(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6226319
(24)【登録日】2017年10月20日
(45)【発行日】2017年11月8日
(54)【発明の名称】検査装置
(51)【国際特許分類】
G01N 21/956 20060101AFI20171030BHJP
【FI】
G01N21/956 A
【請求項の数】9
【全頁数】13
(21)【出願番号】特願2013-209098(P2013-209098)
(22)【出願日】2013年10月4日
(65)【公開番号】特開2015-72241(P2015-72241A)
(43)【公開日】2015年4月16日
【審査請求日】2016年9月5日
(73)【特許権者】
【識別番号】000115902
【氏名又は名称】レーザーテック株式会社
(74)【代理人】
【識別番号】100124280
【弁理士】
【氏名又は名称】大山 健次郎
(72)【発明者】
【氏名】塩澤 崇覚
(72)【発明者】
【氏名】菅生 直樹
(72)【発明者】
【氏名】佐藤 修
(72)【発明者】
【氏名】楠瀬 治彦
【審査官】
立澤 正樹
(56)【参考文献】
【文献】
特開平06−331559(JP,A)
【文献】
特開平11−237226(JP,A)
【文献】
特開2005−012524(JP,A)
【文献】
特開2013−015428(JP,A)
【文献】
特開平09−304182(JP,A)
【文献】
特開平11−051845(JP,A)
【文献】
特開2009−175035(JP,A)
【文献】
特開平11−326224(JP,A)
【文献】
米国特許出願公開第2011/0025838(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/956
(57)【特許請求の範囲】
【請求項1】
検査すべき試料の内部に存在するボイドないし欠陥を反射画像として検出する検査装置であって、
試料に対して透過性を有する第1の波長域の照明光及び試料に対して透過性を有しない第2の波長域の照明光を含む単一の照明ビームを発生する光源と、光源から出射した照明ビームを試料表面に対して垂直に投射する対物レンズとを有する照明光学系と、
試料の表面で反射した表面反射光及び試料の内部のボイドないし欠陥で反射した内部反射光を含む反射ビームを前記対物レンズを介して受光する検出系と、
前記検出系から出力される出力信号を受け取り、試料表面に存在する欠陥を表面反射画像として検出し、試料の内部に存在するボイドないし欠陥を内部反射画像として検出する信号処理装置とを有し、
前記検出系は、第1の波長域の表面反射光及び内部反射光を受光して表面反射画像及び内部反射画像を撮像する第1の撮像装置と、第2の波長域の表面反射光を受光して表面反射画像を撮像する第2の撮像装置とを含み、
前記信号処理装置は、前記第1の撮像装置により形成される表面反射画像及び内部反射画像と前記第2の撮像装置により形成される表面反射画像との差分画像を形成する差分画像形成手段を有することを特徴とする検査装置。
【請求項2】
請求項1に記載の検査装置において、前記信号処理装置は、前記差分画像形成手段からの出力に基づいて試料の内部欠陥情報を出力し、前記第2の撮像装置からの出力に基づいて試料の表面欠陥情報を出力することを特徴とする検査装置。
【請求項3】
請求項1又は2に記載の検査装置において、前記検査されるべき試料として、各種デバイスが形成されているデバイスウエハと、接着剤層を介してデバイスウエハに貼り合わされ、シリコンウエハにより構成されるサポートウエハとを含む貼り合わせウエハが用いられ、
前記第1の波長域はシリコンに対して透過性を有する赤外域の波長に設定され、前記第2の波長域はシリコンに対して透過性を有しない可視域に設定され、
当該検査装置は、前記接着剤層に存在するボイドないし欠陥を内部反射画像として検出することを特徴とする検査装置。
【請求項4】
請求項3に記載の検査装置において、前記貼り合わせウエハは、前記サポートウエハが対物レンズと対向するようにステージ上に配置され、前記照明ビームは、前記サポートウエハに向けて投射されることを特徴とする検査装置。
【請求項5】
請求項3又は4に記載の検査装置において、前記照明光学系は、光源として、赤外域の波長の照明光及び可視域の波長の照明光を含む照明ビームを発生するハロゲンランプを有することを特徴とする検査装置。
【請求項6】
請求項3又は4に記載の検査装置において、前記照明光学系は、光源として、赤外域の波長の照明光を発生する第1のSLEDと、可視域の波長の照明光を発生する第2のSLEDと、これら第1及び第2のSLEDから出射する照明光を合成して単一の照明ビームを形成するビーム合成手段とを含むことを特徴とする検査装置。
【請求項7】
請求項1から6までのいずれか1項に記載の検査装置において、前記検出系は、前記第1の波長域の光を透過すると共に第2の波長域の光を反射し又は前記第1の波長域の光を反射すると共に第2の波長域の光を透過するダイクロイックミラー、又は、前記試料から出射した反射ビームを2つのビームに分割するビーム分割素子と第1の波長域の光を選択的にカットする光学フィルタを含むことを特徴とする検査装置。
【請求項8】
請求項3から7までのいずれか1項に記載の検査装置において、前記第1の撮像装置は赤外域の波長光に対して感度を有するInGaAsセンサにより構成され、前記第2の撮像装置は可視域の波長光に感度を有するCCDセンサ又はCMOSセンサにより構成されることを特徴とするウエハ検査装置。
【請求項9】
請求項8に記載の検査装置において、前記InGaAsセンサは、互いに平行に配置した2つのInGaAsラインセンサを含み、これら2つのInGaAsラインセンサの画素から出力される出力信号を相補的に用いることを特徴とする検査装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試料の内部に存在する欠陥ないしボイドと試料の表面に存在する欠陥ないし異物とを同時に別々に検出できる検査装置に関するものである。
【背景技術】
【0002】
背面照射型のCCDセンサやCMOSセンサの製造工程においては、デバイスウエハにCCDセンサ等のデバイスが形成された後、デバイスウエハの裏面を研磨し、デバイスウエハの厚さが数10μm程度になるように研磨されている。そのため、デバイスウエハは接着剤層を介してサポートウエハに貼り合わされて貼り合わせウエハが形成されている。貼り合わせウエハは、研磨装置に装着され、デバイスウエハの厚さが数10μm程度となるように裏面研磨が行われる。この研磨工程においては、デバイスウエハの厚さが一定の厚さとなるように研磨することが重要であり、デバイスウエハの厚さにバラツキが生じると、製造されたCCDセンサに感度分布が発生し、デバイスの品質が低下する不具合が発生する。一方、貼り合わせウエハを製造する際、接着剤層に気泡が混入される場合が多い。しかし、ウエハの内部に気泡が形成されると、研磨工程において気泡が熱膨張を起し、局所的に過剰研磨となる不具合が発生する。従って、接着剤層に存在する気泡ないしボイドを検出できる検査装置の開発が強く要請されている。また、サポートウエハの表面上に異物等が付着すると、研磨盤に対する圧接力に分布が生じ、局所的に圧着力が不均一になり、同様に不均一な研磨が行われてします。従って、貼り合わせウエハにおいては、内部欠陥だけでなく、表面欠陥も検出できることが望まれている。
【0003】
さらに、シリコンウエハにおいては、製造時や搬送時にウエハの内部にクラックが発生する場合がある。ウエハの内部に発生したクラックは、外部から検出できないため、クラックが存在するウエハを用いてデバイスを製造すると、製造の歩留りが低下する不具合が発生する。また、太陽電池のパネルの光電変換層として用いられる単結晶シリコンウエハや多結晶シリコンウエハにおいても同様に、ウエハの内部に形成されたクラックを検出することが要請されている。従って、各種ウエハの内部に形成された欠陥を検出できる検査装置の開発が急務の課題となっている。
【0004】
接合ウエハの内部欠陥を検出する方法として、接合ウエハに対して透過照明を行い、接合ウエハの透過像から内部欠陥を検出することが既知である(例えば、特許文献1参照)。この既知の検査方法では、接合ウエハに向けてレーザビームを投射し、その透過像が形成され、透過像から欠陥像が検出されている。
【0005】
太陽電池セルの欠陥を検出する方法として、セルの透過像と反射像とを別々に撮像し、透過像と反射像から欠陥を検出する方法が既知である(例えば、特許文献2参照)。この既知の検査方法では、太陽電池セルを構成する半導体ウエハの表面側に反射照明光学系が配置され、裏面側に透過照明光学系が配置され、半導体ウエハの表面側から反射照明光が投射され、裏面側から透過照明光が投射されている。そして、反射照明光として可視域の照明光が用いられ、透過照明光として赤外域の照明光が用いられている。さらに、半導体ウエハから出射した反射光及び透過光はダイクロィックミラーにより分離されている。
【特許文献1】特開2011−107144号公報
【特許文献2】特開2013−53973号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に開示された検査方法では、接合ウエハ透過照明光が投射され、透過像が撮像され、透過像に基づいて内部欠陥像が検出されている。しかしながら、この既知の検査方法では、撮像装置により撮像される画像は、試料表面に存在する欠陥の像と試料の内部に存在する欠陥の像の両方を含んでいるため、試料の内部欠陥だけを検出することは技術的に不可能である。また、試料の表面欠陥と内部欠陥を個別に検出することができない欠点がある。さらに、照明ビームとしてレーザビームを用いているため、照明ビームにスペックルパターンが多発し、高精度な欠陥検出ができない欠点もある。この場合、スペックルパターンを除去する手段を設けることも可能であるが、光源装置が大がかりになる不具合が発生する。
【0007】
特許文献2に開示されている太陽電池セル検査装置では、検査される半導体ウエハの一方の側に反射照明光学系が配置され、他方の側に透過照明光学系が配置されており、2つの照明光学系を用いるため、装置が大型化する欠点があった。また、透過照明光学系を用いて撮像される画像は、試料の内部に存在する欠陥の画像と試料の表面に存在する欠陥の画像の両方の画像である。従って、試料の内部に存在する内部欠陥だけを表面欠陥から区別して検出できない致命的な欠点があった。
【0008】
本発明の目的は、試料の内部に存在する欠陥だけを検出できる検査装置を実現することにある。
本発明の別の目的は、試料の内部に存在する欠陥と試料の表面に存在する欠陥とを個別に検出できる検査装置を実現することにある。
【課題を解決するための手段】
【0009】
本発明による検査装置は、検査すべき試料の内部に存在するボイドないし欠陥を
反射画像として検出する検査装置であって、
試料に対して透過性を有する第1の波長域の照明光及び試料に対して透過性を有しない第2の波長域の照明光を含む
単一の照明ビームを発生する光源と、
光源から出射した照明ビームを試料表面に対して垂直に投射する対物レンズとを有する照明光学系と、
試料の表面で反射した表面反射光及び試料の内部のボイドないし欠陥で反射した内部反射光を含む反射ビームを
前記対物レンズを介して受光する検出系と、
前記検出系から出力される出力信号を受け取り、
試料表面に存在する欠陥を表面反射画像として検出し、試料の内部に存在するボイドないし欠陥を内部反射画像として検出する信号処理装置とを有し、
前記検出系は、第1の波長域の表面反射光及び内部反射光を受光して表面反射画像及び内部反射画像を撮像する第1の撮像装置と、第2の波長域の表面反射光を受光して表面反射画像を撮像する第2の撮像装置とを含み、
前記信号処理装置は、前記第1の撮像装置により形成される表面反射画像及び内部反射画像と前記第2の撮像装置により形成される表面反射画像との差分画像を形成する差分画像形成手段を有することを特徴とする。
【0010】
本発明者が種々の実験及び解析を行った結果、試料の内部に存在する気泡やボイドは、反射照明光学系を用いて反射画像として検出できることが判明した。すなわち、試料の内部に気泡が存在する場合、気泡と周囲媒体との間に屈折率差が形成される。よって、気泡に照明光が入射すると、気泡と周囲媒体との屈折率差及び気泡内部での多重反射効果により反射光が発生する。この反射光は、照明系が落射照明光学系の場合、対物レンズにより集光されるので、対物レンズを介して撮像装置により受光することにより内部反射画像が撮像される。
【0011】
一方、対物レンズは試料の表面で反射した表面反射光及び試料の内部で反射した内部反射光の両方を集光するので、撮像装置は、内部反射画像に加えて、表面反射画像も同時に撮像する。従って、内部反射画像情報だけを出力する場合、撮像装置から出力される画像情報から表面反射画像情報を除去する必要がある。そこで、本発明では、照明光として、試料の内部に透過する第1の波長域の照明光と試料の内部に透過しない第2の波長域の照明光の両方を同時に投射する。この場合、第1の波長域の照明光の一部は試料表面で反射して表面反射光となり、残りの照明光は試料の内部に透過し、内部に存在するボイドや気泡等の界面で反射して内部反射光となる。これら表面反射光及び内部反射光は共に対物レンズにより集光され、表面反射画像及び内部反射画像を形成する。一方、第2の波長域の照明光は試料の内部に透過しないので、表面反射光となり、対物レンズにより集光されて表面反射画像だけを形成する。従って、信号処理装置において、第1の波長域の照明光により形成される内部反射画像及び表面反射画像から第2の波長域の照明光により形成される表面反射画像を減算して差分画像を形成することにより、内部反射画像だけを出力することが可能になる。この結果、単一の反射照明光学系を用いるだけで、試料の内部画像情報と表面画像情報とを別々に出力することができる。
【0012】
本発明による検査装置の好適実施例は、前記検査されるべき試料として、各種デバイスが形成されているデバイスウエハと、接着剤層を介してデバイスウエハに貼り合わされ、シリコンウエハにより構成されるサポートウエハとを含む貼り合わせウエハが用いられ、
前記第1の波長域はシリコンに対して透過性を有する赤外域の波長に設定され、前記第2の波長域はシリコンに対して透過性を有しない可視域に設定され、
当該検査装置は、前記接着剤層に存在するボイドないし欠陥を内部反射画像として検出することを特徴とする。
【0013】
デバイスウエハとサポートウエハとが接着剤層を介して結合されている貼り合わせウエハの場合、接着剤層中に気泡やボイドが形成され易く、気泡やボイドは、周囲媒体との屈折率差が大きいため、これらの欠陥は周囲媒体とは輝度の異なる内部反射画像として検出することが可能である。
【発明の効果】
【0014】
本発明においては、反射照明光学系を用いて試料の表面反射画像及び内部反射画像を撮像しているので、単一の照明光学系を用いて、試料の内部に存在する欠陥やボイドを表面欠陥と区別して検出することができる。さらに、試料の内部に透過する波長域の照明光と透過しない波長域の照明光を同時に投射しているので、試料の内部欠陥情報と表面欠陥情報とをそれぞれ個別に出力することが可能である。
【図面の簡単な説明】
【0015】
【
図1】本発明による検査装置の全体構成を示す図である。
【
図3】試料の内部に照明光が進入した状態を示す線図である。
【
図5】差分画像形成手段の作用を説明する図である。
【
図6】本発明による検査装置の変形例を示す図である。
【0016】
図1は本発明による検査装置の全体構成を示す線図である。本例では、検査すべき試料として貼り合わせウエハを用いる。貼り合わせウエハは、各種デバイスが形成されているデバイスウエハと、シリコン基板により構成され、接着剤層を介してデバイスウエハに結合されているサポートウエハと有する。本例では、サポートウエハ側から照明ビームを投射し、接着剤層に存在する気泡やボイド、欠陥を検出する。勿論、本発明による検査装置は、貼り合わせウエハだけでなく、単体のシリコンウエハや、2つのシリコンウエハが直接結合されている接合ウエハの内部に存在する欠陥やボイドを検出できる。さらに太陽電池の半導体セルを構成する半導体ウエハの内部に存在する欠陥やボイドも検出することもできる。
【0017】
本例では、照明光学系に含まれる照明光源としてハロゲンランプ1を用いる。シリコンウエハは、赤外域の波長光に対して透過性を有し、赤外域よりも短波長側の可視域の波長光に対して透過性を有しない特性がある。一方、ハロゲンランプ1は、赤外域(第1の波長域)の波長光及び可視域(第2の波長域)の波長光の両方を含む照明ビームを放出する。従って、照明光の一部はシリコンウエハ(試料)の表面で反射し、残りの照明光はシリコンウエハの内部に進入する。ハロゲンランプ1から出射した照明ビームは、光ファイバ2に入射し、その光出射端から放出される。光ファイバ2から出射した照明ビームは、第1及び第2のリレーレンズ3及び4を介してビームスプリッタ5に入射する。ビームスプリッタ5は、ハーフミラーにより構成され、照明光源から試料に向かう照明ビームと、試料から出射した反射ビームとを分離する作用を果たす。
【0018】
ビームスプリッタ5から出射した照明ビームは、対物レンズ6を介して検査すべき試料7に投射される。対物レンズ6の光軸は試料表面に対して直交するように配置する。従って、照明光源1から対物レンズ6に至る光路中に配置された光学素子により構成される照明光学系は、落射照明光学系を形成する。
【0019】
検査されるべき試料7である貼り合わせウエハは、サポートウエハが対物レンズと対向するようにステージ8上に配置する。ステージ8は、XYステージにより構成され、ジッグザッグ状に移動する。従って、試料(貼り合わせウエハ)7は、ステージ8のジッグザッグ状の相対移動によりその全面が走査される。
【0020】
本例では、照明光学系はエリア照明を行い、照明ビームは、試料表面の比較的広い円形エリアを照明する。照明ビームが入射するシリコンウエハは、第1の波長域である赤外域の照明光に対して透過性を有し、第2の波長域である可視域の照明光に対して透過性を有しない。従って、第1の波長域の照明光の一部は、サポートウエハの表面で反射して表面反射光となり、残りの照明光はサポートウエハの内部に進入し、内部に存在するボイドや欠陥で反射して内部反射光となる。すなわち、欠陥やボイドを構成する材料と周囲材料との間に屈折率差が存在するため、その界面に入射した照明光は屈折率差により反射し、周囲とは異なる輝度の内部反射光を形成する。例えば、貼り合わせウエハの接着剤層に気泡が存在すると、気泡の屈折率と接着剤の屈折率とは大幅に異なるため、照明光の一部は気泡と接着剤との界面で反射し、内部反射光を形成する。
【0021】
可視域である第2の波長域の照明光は、シリコンウエハに対して透過性を有しないため、サポートウエハの表面で反射して表面反射光を形成する。これら第1の波長域の表面反射光及び内部反射光並びに第2の波長域の表面反射光は反射ビームとして試料から出射し、対物レンズ6により集光される。
【0022】
対物レンズにより集光された反射ビームは、ビームスプリッタ5を透過し、ハーフミラー9に入射する。ハーフミラー9で反射した反射ビームは、結像レンズ10を経て第1の撮像装置11に入射する。第1の撮像装置は赤外域の光に対して感度を有するCCDセンサやInGaAsセンサで構成する。第1の撮像装置には、第1の波長域の表面反射光及び内部反射光並びに第2の波長域の表面反射光が入射する。従って、第1の撮像装置11は、試料の表面反射画像及び内部反射画像を撮像する。第1の撮像装置から出力される画像信号は、増幅器12により増幅されて信号処理装置13に供給される。
【0023】
ハーフミラー9を透過した反射ビームは、赤外線カットフィルタ14に入射し、赤外域の反射光が除去され、第2の波長域である可視域の反射光だけが透過する。赤外線カットフィルタ14から出射した第2の波長域の反射光は、結像レンズ15を経て第2の撮像装置16に入射する。第2の撮像装置は、可視光に対して感度を有するCCDセンサやCMOSセンサで構成する。第2の撮像装置16に入射する光は、試料表面で反射した反射光だけであるから、第2の撮像装置は試料の表面反射画像を撮像する。第2の撮像装置から出力される画像信号は増幅器17により増幅され、信号処理装置13に供給される。尚、第2の撮像装置として、赤外域の光に対して感度を有しないセンサを用いる場合、赤外線カットフィルタ14を省略することができる。
【0024】
図2は検査される試料の一例である貼り合わせウエハの構造を断面図として示す。貼り合わせウエハは、CCDセンサやCMOSセンサのようなデバイスが層状に形成されているデバイス層20aを有するデバイスウエハ20と、例えばポリイミド系などの接着剤で構成される接着剤層21と、シリコンウエハにより構成されるサポートウエハ22とを有する。デバイスウエハ20のデバイス層20aは、微細な線幅の反射性配線層を主体的に含むため、入射した照明ビームに対して全体として反射層として作用する。本例では、デバイス層20aが接着剤層21を介してサポートウエハ22と直接対向するように貼り合わせる。デバイスウエハ及びサポートウエハの厚さは例えば775μmに設定され、接着剤層の厚さは数10μmに設定される。
【0025】
サポートウエハ22の表面22a上には、異物付着等による表面欠陥23が存在する場合がある。また、接着剤層21には、貼り合わす際に気泡が混入し、これら気泡24はボイドを形成する。接着剤層に気泡が存在すると、その後行われる研磨工程においてデバイスウエハ20の裏面を数10μm程度の厚さまで研磨する際、気泡が膨張し、気泡が存在する部分に膨らみが発生する。このため、研磨工程において局所的な過剰研磨部分が形成され、デバイスウエハに厚さ分布が形成される不具合が発生する。デバイスウエハに厚さ分布が発生すると、デバイスウエハの背面側に受光面が形成されている背面照射型のCMOSセンサ
等において、撮像される画像に輝度分布が発生し、撮像される画像の品質が低下する不具合が発生する。さらに、過剰に研磨された場合、デバイスウエハに割れ等が発生する危険性もある。従って、接着剤層に存在するボイドを他の欠陥から区別して検出することが強く要請されている。
【0026】
図3は、貼り合わせウエハに照明ビームが入射した際の状態を示す図である。
図3において、左側は赤外域の照明光が入射した際の状態を示し、右側は可視域の照明光が入射した際の状態を示す。初めに、赤外域の照明光の状態について説明する。シリコンウエハは赤外光に対して透過性を有するため、赤外域の照明光がサポートウエハ22に入射すると、サポートウエハの表面において約30%程度の照明光が反射し、残りの70%の照明光は、サポートウエハ22の内部に透過する。
【0027】
サポートウエハの表面で反射した反射光は対物レンズにより集光され、表面反射画像を形成する。一方、サポートウエハ22の表面に異物等が付着して表面欠陥23を形成する場合も多い。この場合、表面欠陥23に照明光が入射すると、入射した照明光は散乱するため、正常な部位からの反射光に比較して輝度が低下した反射光が対物レンズにより集光される。従って、表面欠陥は、金属等の反射率の高い異物を除いて、ほとんどの場合低輝度の表面反射画像として撮像される。
【0028】
サポートウエハ22内に入射した照明光は、サポートウエハの内部を進行し、サポートウエハ22と接着剤層21との界面に入射する。界面において一部の照明光は反射し、残りの照明光は界面を透過して接着剤層の内部に進入する。接着剤層を透過した照明光は、下側に位置するデバイスウエハ20のデバイス層20aに入射する。デバイス層は反射層として作用するため、照明光はデバイス層20aで反射し、接着剤層21及びサポートウエハ22を透過し、対物レンズにより集光される。
【0029】
接着剤層21中に気泡24が存在すると、気泡の屈折率と接着剤の屈折率とは大幅に相違するため、照明光の一部は接着剤と気泡(ボイド)との界面で反射して内部反射光を形成する。さらに、気泡の内部に透過した照明光は、気泡と接着剤との下側の界面でも反射する。これらの内部反射光は、再び接着剤層及びサポートウエハを透過し、対物レンズにより集光されて、内部反射画像を形成する。この際、気泡のサイズに応じて、気泡の上側の界面で反射した反射光と下側の界面で反射した反射光間に位相差が形成される。形成される位相差がπ又はその奇数倍の場合干渉作用により低輝度画像となり、2πの整数倍の場合明るい画像となる。よって、内部反射光により形成されるボイド画像は、気泡の大きさに応じて明の画像や暗の画像となる。また、気泡のサイズが大きい場合、連続的な位相差が形成されるため、明暗の干渉縞の画像として撮像される。従って、ボイド等の内部欠陥の反射画像は暗又は明の画像として撮像されるため、その画像の形態は表面反射画像と同様な場合がある。
【0030】
次に、サポートウエハに可視域の照明光が入射した際の状態について説明する。
図3の右側に示すように、可視域の照明光は、シリコンウエハを透過しないため、大部分の可視域の照明光はサポートウエハ22の表面で反射する。一方、サポートウエハ22の表面に表面欠陥23が存在する場合、表面欠陥に入射した照明光は散乱し、対物レンズにより集光される反射光の強度は低下する。従って、表面欠陥は、低輝度の表面反射画像として検出される。また、表面欠陥が金属の異物の場合、高輝度画像として検出される。これら低輝度及び高輝度の表面反射画像は、画像の形態として可視域の照明光により撮像される表面反射画像とほぼ同一の画像である。
【0031】
上述したように、試料の内部に存在する欠陥ないしボイドによる反射画像と試料の表面に存在する欠陥による反射画像とは輝度画像の形態として共通する場合があるため、試料の内部に存在する欠陥ないしボイドだけを検出する場合、内部反射画像と表面反射画像とを識別する方策が必要となる。本発明では、内部反射画像と表面反射画像との区別を信号処理装置13において行う。
図4は信号処理装置により実行されるアルゴリズムの一例を示す図である。尚、本例では、信号処理装置において、コンピュータによるソフトウエァ処理を利用する。第1の撮像装置11から出力された画像信号は、A/D変換器30aによりデジタル信号に変換され、第1の画像メモリ31aに記憶する。第1の撮像装置は赤外域の反射光を受光するので、第1の画像メモリ31aには、表面反射画像及び内部反射画像が記憶される。第2の撮像装置16から出力される画像信号も、A/D変換器30bによりデジタル信号に変換され、第2の画像メモリ31bに記憶する。第2の撮像装置16は可視域の反射光を受光するので、第2の画像メモリ31bには試料の表面反射画像だけが記憶される。
【0032】
第1及び第2の画像メモリに記憶された画像情報はゲイン・オフセット調整手段32a及び32bにそれぞれ供給される。ゲイン・オフセット調整手段は、2つの撮像装置から出力される画像の輝度レベルが互いに一致するように調整する。すなわち、赤外域の照明光により形成された表面反射画像の輝度レベルと可視域の照明光により形成された表面反射画像の輝度レベルが互いに一致するように、並びにバックグランドの輝度レベルが互いに一致するように画像信号のゲイン及びオフセット量を調整する。
【0033】
ゲイン及びオフセット調整された2つの画像情報は差分画像形成手段33に供給する。差分画像形成手段33は、第1の画像メモリ31aから出力される画像情報から第2の画像メモリ31bから出力される画像情報との差分を形成する。第1の画像メモリから出力される画像情報は、表面反射画像と内部反射画像を含み、第2の画像メモリから出力される画像情報は表面反射画像である。従って、差分画像形成手段33は、表面反射画像が除かれた画像情報、すなわち内部反射画像だけが出力される。この状態を
図5に線図的に示す。
図5(A)は第1及び第2のメモリ31a及び31bにそれぞれ記憶した画像を示し、
図5(B)はゲイン・オフセット調整処理された画像を示し、
図5(C)は差分画像形成処理された画像を示す。
【0034】
差分画像形成手段から出力される画像情報は、ボイド検出手段34に供給され、内部反射画像情報からボイドが検出され、内部欠陥情報が出力される。ボイド検出手段は、内部反射画像の特徴、例えば干渉縞の特性を考慮して検出された内部反射画像がボイドに起因する画像であるか、それ以外の欠陥に起因する画像であるか判定することができる。また、内部欠陥情報は、ステージに連結された位置センサから出力されるステージの位置情報と撮像装置の画素情報を用いて検出されたボイド及びそのアドレスとを対として出力ないし記憶することができる。
【0035】
第2の画像メモリ31bに記憶された表面画像情報は、欠陥検出手段35に供給され、試料の表面画像から欠陥が検出される。欠陥検出の方法として、画像信号を所定の輝度値の閾値と比較し、比較結果が所定の閾値を超える場合欠陥であると判定することができる。従って、第2の画像メモリから出力される表面画像情報を用いて表面欠陥情報が出力される。表面欠陥情報は、欠陥の形態とそのアドレスとを対として出力する。尚、内部欠陥情報及び表面欠陥情報は、欠陥ないしボイドのアドレスを示す情報の場合、これら内部欠陥情報及び表面欠陥情報から第1及び第2のメモリ31a及び31bにそれぞれアクセスすることにより、内部欠陥画像及び表面欠陥画像を出力することも可能である。
【0036】
図6は、本発明による検査装置の変形例を示す図である。なお、
図1で用いた構成要素と同一の構成要素には同一符号を付して説明する。本例では、照明光源として、2つのスーパールミネッセント発光ダイオード(高輝度発光ダイオード:SLED又はSLD)を用いる。第1のSLED40は中心波長が1300nmの赤外光を放出し、第2のSLED41は中心波長が800nmの可視光を放出する。SLEDは、波長帯域がレーザに比べて比較的ブロードな照明光を発生し、時間的にインコヒーレントであってコヒーレント長が短くスペックルパターンの無い光ビームを発生することができる。従って、均一な輝度分布の照明エリアを形成することが可能になる利点がある。これに対して、レーザ光源は、時間的にコヒーレントな光ビームを発生するため、出射したレーザビームは無数のスペックルパターンが形成されてしまう。このため、均一な輝度分布の照明エリアを形成するためには、スペックルパターンを軽減する光学装置が必要であり、照明光学系の構造が複雑化する欠点がある。上述したSLEDの特徴を踏まえ、照明光源としてスーパールミネッセント発光ダイオードを用いることが好適である。
【0037】
第1のSLED40から出射した照明ビーム及び第2のSLED41から出射した照明ビームは、ビーム合成素子として機能するハーフミラー42に入射し、赤外域の照明光と可視域の照明光を含む単一の照明ビームに変換される。尚、ハーフミラーの代わりに、赤外域の照明光を反射し、可視域の照明光を透過するダイクロィックミラーを用いることもできる。この照明ビームは、第1及び第2のリレーレンズ3及び4を介してビームスプリッタ5に入射する。さらに、照明ビームは対物レンズ6を介して試料7に向けて投射される。試料7の表面及び内部で反射した反射光を含む反射ビームは、対物レンズ6、ビームスプリッタ5を経てダイクロィックミラー43に入射する。このダイクロィックミラー43は、赤外域の反射光を反射し、可視域の反射光を透過する。可視域の反射光は、ダイクロィックミラーを透過し、結像レンズ10を経て第2の撮像装置16に入射する。第2の撮像装置16は、リニアCCD又はリニアCMOSセンサとする。
【0038】
ダイクロィックミラー43で反射した赤外域の反射光は、結像レンズ15を介して第1の撮像装置44に入射する。本例では、第1の撮像装置は、ステージの移動方向と対応する方向に離間して互いに平行に配置した2つのInGaAsラインセンサ44a及び44bで構成する。InGaAsセンサは、赤外域に高い感度を有する利点を有するため、内部反射画像を撮像するのに好適である。一方、InGaAsラインセンサは、欠陥画素数が多い欠点がある。よって、1つのInGaAsラインセンサだけで撮像した場合、欠陥画素に起因して不完全な画像が形成される危険性がある。そこで、本例では、ステージの移動方向すなわち照明ビームの走査方向に離間して互いに平行に配置した2つのInGaAsラインセンサを用いる。2つのInGaAsラインセンサは走査方向に離間して配置されているので、例えば第1のInGaAsラインセンサ44aに反射光が入射した後所定の時間が経過した後第2のInGaAsラインセンサ44bに同一の反射光が入射する。従って、2つのInGaAsラインセンサから同一の画像信号が出力される。
【0039】
本例では、2つのInGaAsラインセンサの各画素から出力される画像信号を相補的に利用する。すなわち、例えば第1のInGaAsラインセンサについて欠陥画素を予め求めておき、その画素から出力される画像信号を利用せず、第2のInGaAsラインセンサの対応する画素から出力される画像信号を用いる。このように、2つのInGaAsラインセンサから出力される画像信号を相補的に利用することにより、InGaAsセンサの赤外域に高い感度を有する利点を利用しつつ、欠陥画素が多い欠点を解消することができる。勿論、欠陥画素の少ないInGaAsラインセンサが入手できる場合、単一のInGaAsラインセンサを用いることも可能である。尚、無欠陥画素のInGaAsセンサは選別が必要となる可能性が高く、割高となる。
【0040】
さらに、別の変形例として、内部観察用に中心波長が1300nmのSLEDを用い、表面観察用に380〜780nmの可視光を用い、これらの照明光は別々の光路を経て試料に向けて投射する。この場合、1300nmの反射光はInGaAsセンサで撮像し、可視域の反射光はCCDセンサ又はCMOSセンサで撮像する。
【0041】
尚、各撮像装置は、ラインセンサ又は2次元センサを用いることができ、2次元センサを用いる場合、ステージをステップアンドリピート方式で移動させ、ラインセンサを用いる場合ステージの1軸で反射光のスキャンを行い、別の1軸でスキャン幅で移動させて全面走査する。
【0042】
本発明は上述した実施例だけに限定されず種々の変形や変更が可能である。例えば、上述した実施例では、デバイスウエハとサポートウエハとが接着剤層を介して結合されている貼り合わせウエハについて説明したが、2つのシリコンウエハが直接接合されている接合ウエハの内部検査を行うことも可能である。また、本発明は、シリコン基板だけでなく、GaAs基板やSiC基板等の各種半導体ウエハ単体の内部に存在する内部欠陥と表面に存在する表面欠陥とを個別に検出する場合にも適用することができる。
【0043】
さらに、上述した実施例では、ステージのXY移動により試料の全面を走査する構成としたが、ステージをステップアンドリピート方式により移動させることも可能である。この場合、試料から出射した反射ビームの光路中にガルバノミラーを配置して2次元スキャンを行うことも可能である。
【符号の説明】
【0044】
1 ハロゲンランプ
2 光ファイバ
3,4 リレーレンズ
5 ビームスプリッタ
6 対物レンズ
7 試料
8 ステージ
9 ハーフミラー
10,15 結像レンズ
11 第1の撮像装置
12,17増幅器
13 信号処理装置
14 赤外線カットフィルタ
16 第2の撮像装置
20 デバイスウエハ
21 接着剤層
22 サポートウエハ
23 表面欠陥
24 ボイド
30a,30b A/D変換器
31a,31b 画像メモリ
32a,32b ゲイン・オフセット調整手段
33 差分画像形成手段
34 ボイド検出手段
35 欠陥検出手段
40 第1のSLED
41 第2のSLED
42 ハーフミラー