシリンダ64内から伸長し、移動体40を他端側に移動させることにより、X線装置10と同様に(図1に示すように)、エミッタ3を無放電領域nから放電可能領域mに移動させ、電子発生部31の電界放射が可能な状態にすることができる。
【0075】
以上示したような改質処理されたX線装置10Bは、X線装置10と同様に、ガード電極5からの閃絡現象(電子の発生)を抑制したり電子発生量を安定させることができ、電子線L1を集束形電子束としX線L2の焦点も収束し易くなることから、高い透視分解能を得ること可能となる。
【0076】
また、電界放射方法においても、前述のように放電可能領域mにエミッタ3を移動させる場合に、操作部6Bを介して、エミッタ3の電子発生部31とガード電極5の縁部52との両者間の放電時距離dを適宜調整することにより、電流出力を所望の大きさに調整して設定することが可能となる。
【0077】
以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変更等が可能であることは、当業者にとって明白なことであり、このような変更等が特許請求の範囲に属することは当然のことである。
【0078】
例えば、本発明の電界放射装置は、電子線のターゲットへの衝突等により熱を発生する場合には、冷却機能を用いて当該電界放射装置を冷却できる構成としても良い。冷却機能は、空冷,水冷,油冷等の種々の方式のものを適用することが挙げられる。当該油冷方式の冷却機能の場合には、例えば所定容器内の冷却用油中に電界放射装置を浸漬させた構成が挙げられ、また、当該浸漬状態において冷却用油の脱泡処理(真空ポンプ等を用いた処理)等を適宜行うことも挙げられる。
【0079】
真空容器の真空室を気密(高真空等)に保持するには、当該真空容器を構成する各要素(絶縁体,エミッタユニット,ターゲットユニット等)は一体蝋付けする手法が挙げられるが、当該真空室を気密(高真空等)に保持できるものであれば、種々の手法を適用することが可能である。
【0080】
エミッタ支持部や操作部においては、例えば真空室の真空圧力が作用することになるが、操作部を介した操作によってエミッタを真空室の両端方向に対し移動自在に支持でき、当該エミッタを所望位置(放電可能領域や無放電領域等)に移動させて位置決め固定できる構成であれば、種々の態様を適用することが可能である。
【0081】
例えば、操作部が往復動機構による構成の場合、移動体の軸心に沿って往復動自在で当該移動体の一端側に接続されたピストンを備え、当該操作部によりピストンが往復動して移動体が両端方向に移動し、エミッタの電子発生部とターゲットとの両者間の距離が変化し、任意の距離でエミッタを位置決め固定できるものであれば、種々の態様の往復動機構を適用することが可能である。前述のX線装置10Bを例にして説明すると、エアシリンダ64のピストン64aの往復動を利用した機構を適用する替わりに、ボイスコイルモータのピストン(可動子等)の往復動を利用した機構(図示省略)を適用することが挙げられ、実施例3と同様の作用効果を奏することが可能である。
【0082】
また、エミッタが放電可能領域を越えてターゲット側に移動しないように、当該移動を規制する規制手段を備えた構成であっても良い。この規制手段によれば、たとえ放電可能領域に位置するエミッタがガード電極と接触する構成であっても、当該接触圧力を低く抑えることができ、当該エミッタやガード電極の形状等の変形を防止し、電界放射装置の所望の特性を保持することに貢献可能となる。
【0083】
また、操作部によりエミッタ支持部を操作して、エミッタが所望位置(放電可能領域や無放電領域等)に移動した場合に節度感(クリック感)が得られる構成であれば、当該操作部によるエミッタ支持部の操作時に当該エミッタの所望位置を把握することが容易になったり、当該操作部の操作性が向上する等、種々貢献することが可能となる。
【0084】
また、前述のように所望位置に位置した状態のエミッタを適宜固定できる固定手段、すなわち操作部の操作を固定する手段を備えた構成であれば、例えば意に反する外部からの力(前述の油冷方式の冷却機能を備えた構成の場合には、冷却用油の脱泡処理時に支持部に対して作用し得る真空ポンプの吸引力等)が作用したとしても、当該エミッタが所望位置から移動することを抑制でき、電界放射装置による電界放射やガード電極等の改質処理をそれぞれ適確に実現できるように貢献可能となる。この固定手段は、特に限定されるものではなく、種々の態様のものを適用することが可能であるが、前述のX線装置10を例にして説明すると、操作部6の調整螺子部61の緩締方向の回動を固定することが可能なストッパーが挙げられる。
【0085】
また、エミッタ支持部の可動を平滑にするため、当該可動を案内するガイド等を設けても良い。例えば、前述のX線装置10を例にして説明すると、移動体40において軸心の周方向の回動を抑制(操作部6の操作時に連動して回動しないように抑制)して当該移動体40を両端方向に案内するガイドを備えることが挙げられる。
【符号の説明】
【0086】
1…真空室
10,10A,10B…X線装置
11…真空容器
2…絶縁体
3…エミッタ
31…電子発生部
31a…周縁部
4…エミッタ支持部
40…移動体
42…ベローズ
5…ガード電極
51…小径部
52…縁部
6,6B…操作部
61…調整螺子部
63…モータ
64…エアシリンダ
64a…ピストン
7…ターゲット
8…グリッド電極
9…ターゲット支持部
【要約】
【課題】エミッタの電界放射を抑制しながらガード電極等の改質処理を行うことができ、また、電界放射電流を容易に調製して設定し、電界放射装置の特性の向上に貢献する。
【解決手段】真空室1においてエミッタ3およびターゲット7を互いに対向して配置し、エミッタ3の電子発生部31の外周側には、ガード電極5を備える。エミッタ3は、真空室1の両端方向に移動自在な移動体40を有したエミッタ支持部4により、当該両端方向に対し移動自在に支持する。エミッタ支持部4においては、そのエミッタ支持部4に接続され操作部6により操作する。この操作部6によって、エミッタ支持部4が操作されて、エミッタ3の電子発生部31とターゲット7との両者間の距離が変化し、任意の距離でエミッタ3が位置決め固定され、当該位置決め固定の状態で電界放射する。
【選択図】図1
図1
図2
図3
図4
図5
図6