特許第6226196号(P6226196)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

<>
  • 特許6226196-回転電機のロータ 図000002
  • 特許6226196-回転電機のロータ 図000003
  • 特許6226196-回転電機のロータ 図000004
  • 特許6226196-回転電機のロータ 図000005
  • 特許6226196-回転電機のロータ 図000006
  • 特許6226196-回転電機のロータ 図000007
  • 特許6226196-回転電機のロータ 図000008
  • 特許6226196-回転電機のロータ 図000009
  • 特許6226196-回転電機のロータ 図000010
  • 特許6226196-回転電機のロータ 図000011
  • 特許6226196-回転電機のロータ 図000012
  • 特許6226196-回転電機のロータ 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6226196
(24)【登録日】2017年10月20日
(45)【発行日】2017年11月8日
(54)【発明の名称】回転電機のロータ
(51)【国際特許分類】
   H02K 1/30 20060101AFI20171030BHJP
   H02K 1/27 20060101ALI20171030BHJP
   H02K 1/28 20060101ALI20171030BHJP
【FI】
   H02K1/30 A
   H02K1/27 501A
   H02K1/28 A
【請求項の数】8
【全頁数】15
(21)【出願番号】特願2014-83774(P2014-83774)
(22)【出願日】2014年4月15日
(65)【公開番号】特開2015-204715(P2015-204715A)
(43)【公開日】2015年11月16日
【審査請求日】2016年6月9日
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110000604
【氏名又は名称】特許業務法人 共立
(72)【発明者】
【氏名】高橋 裕樹
【審査官】 安池 一貴
(56)【参考文献】
【文献】 特開2007−089291(JP,A)
【文献】 特許第5451934(JP,B1)
【文献】 米国特許出願公開第2014/0091664(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 1/00−1/34
H02K 15/03
(57)【特許請求の範囲】
【請求項1】
軸方向に積層された複数の鋼板(20)をかしめ固定することにより形成されてステータに対して径方向に対向配置され、2個で対をなし前記ステータ側に向かうにつれて互いに離間するようにV字状に配置された複数対の磁石収容孔(12)を有するロータコア(11)と、V字状に配置された対をなす前記磁石収容孔に収容されてそれぞれ一つの磁極を形成する複数対の磁石(13)と、を備えた回転電機のロータにおいて、
前記ロータコアは、周方向に隣接し極性が異なる二つの前記磁極の間に位置するq軸コア部(16)に形成されたかしめ部(21,21B,21C,21D)と、前記q軸コア部と前記磁石との間に形成された第1フラックスバリア(17)と、対をなす前記磁石収容孔のそれぞれの磁極中心側の端部から前記ロータコアの中心軸線(O)側に広がる対をなす第2フラックスバリア(18)と、を有し、
前記かしめ部は、前記第1フラックスバリアと前記かしめ部との最短距離(A)と、前記第2フラックスバリアと前記かしめ部との最短距離(B)とが等距離となる位置に形成されていることを特徴とする回転電機のロータ。
【請求項2】
前記かしめ部は、かしめ方向から見たときの形状が円形であることを特徴とする請求項1に記載の回転電機のロータ。
【請求項3】
前記かしめ部は、径方向に延びる直線部(23)又は曲線部を有する形状に形成されていることを特徴とする請求項1に記載の回転電機のロータ。
【請求項4】
前記かしめ部は、周方向に延びる直線部(24)又は曲線部を有する形状に形成されていることを特徴とする請求項1又は3に記載の回転電機のロータ。
【請求項5】
前記かしめ部は、突出側の少なくとも外周面が隣接する前記鋼板に当接していることを特徴とする請求項1〜4の何れか一項に記載の回転電機のロータ。
【請求項6】
軸方向に積層された複数の鋼板(20)をかしめ固定することにより形成されてステータに対して径方向に対向配置され、周方向に配列された複数の磁石収容孔(12)を有するロータコア(11)と、前記磁石収容孔に収容されて周方向に極性が交互に異なる複数の磁極を形成する複数の磁石(13)と、を備えた回転電機のロータにおいて、
前記磁石収容孔は、長辺が周方向に延びかつ短辺が径方向に延びるように断面長方形状に形成されており、
前記ロータコアは、周方向に隣接し極性が異なる二つの前記磁極の間に位置するq軸コア部(16)に形成されたかしめ部(21E,21F,21G)を有し、
前記かしめ部は、前記磁石収容孔の前記q軸コア部側の短辺の一端と前記かしめ部との最短距離(C)と、該短辺の他端と前記かしめ部との最短距離(D)とが等距離となる位置に形成されていることを特徴とする回転電機のロータ。
【請求項7】
前記ロータコアは、2個で対をなし前記ステータ側に向かうにつれて互いに離間するようにV字状に配置された複数対の磁石収容孔(12)と、V字状に配置された対をなす前記磁石収容孔に収容されてそれぞれ一つの磁極を形成する複数対の磁石(13)と、を有することを特徴とする請求項6に記載の回転電機のロータ。
【請求項8】
軸方向に積層された複数の鋼板(20)をかしめ固定することにより形成されてステータに対して径方向に対向配置され、2個で対をなし前記ステータ側に向かうにつれて互いに離間するようにV字状に配置された複数対の磁石収容孔(12)を有するロータコア(11)と、V字状に配置された対をなす前記磁石収容孔に収容されてそれぞれ一つの磁極を形成する複数対の磁石(13)と、を備えた回転電機のロータにおいて、
前記ロータコアは、周方向に隣接し極性が異なる二つの前記磁極の間に位置するq軸コア部(16)に形成されたかしめ部(21,21B,21C,21D)と、前記q軸コア部と前記磁石との間に形成された第1フラックスバリア(17)と、を有し、
前記かしめ部は、前記第1フラックスバリアの外周側の角部と前記かしめ部との最短距離(C)と、前記第1フラックスバリアの内周側の角部と前記かしめ部との最短距離(D)とが等距離となる位置に形成されていることを特徴とする回転電機のロータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハイブリッド車両や電気自動車等の車両に搭載されて電動機や発電機として用いられる回転電機のロータに関する。
【背景技術】
【0002】
従来、車両等に搭載されて使用される回転電機として、ロータの内部に磁石を埋め込んだ構造をもつ回転界磁形式の同期モータ(以下、「IPMモータ」という。)が知られている。このIPMモータは、ロータの磁化によるリラクタンストルクと磁石の磁化によるトルクの両方を利用することができるので高効率であることから、ハイブリッド車両や電気自動車等に好適に採用されている。
【0003】
このようなIPMモータは、ステータと、ステータと径方向に対向配置されるロータとを備えている。そして、ロータとして、複数の鋼板を軸方向に積層してかしめ固定することにより形成されて、2個で対をなしステータ側に向かうにつれて互いに離間するようV字状に配置された複数対の磁石収容孔を有するロータコアと、V字状に配置された対をなす磁石収容孔に収容されてそれぞれ一つの磁極を形成する複数対の磁石とを備えたもの知られている。
【0004】
そして、特許文献1には、ロータコアのd軸上に磁気的空隙部としての中央バリア(フラックスバリア)を設けて、d軸インダクタンスとq軸インダクタンスの差を大きくすることによりリラクタンストルクを得る技術が開示されている。また、特許文献2には、軸方向に積層された複数の鋼板をかしめ固定して形成するロータコアの製造方法及び装置が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2011−211860号公報
【特許文献2】特開平6−284649号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、上記の特許文献1に開示されたロータの構造では、d軸インダクタンスの低減効果や、中央バリアへの磁束漏れ抑制効果を得ることができるが、大きな遠心力が作用したときにロータを裁断しようとする力が大きくなっているという問題がある。
【0007】
一方、複数の鋼板を軸方向に積層して形成されるロータコアを、特許文献2等に開示されたかしめの技術を採用して固定した場合には、かしめ部と中央バリアとの間で応力集中が起きる。このとき、遠心応力や、ロータコアと磁石との線膨張係数の差による熱応力の影響により、大きな応力集中が起きる。
【0008】
本発明は、上記事情に鑑みてなされたものであり、複数の鋼板を軸方向に積層してかしめ固定することにより形成されるロータコアにおいて、応力集中を緩和し得るようにした回転電機のロータを提供することを解決すべき課題とする。
【課題を解決するための手段】
【0009】
上記課題を解決するためになされた第一の発明は、
軸方向に積層された複数の鋼板(20)をかしめ固定することにより形成されてステータに対して径方向に対向配置され、2個で対をなし前記ステータ側に向かうにつれて互いに離間するようにV字状に配置された複数対の磁石収容孔(12)を有するロータコア(11)と、V字状に配置された対をなす前記磁石収容孔に収容されてそれぞれ一つの磁極を形成する複数対の磁石(13)と、を備えた回転電機のロータにおいて、
前記ロータコアは、周方向に隣接し極性が異なる二つの前記磁極の間に位置するq軸コア部(16)に形成されたかしめ部(21,21B,21C,21D)と、前記q軸コア部と前記磁石との間に形成された第1フラックスバリア(17)と、対をなす前記磁石収容孔のそれぞれの磁極中心側の端部から前記ロータコアの中心軸線(O)側に広がる対をなす第2フラックスバリア(18)と、を有し、
前記かしめ部は、前記第1フラックスバリアと前記かしめ部との最短距離(A)と、前記第2フラックスバリアと前記かしめ部との最短距離(B)とが等距離となる位置に形成されていることを特徴とする。
ことを特徴とする。
【0010】
本発明によれば、周方向に隣接し極性が異なる二つの磁極の間に位置するq軸コア部に形成されたかしめ部は、q軸コア部と磁石との間に形成された第1フラックスバリアとの最短距離と、対をなす磁石収容孔のそれぞれの磁極中心側の端部からロータコアの中心軸線側に広がる対をなす第2フラックスバリアとの最短距離とが等距離となる位置に形成されている。そのため、第1フラックスバリア及び第2フラックスバリアとかしめ部との間に発生する応力集中を効果的に低減することができる。これにより、遠心応力や、ロータコアと磁石との線膨張係数の差による熱応力の影響により、大きな応力集中が起きるのを回避することができる。
【0011】
上記課題を解決するためになされた第二の発明は、
軸方向に積層された複数の鋼板(20)をかしめ固定することにより形成されてステータに対して径方向に対向配置され、周方向に配列された複数の磁石収容孔(12)を有するロータコア(11)と、前記磁石収容孔に収容されて周方向に極性が交互に異なる複数の磁極を形成する複数の磁石(13)と、を備えた回転電機のロータにおいて、
前記磁石収容孔は、長辺が周方向に延びかつ短辺が径方向に延びるように断面長方形状に形成されており、
前記ロータコアは、周方向に隣接し極性が異なる二つの前記磁極の間に位置するq軸コア部(16)に形成されたかしめ部(21E,21F,21G)を有し、
前記かしめ部は、前記磁石収容孔の前記q軸コア部側の短辺の一端と前記かしめ部との最短距離(C)と、該短辺の他端と前記かしめ部との最短距離(D)とが等距離となる位置に形成されていることを特徴とする。
【0012】
本発明によれば、周方向に隣接し極性が異なる二つの磁極の間に位置するq軸コア部に形成されたかしめ部は、長辺が周方向に延びかつ短辺が径方向に延びる断面長方形状の磁石収容孔のq軸コア部側の短辺の一端との最短距離と、その短辺の他端との最短距離とが等距離となる位置に形成されている。そのため、磁石収容孔とかしめ部との間に発生する応力集中を効果的に低減することができる。これにより、遠心応力や、ロータコアと磁石との線膨張係数の差による熱応力の影響により、大きな応力集中が起きるのを回避することができる。
また、上記課題を解決するためになされた第三の発明は、
軸方向に積層された複数の鋼板(20)をかしめ固定することにより形成されてステータに対して径方向に対向配置され、2個で対をなし前記ステータ側に向かうにつれて互いに離間するようにV字状に配置された複数対の磁石収容孔(12)を有するロータコア(11)と、V字状に配置された対をなす前記磁石収容孔に収容されてそれぞれ一つの磁極を形成する複数対の磁石(13)と、を備えた回転電機のロータにおいて、
前記ロータコアは、周方向に隣接し極性が異なる二つの前記磁極の間に位置するq軸コア部(16)に形成されたかしめ部(21,21B,21C,21D)と、前記q軸コア部と前記磁石との間に形成された第1フラックスバリア(17)と、を有し、
前記かしめ部は、前記第1フラックスバリアの外周側の角部と前記かしめ部との最短距離(C)と、前記第1フラックスバリアの内周側の角部と前記かしめ部との最短距離(D)とが等距離となる位置に形成されていることを特徴とする。
本発明によれば、周方向に隣接し極性が異なる二つの磁極の間に位置するq軸コア部に形成されたかしめ部は、q軸コア部と磁石との間に形成された第1フラックスバリアの外周側の角部との最短距離と、その第1フラックスバリアの内周側の角部との最短距離とが等距離となる位置に形成されている。そのため、第1フラックスバリアとかしめ部との間に発生する応力集中を効果的に低減することができる。これにより、遠心応力や、ロータコアと磁石との線膨張係数の差による熱応力の影響により、大きな応力集中が起きるのを回避することができる。
【0013】
なお、この欄及び特許請求の範囲で記載された各部材や部位の後の括弧内の符号は、後述する実施形態に記載の具体的な部材や部位との対応関係を示すものであり、特許請求の範囲に記載された各請求項の構成に何ら影響を及ぼすものではない。
【図面の簡単な説明】
【0014】
図1】実施形態1に係る回転電機のロータの平面図である。
図2】実施形態1に係る回転電機のロータにおいて2つの磁極を含む範囲の部分平面図である。
図3】実施形態1に係る回転電機のロータのかしめ部の断面図である。
図4】実施形態2に係る回転電機のロータにおいて2つの磁極を含む範囲の部分平面図である。
図5】実施形態2に係る回転電機のロータのかしめ部を拡大して示す拡大平面図である。
図6】実施形態3に係る回転電機のロータにおいて2つの磁極を含む範囲の部分平面図である。
図7】実施形態3に係る回転電機のロータのかしめ部を拡大して示す拡大平面図である。
図8】実施形態4に係る回転電機のロータにおいて2つの磁極を含む範囲の部分平面図である。
図9】実施形態4に係る回転電機のロータのかしめ部を拡大して示す拡大平面図である。
図10】実施形態5に係る回転電機のロータにおいて2つの磁極を含む範囲の部分平面図である。
図11】実施形態6に係る回転電機のロータにおいて2つの磁極を含む範囲の部分平面図である。
図12】実施形態7に係る回転電機のロータにおいて2つの磁極を含む範囲の部分平面図である。
【発明を実施するための形態】
【0015】
以下、本発明に係る回転電機のロータの実施形態について図面を参照して具体的に説明する。
【0016】
〔実施形態1〕
実施形態1に係る回転電機のロータについて図1図3を参照して説明する。実施形態1のロータ10Aは、例えば車両用モータとして使用される回転電機(図示せず)に搭載されるものであって、回転電機のハウジング内において、ステータ(図示せず)の内周側に回転自在に収容配置されている。回転電機は、ハウジングに軸受を介して両端部を回転自在に支持された回転軸(図示せず)を有し、実施形態1のロータ10Aは、この回転軸の外周面に嵌合固定されている。
【0017】
実施形態1のロータ10Aは、ステータに対して径方向に対向配置され、周方向に配列された複数の磁石収容孔12を有するロータコア11と、各磁石収容孔12にそれぞれ埋設された複数の磁石(永久磁石)13と、を備えている。
【0018】
ロータコア11は、中央に貫通孔11aを有する円環状の鋼板20を軸方向に複数積層して厚肉円筒状に形成されている。このロータコア11は、回転軸の外周に貫通孔11aを嵌合することにより固定されている。このロータコア11の、ステータの内周面と対向する外周面側には、軸方向に貫通する複数(実施形態1では24個)の磁石収容孔12が周方向に所定距離を隔てて設けられている。
【0019】
実施形態1の場合、磁石収容孔12は、2個で対をなし外周側に向かうにつれて互いに離間するようにV字状に配置された複数対(合計12対)の磁石収容孔12により構成されている。一対の磁石収容孔12,12の間には、当該部位に磁束飽和を起こさせ、磁気回路の形成を阻害させるための中央ブリッジ15が略一定の幅で径方向に延伸するよう形成されている。
【0020】
各磁石収容孔12には、ロータコア11の中心軸線Oと直角方向の断面形状が長方形の磁石(永久磁石)13が1個ずつ収容されている。実施形態1の場合、V字状に配置された一対の磁石収容孔12,12に収容された一対の磁石13,13により一つの磁極が形成されている。この場合、12対の磁石13,13によって、周方向に極性が交互に異なる複数の磁極(実施形態1では12極(N極:6、S極:6))が形成されている。各磁石収容孔12に収容された磁石13は、径方向外方側端面と磁極中心側端面とが交わる角部13aが中央ブリッジ15の径方向外方側の根元部に当接した状態で位置決めされている。
【0021】
なお、ロータ10Aの1磁極分において、一対の磁石収容孔12,12は、ロータコア11の中心軸線Oと磁極中心とを通る磁極中心線C1に対して線対称となる状態に形成されている。また、1つの磁極を形成する一対の磁石13,13は、磁極中心線C1に対して線対称となる状態(外周側が開くV字状)に配置されている。
【0022】
ロータコア11の周方向に隣接する二つの磁極の間には、磁極間から他の磁極間へ磁束が流れる部位となるq軸コア部16が形成されている。そして、各磁石収容孔12に収容された磁石13とq軸コア部16との間、即ち、各磁石収容孔12のq軸コア部16側には、磁気的空隙部としての第1フラックスバリア17が設けられている。第1フラックスバリア17の周方向外側は、q軸コア部16の周方向中心と中心軸線Oとを通るq軸中心線L1から第1フラックスバリア17までの周方向幅がW1となる位置まで広がっている。ここでの周方向幅W1は、q軸中心線L1から第1フラックスバリア17まで最短距離となる位置での周方向幅である。実施形態1の場合、周方向幅W1は、q軸中心線L1とこれに平行な平行線L2との離間距離となっている。
【0023】
なお、各磁石収容孔12に収容された磁石13は、第1フラックスバリア17、並びに各磁石収容孔12の径方向外方側壁面及び内方側壁面との間の微小な隙間に充填された樹脂等の非磁性体よりなる充填材(図示せず)により、磁石収容孔12に固定保持されている。
【0024】
対をなす磁石収容孔12,12のそれぞれの磁極中心側には、それぞれの磁石収容孔12,12の磁極中心側端部から中心軸線O側に広がる対をなす第2フラックスバリア18,18が設けられている。対をなす第2フラックスバリア18,18の間には、対をなす磁石収容孔12,12の間に形成された中央ブリッジ15が中心軸線Oに向かって延長するように形成されている。各第2フラックスバリア18は、中心軸線Oから一対の磁石13,13までのそれぞれ最短距離に位置する角部13b,13bを結ぶ線分よりも中心軸線O側に広がっている。
【0025】
より具体的には、各第2フラックスバリア18は、ロータコア11の内周面までの距離がW3となる位置まで広がっている。即ち、ロータコア11の内周側に位置する円環部19の内周面から第2フラックスバリア18までの径方向幅がW3となる位置まで広がっている。ここでの径方向幅W3は、円環部19の内周面から第2フラックスバリア18まで最短距離となる位置での径方向幅である。この径方向幅W3は、周方向幅W1と同等以上になるように設定されている。
【0026】
また、各第2フラックスバリア18は、点A及び点Bよりも周方向外側に広がるように形成されている。即ち、各第2フラックスバリア18の周方向外側は、q軸中心線L1から第2フラックスバリア18までの周方向幅がW2となる位置まで広がっている。ここでの周方向幅W2は、q軸中心線L1から第2フラックスバリア18まで最短距離となる位置での周方向幅である。実施形態1の場合、周方向幅W2は、q軸中心線L1とこれに平行な平行線L2との離間距離となっている。この周方向幅W2は、周方向幅W1と同等以上になるように設定され、実施形態1では、周方向幅W2と周方向幅W1が同等にされている。
【0027】
そして、ロータコア11のq軸コア部16には、軸方向に積層された複数の鋼板20を固定するかしめ部21が形成されている。実施形態1のかしめ部21は、かしめ方向(図1図2の手前側)から見たときの形状が円形となるように形成されている。このかしめ部21は、第1フラックスバリア17及び第2フラックスバリア18から等距離となる位置に形成されている。即ち、かしめ部21は、図2に示すように、第1フラックスバリア17とかしめ部21の間の最短距離Aと、第2フラックスバリア18とかしめ部21の間の最短距離Bが、同等(A=B)となる位置に形成されている。なお、実施形態1の場合には、かしめ部21の中心がq軸中心線L1上に位置している。
【0028】
また、このかしめ部21は、図3に示すように、かしめ加工が施された円形の部位がかしめ方向と反対側の面(図3の下方側の面)から突出して、その突出部が隣接する鋼板20のかしめ部21の突出背面側に形成された凹部内に入り込んだ状態になっている。これにより、かしめ部21の突出側の少なくとも外周面が、突出側に隣接する鋼板20のかしめ部21の凹部内周面に当接した状態になり、隣接する鋼板20同士がかしめ部21で強固に固定されている。
【0029】
なお、図3には、かしめ方向と反対側の4枚の鋼板20のみが示され、他の鋼板20は省略されている。この場合、かしめ方向と反対側の最外層(図3の最下端層)に位置する鋼板20aには、円形に形成されるかしめ部21の直径よりも僅かに小さい直径の円孔22が設けられている。これにより、最外層の鋼板20aに隣接する鋼板20bのかしめ部21が最外層の鋼板20aの円孔22内に圧入嵌合した状態になり、両鋼板20a,20bが強固に固定されている。
【0030】
以上のように構成された実施形態1のロータ10Aによれば、q軸コア部16に形成されたかしめ部21は、第1フラックスバリア17及び第2フラックスバリア18から等距離となる位置に形成されている。そのため、第1フラックスバリア17及び第2フラックスバリア18とかしめ部21との間に発生する応力集中を効果的に低減することができる。これにより、遠心応力や、ロータコア11と磁石13との線膨張係数の差による熱応力の影響により、大きな応力集中が起きるのを回避することができる。
【0031】
また、実施形態1のかしめ部21は、かしめ方向から見たときの形状が円形であり、応力集中が最も発生し難い形状に形成されているので、応力集中をより確実に回避することができる。
【0032】
また、実施形態1のかしめ部21は、突出側の外周部の少なくとも角部が隣接する鋼板20に当接するようにされているので、隣接する鋼板20同士をかしめ部21で強固に固定することができる。
【0033】
〔実施形態2〕
実施形態2に係る回転電機のロータ10Bは、図4及び図5に示すように、ロータコア11を構成する積層された複数の鋼板20を固定するかしめ部21Bの形状のみが実施形態1のものと異なる。よって、その他の実施形態1と共通する部材や構成についての詳しい説明は省略し、異なる点及び重要な点について説明する。なお、実施形態1と共通する部材については、同じ符号を用いる。
【0034】
実施形態2のロータコア11は、実施形態1と同様に、磁石収容孔12、第1フラックスバリア17及び第2フラックスバリア18が所定位置に設けられている。そして、ロータコア11のq軸コア部16には、図4に示すように、長軸が径方向を向くように小判型に形成されたかしめ部21Bが設けられている。即ち、このかしめ部21Bは、かしめ方向から見たときに、径方向に延びる一対の直線部23,23を有する小判型形状に形成されている。これにより、周方向にかしめ力が強く働く状態にされている。
【0035】
実施形態2のかしめ部21Bは、実施形態1と同様に、第1フラックスバリア17及び第2フラックスバリア18から等距離となる位置に形成されている。即ち、かしめ部21Bは、図4に示すように、第1フラックスバリア17とかしめ部21Bの間の最短距離Aと、第2フラックスバリア18とかしめ部21Bの間の最短距離Bが、同等(A=B)となる位置に形成されている。なお、実施形態2の場合にも、かしめ部21Bの中心がq軸中心線L1上に位置している。
【0036】
以上のように構成された実施形態2のロータ10Bによれば、第1フラックスバリア17及び第2フラックスバリア18とかしめ部21Bとの間に発生する応力集中を効果的に低減することができるなど、実施形態1のロータ10Aと同様の作用及び効果を奏する。
【0037】
さらに、実施形態2のかしめ部21Bは、径方向に延びる一対の直線部23,23を有する小判型形状に形成されている。これにより、周方向にかしめ力が強く働くようにされているので、ロータコア11がトルクを受けたときにも、積層された鋼板20の回転ずれの発生を防止することができる。
【0038】
なお、実施形態2のかしめ部21Bは、径方向に延びる一対の直線部23,23を有する小判型に形成されているが、これに代えて、径方向に延びる一対の曲線部を有する楕円型にしてもよい。
【0039】
〔実施形態3〕
実施形態3に係る回転電機のロータ10Cは、図6及び図7に示すように、ロータコア11を構成する積層された複数の鋼板20を固定するかしめ部21Cの形状のみが実施形態1のものと異なる。よって、その他の実施形態1と共通する部材や構成についての詳しい説明は省略し、異なる点及び重要な点について説明する。なお、実施形態1と共通する部材については、同じ符号を用いる。
【0040】
実施形態3のロータコア11は、実施形態1と同様に、磁石収容孔12、第1フラックスバリア17及び第2フラックスバリア18が所定位置に設けられている。そして、ロータコア11のq軸コア部16には、図6に示すように、長軸が周方向を向くように小判型に形成されたかしめ部21Cが設けられている。即ち、このかしめ部21Cは、かしめ方向から見たときに、周方向に延びる一対の直線部24,24を有する小判型形状に形成されている。これにより、径方向にかしめ力が強く働く状態にされている。
【0041】
実施形態3のかしめ部21Cは、実施形態1と同様に、第1フラックスバリア17及び第2フラックスバリア18から等距離となる位置に形成されている。即ち、かしめ部21Cは、図6に示すように、第1フラックスバリア17とかしめ部21Cの間の最短距離Aと、第2フラックスバリア18とかしめ部21Cの間の最短距離Bが、同等(A=B)となる位置に形成されている。なお、実施形態3の場合にも、かしめ部21Cの中心がq軸中心線L1上に位置している。
【0042】
以上のように構成された実施形態3のロータ10Cによれば、第1フラックスバリア17及び第2フラックスバリア18とかしめ部21Cとの間に発生する応力集中を効果的に低減することができるなど、実施形態1のロータ10Aと同様の作用及び効果を奏する。
【0043】
さらに、実施形態3のかしめ部21Cは、周方向に延びる一対の直線部24を有する小判型形状に形成されている。これにより、周方向にかしめ力が強く働くようにされているので、積層された複数の鋼板20間に製造公差などによる重量差ができて遠心力差が発生しても、それぞれに抑え合うようにすることができる。
【0044】
なお、実施形態3のかしめ部21Cは、周方向に延びる一対の直線部24,24を有する小判型に形成されているが、これに代えて、周方向に延びる一対の曲線部を有する楕円型にしてもよい。なお、曲線部は、ロータコア11の外径の曲率と同じ程度以下の曲率で形成されているのが好ましい。
【0045】
〔実施形態4〕
実施形態4に係る回転電機のロータ10Dは、図8及び図9に示すように、ロータコア11を構成する積層された複数の鋼板20を固定するかしめ部21Dの形状のみが実施形態1のものと異なる。よって、その他の実施形態1と共通する部材や構成についての詳しい説明は省略し、異なる点及び重要な点について説明する。なお、実施形態1と共通する部材については、同じ符号を用いる。
【0046】
実施形態4のロータコア11は、実施形態1と同様に、磁石収容孔12、第1フラックスバリア17及び第2フラックスバリア18が所定位置に設けられている。そして、ロータコア11のq軸コア部16には、図8に示すように、かしめ方向から見たときの形状が矩形のかしめ部21Dが設けられている。即ち、このかしめ部21Dは、径方向に延びる一対の直線部23,23及び周方向に延びる一対の直線部24,24を有する矩形形状に形成されている。実施形態4の場合、径方向に延びる一対の直線部23,23と周方向に延びる一対の直線部24,24は、同じ長さに設定されている。かしめ部21Dの4箇所の角部は、所定の曲率で湾曲した湾曲面にされている。
【0047】
実施形態4のかしめ部21Dは、実施形態1と同様に、第1フラックスバリア17及び第2フラックスバリア18から等距離となる位置に形成されている。即ち、かしめ部21Dは、図8に示すように、第1フラックスバリア17とかしめ部21Dの間の最短距離Aと、第2フラックスバリア18とかしめ部21Dの間の最短距離Bが、同等(A=B)となる位置に形成されている。なお、実施形態4の場合にも、かしめ部21Dの中心がq軸中心線L1上に位置している。
【0048】
以上のように構成された実施形態4のロータ10Dによれば、第1フラックスバリア17及び第2フラックスバリア18とかしめ部21Dとの間に発生する応力集中を効果的に低減することができるなど、実施形態1のロータ10Aと同様の作用及び効果を奏する。
【0049】
さらに、実施形態4のかしめ部21Dは、径方向に延びる一対の直線部23,23及び周方向に延びる一対の直線部24,24を有する矩形形状に形成されている。これにより、周方向及び径方向の両方向にかしめ力が強く働くようにされているので、実施形態2及び実施形態3の両方の作用及び効果をバランス良く奏することができる。
【0050】
なお、実施形態4のかしめ部21Dは、径方向に延びる一対の直線部23,23と周方向に延びる一対の直線部24,24が同じ長さに設定されているが、何れか一方の長さが何れか他方よりも長くなるように、バランスを考慮して適宜変更してもよい。
【0051】
〔実施形態5〕
実施形態5に係る回転電機のロータ10Eは、図10に示すように、磁極数が8極(N極:4、S極:4)である点、各磁極に1個ずつ磁石13が配置されている点、第1フラックスバリア17及び第2フラックスバリア18を有しない点で、実施形態1のものと大きく異なる。よって、実施形態1と共通する部材や構成についての詳しい説明は省略し、異なる点及び重要な点について説明する。なお、実施形態1と共通する部材については、同じ符号を用いる。
【0052】
実施形態5のロータコア11は、周方向に配列された8個の磁石収容孔12を有する。磁石収容孔12は、軸直角方向の断面形状が長方形であり、長辺が周方向に延び、短辺が径方向に延びるように形成されている。各磁石収容孔12には、周方向に極性が交互に異なる複数(8個)の磁極を形成するように磁石13が1個ずつ埋設されている。
【0053】
実施形態5の場合、磁石収容孔12と磁石13の軸直角方向の断面形状が略同じ大きさに形成されている。よって、実施形態1のロータコア11に設けられていた、第1フラックスバリア17及び第2フラックスバリア18に相当するものは、実施形態5のロータコア11には存在していない。
【0054】
ロータコア11のq軸コア部16には、軸方向に積層された複数の鋼板20を固定するかしめ部21Eが形成されている。実施形態5のかしめ部21Eは、実施形態1のかしめ部21と同様に、かしめ方向(図10の手前側)から見たときの形状が円形となるように形成されている。このかしめ部21Eは、磁石収容孔12のq軸コア部16側の短辺から等距離となる位置に形成されている。即ち、かしめ部21Eは、図10に示すように、q軸コア部16側の短辺の一端とかしめ部21Eの間の最短距離Cと、q軸コア部16側の短辺の他端とかしめ部21Eの間の最短距離Dが、同等(C=D)となる位置に形成されている。なお、実施形態5の場合にも、かしめ部21Eの中心がq軸中心線L1上に位置している。
【0055】
以上のように構成された実施形態5のロータ10Eによれば、q軸コア部16に形成されたかしめ部21Eは、周方向に隣接し極性が異なる磁石13をそれぞれ収容する二つの磁石収容孔12から等距離となる位置に形成されている。そのため、磁石収容孔12とかしめ部21Eとの間に発生する応力集中を効果的に低減することができる。これにより、遠心応力や、ロータコア11と磁石13との線膨張係数の差による熱応力の影響により、大きな応力集中が起きるのを回避することができる。
【0056】
また、実施形態5のかしめ部21Eは、かしめ方向から見たときの形状が円形であり、応力集中が最も発生し難い形状に形成されているので、応力集中をより確実に回避することができるなど、実施形態1と同様の作用及び効果を奏する。
【0057】
〔実施形態6〕
実施形態6に係る回転電機のロータ10Fは、図11に示すように、ロータコア11に設けられた磁石収容孔12及びその磁石収容孔12に埋設された磁石13の配置方法が、実施形態5のものと異なる。よって、実施形態5と共通する部材や構成についての詳しい説明は省略し、異なる点及び重要な点について説明する。なお、実施形態5と共通する部材については、同じ符号を用いる。
【0058】
実施形態6のロータコア11は、2個で対をなしステータ側に向かうにつれて互いに離間するようにV字状に配置された複数対(8対)の磁石収容孔12を有する。一対の磁石収容孔12,12の間には、略一定の幅で径方向に延伸する中央ブリッジ15が形成されている。そして、V字状に配置された一対の磁石収容孔12,12に収容された一対の磁石13,13によりそれぞれ一つの磁極が形成されている。実施形態6の場合、8対の磁石13,13によって、周方向に極性が交互に異なる8極の磁極(N極:4、S極:4)が形成されている。
【0059】
ロータコア11のq軸コア部16には、軸方向に積層された複数の鋼板20を固定するかしめ部21Fが形成されている。実施形態6のかしめ部21Fは、実施形態5のかしめ部21Eと同様に、かしめ方向(図11の手前側)から見たときの形状が円形となるように形成され、磁石収容孔12のq軸コア部16側の短辺から等距離となる位置に形成されている。即ち、かしめ部21Fは、図11に示すように、q軸コア部16側の短辺の一端とかしめ部21Fの間の最短距離Cと、q軸コア部16側の短辺の他端とかしめ部21Fの間の最短距離Dが、同等(C=D)となる位置に形成されている。なお、実施形態6の場合にも、かしめ部21Fの中心がq軸中心線L1上に位置している。
【0060】
以上のように構成された実施形態6のロータ10Fによれば、磁石収容孔12とかしめ部21Fとの間に発生する応力集中を効果的に低減することができるなど、実施形態5のロータ10Eと同様の作用及び効果を奏する。
【0061】
〔実施形態7〕
実施形態7に係る回転電機のロータ10Gは、図12に示すように、ロータコア11に設けられた磁石収容孔12の形状が、実施形態6のものと異なる。よって、実施形態6と共通する部材や構成についての詳しい説明は省略し、異なる点及び重要な点について説明する。なお、実施形態6と共通する部材については、同じ符号を用いる。
【0062】
実施形態7のロータコア11は、2個で対をなしステータ側に向かうにつれて互いに離間するようにV字状に配置された複数対(8対)の磁石収容孔12を有する。一対の磁石収容孔12,12の間には、略一定の幅で径方向に延伸する中央ブリッジ15が形成されている。そして、V字状に配置された一対の磁石収容孔12,12に収容された一対の磁石13,13によりそれぞれ一つの磁極が形成されている。実施形態6の場合、8対の磁石13,13によって、周方向に極性が交互に異なる8極の磁極(N極:4、S極:4)が形成されている。
【0063】
実施形態7のロータコア11は、各磁石収容孔12に収容された磁石13とq軸コア部16との間、即ち、各磁石収容孔12のq軸コア部16側には、磁気的空隙部としての第1フラックスバリア17が設けられている。第1フラックスバリア17の周方向外側は、q軸コア部16の周方向中心と中心軸線Oとを通るq軸中心線L1から第1フラックスバリア17までの周方向幅がW1となる位置まで広がっている。
【0064】
なお、各磁石収容孔12に収容された磁石13と中央ブリッジ15との間には、断面形状が三角形の微少な磁気的空隙部18aが設けられているが、この磁気的空隙部18aは、実施形態1の第2フラックスバリア18に相当するものではない。
【0065】
ロータコア11のq軸コア部16には、軸方向に積層された複数の鋼板20を固定するかしめ部21Gが形成されている。実施形態7のかしめ部21Gは、実施形態5のかしめ部21Eと同様に、かしめ方向(図11の手前側)から見たときの形状が円形となるように形成され、隣接する2つの第1フラックスバリア17から等距離となる位置に形成されている。即ち、かしめ部21Gは、図12に示すように、第1フラックスバリア17の外周側の角部とかしめ部21Gの間の最短距離Cと、第1フラックスバリア17の内周側の角部とかしめ部21Gの間の最短距離Dが、同等(C=D)となる位置に形成されている。なお、実施形態7の場合にも、かしめ部21Gの中心がq軸中心線L1上に位置している。
【0066】
以上のように構成された実施形態7のロータ10Gによれば、第1フラックスバリア17とかしめ部21Gとの間に発生する応力集中を効果的に低減することができるなど、実施形態5のロータ10Eと同様の作用及び効果を奏する。
【0067】
また、実施形態7のロータコア11は、磁石収容孔12に収容された磁石13とq軸コア部16との間に形成された第1フラックスバリア17を有するため、実施形態6のロータ10Fに比べて、モータ損失を低減することができる。
【0068】
なお、実施形態7のロータコア11に設けられた第1フラックスバリア17は、実施形態5のロータコア11に対しても設けることができ、この第1フラックスバリア17を設けることによって、実施形態7と同様の作用及び効果を得ることができる。
【0069】
〔他の実施形態〕
本発明は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更することが可能である。
【0070】
例えば、上記の実施形態では、本発明に係る回転電機のロータを車両用モータのロータに適用した例を説明したが、車両に搭載されて電動機や発電機として使用される回転電機のロータ、あるいは両者を選択的に使用し得る回転電機のロータにも、本発明を適用することができる。
【符号の説明】
【0071】
10A〜10G…ロータ、 11…ロータコア、 12…磁石収容孔、 13…磁石、 15…中央ブリッジ、 16…q軸コア部、 17…第1フラックスバリア、 18…第2フラックスバリア、 20…鋼板、 21,21B〜21G…かしめ部、 23…径方向に延びる直線部、 24…周方向に延びる直線部、 O…中心軸線。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12