(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6227643
(24)【登録日】2017年10月20日
(45)【発行日】2017年11月8日
(54)【発明の名称】大きな装填容量を有する化学気相浸透装置
(51)【国際特許分類】
C23C 16/458 20060101AFI20171030BHJP
【FI】
C23C16/458
【請求項の数】9
【全頁数】13
(21)【出願番号】特願2015-522145(P2015-522145)
(86)(22)【出願日】2013年7月12日
(65)【公表番号】特表2015-524514(P2015-524514A)
(43)【公表日】2015年8月24日
(86)【国際出願番号】FR2013051674
(87)【国際公開番号】WO2014013168
(87)【国際公開日】20140123
【審査請求日】2016年4月19日
(31)【優先権主張番号】1257012
(32)【優先日】2012年7月19日
(33)【優先権主張国】FR
(73)【特許権者】
【識別番号】512162432
【氏名又は名称】サフラン セラミクス
(74)【代理人】
【識別番号】100107641
【弁理士】
【氏名又は名称】鎌田 耕一
(74)【代理人】
【識別番号】100143236
【弁理士】
【氏名又は名称】間中 恵子
(74)【代理人】
【識別番号】100168273
【弁理士】
【氏名又は名称】古田 昌稔
(72)【発明者】
【氏名】ベルトラン,セバスチャン
(72)【発明者】
【氏名】ラムルー,フランク
(72)【発明者】
【氏名】グジャール,ステファン
(72)【発明者】
【氏名】デカン,セドリック
【審査官】
岡田 隆介
(56)【参考文献】
【文献】
特表2008−530370(JP,A)
【文献】
米国特許出願公開第2004/0253377(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C23C 16/00−16/56
(57)【特許請求の範囲】
【請求項1】
主として長手方向に延びる三次元形状の多孔質プリフォーム(20)の化学気相浸透処理のための設備(600)であって、前記設備は、
平行六面体形状の反応チャンバであって、該反応チャンバの側壁(611〜614)が加熱手段(615)を備えている反応チャンバ(610)と、
前記反応チャンバ(610)に配置された、それぞれが複数の装填装置(10)から成る複数の積層体(50)とを備え、前記装填装置(10)はそれぞれ、浸透処理の対象である多孔質プリフォーム(20)を受けるための支持要素(1100、1110)が設けられた平行六面体形状の筐体(11)形状である、
設備。
【請求項2】
前記反応チャンバ(610)は直方体形状であり、前記反応チャンバ(610)は前記装填装置(10)の前記複数の積層体(50)から成る列を少なくとも1列収容し、前記列は前記反応チャンバの長手方向に延びる、
請求項1に記載の設備。
【請求項3】
前記装填装置(10)はそれぞれ直方体形状の筐体(11)によって構成され、前記積層体(50)は、前記装填装置(10)のそれぞれの長辺が前記反応チャンバ内において前記チャンバの前記長手方向に垂直な方向に延びるように、前記チャンバ(610)に配置される、
請求項2に記載の設備。
【請求項4】
前記反応チャンバ(10)は、前記反応チャンバの前記長手方向に延びる前記装填装置(10)の前記積層体(50)の列を複数列(510、520、530)収容し、加熱手段(717)が前記装填装置の前記積層体の2つの列の間に配置される、
請求項2に記載の設備。
【請求項5】
前記積層体(50)はそれぞれ、その両端部に、前記多孔質プリフォーム(20)が装填されない緩衝部(540;550)を備える、
請求項1に記載の設備。
【請求項6】
前記反応チャンバの水平壁(620、630)は、加熱手段を備えている、
請求項5に記載の設備。
【請求項7】
前記多孔質プリフォーム(20)が、航空機エンジンブレード用繊維プリフォーム(20)であって、
前記積層体のそれぞれの前記装填装置(10)は、前記航空機エンジンブレード用繊維プリフォーム(20)を収容する、
請求項6に記載の設備。
【請求項8】
前記装填装置(10)のそれぞれにおいて、前記ブレード用繊維プリフォーム(20)は、それらの加圧側の面(123)または吸気側の面(122)が同じ方向を向くようにして互いに隣り合って配列される、
請求項7に記載の設備。
【請求項9】
前記装填装置(10)の前記積層体(50)のそれぞれにおいて、第1装填装置の前記繊維プリフォーム(20)は、それらの加圧側の面(123)または吸気側の面(122)が第1方向を向くようにして互いに隣り合って配列され、前記第1装置に隣接する第2装填装置(10)の前記繊維プリフォーム(20)は、それらの加圧側の面(123)または吸気側の面(122)が前記第1方向とは反対の第2方向を向くようにして互いに隣り合って配列される、
請求項8に記載の設備。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特に熱構造複合材料から部品を作る際に用いられる化学気相浸透技術に関する。本発明は、より詳細には、航空機エンジンブレードの製造に用いられる繊維プリフォームなどの複雑な三次元形状をした多孔質基体の化学気相浸透処理に関する。
【背景技術】
【0002】
複合材料製の部品、特に、耐火性マトリクス(例えば、炭素および/またはセラミック)によって高密度化された耐火性繊維(例えば炭素繊維またはセラミック繊維)でできたプリフォームによって構成された熱構造複合材料製の部品を製造するために、浸透法を利用するのが一般的である。このような部品の例としては、炭素‐炭素(C‐C)複合材料製の推進ノズル、特に航空機ブレーキ用であるC‐C複合材料製のブレーキディスク、セラミックマトリクス複合材料(CMC)製のブレードなどが挙げられる。また、プリフォームの高密度化前、高密度化中、または高密度化後に、1つまたは複数の層、例えば界面材料の層を、同じく化学気相浸透技術を用いてプリフォームに堆積させてもよい。
【0003】
化学気相浸透処理は、浸透設備の反応チャンバに支持具を用いて基体を配置することと、反応ガスをチャンバ内に導入することとからなる。ここで、反応ガスの1つまたは複数の成分は、基体を高密度化するためおよび/または例えば界面材料の層を堆積させるために基体の内部に堆積させる材料の前駆体である。ガスの成分の分解またはガスの複数の成分同士の反応によって所望の材料を基体の内部に堆積させるために、基体の内部の到達可能な空孔内にガスが分散できるように、浸透条件、特に、反応ガスの組成および流量、ならびに、チャンバ内の温度および圧力が選択される。反応ガスは、従来、反応チャンバに配置されかつ反応ガス入口が開口している予熱領域に通すことによって予熱される。その方法は、自由流れでの化学気相浸透法に相当する。
【0004】
工業用の化学気相浸透設備では、高密度化法の処理量を向上させるため、ひいては反応チャンバの装填率を向上させるために、高密度化の対象である複数の基体またはプリフォームを反応チャンバに同時に装填するのが一般的である。
【0005】
環状の多孔質基体の化学気相浸透処理のための方法および設備が、特に、米国特許出願公開第2004/237898号および米国特許第5904957号に記載されている。しかし、それらの方法は実質的に、積層された環状の基体の浸透処理に適用されており、軸対称ではない形状を有する基体の浸透処理には適していない。
【0006】
米国特許出願公開第2008/0152803号には、第1および第2プレート間に配置され、かつその周囲に高密度化の対象であるプレート状の薄い基体が放射状に配置される筒状のダクトを備える装填器具を用いることが記載されている。そのように装填された器具が、反応ガスを上記筒状のダクト内に導入できるように該ダクトに接続される反応ガス導入口を有する浸透炉の反応チャンバ内に設置され、このダクトがガスを基体の主面に沿って実質的に放射状の流れ方向に分配する。
【0007】
しかし、その装填器具は、薄い矩形のプレートなどの形状が単純な薄い基体の定方向流れでの高密度化に限られており、ブレード用繊維プリフォームなどの複雑な三次元形状を有する多孔質基体の均一な高密度化には使用できない。具体的には、複雑な三次元形状の基体に対するガス流の流れを制御するのはより困難である。また、そのようなタイプの器具では、熱分散が生じ、この熱分散のため、1つのプリフォームの全ての箇所および複数のプリフォーム間で温度を制御するのが困難になる。浸透処理の対象である全てのプリフォームに対する反応ガスの流れを制御できないと、基体の高密度化または基体内部の堆積にムラが生じる。基体の高密度化または基体内部の堆積を均一に行うことは、最終的に得られる部品の機械的性能にとって不可欠である。
【0008】
また、浸透処理の対象であるプリフォームが放射状に配置される器具を用いた浸透設備の装填率は比較的低い。その場合、複雑な三次元形状の部品の工業的規模での生産には多数の浸透設備を製造して使用することが必要であり、このことは経済的観点から非常に不利である。
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、多孔質プリフォーム、特に、主として長手方向に延びる複雑な三次元形状のプリフォームを浸透処理でき、このことを大きな装填容量で、かつプリフォーム内部の堆積の均一性を確保しながら行える解決手段を提供することである。
【課題を解決するための手段】
【0010】
この目的は、主として長手方向に延びる三次元形状の繊維プリフォームの化学気相浸透処理のための設備であって、
平行六面体形状の反応チャンバであって、該反応チャンバの側壁が加熱手段を備えている反応チャンバと、
前記反応チャンバに配置された、それぞれが複数の装填装置から成る複数の積層体とを備え、該装填装置はそれぞれ、浸透処理の対象である繊維プリフォームを受けるための支持要素が設けられた平行六面体形状の筐体形状である、
設備によって達成される。
【0011】
このように、平行六面体形状である反応チャンバおよび平行六面体形状である装填装置の積層体をともに用いることで、環状の装填装置を用いる浸透設備と比べて、設備のプリフォーム装填率を非常に大幅に増加させることができる。具体的には、装填装置が平行六面体形状の装填スペースを有するため、プリフォームをそれらの長手方向に関して互いに平行に隣り合わせて配置でき、これにより、各装填装置の装填空間に対して最適な占有率を達成できる。先行技術のように環状の装填装置を用いる場合、プリフォームは放射状に配置されるが、これでは装填空間の最適な占有率を達成できない。
【0012】
また、装填装置は平行六面体形状であるため、装填装置を互いに積層した場合、同じく平行六面体形状である反応チャンバを最適な仕方で充填できる積層体が形成される。積層体を構成する装填装置について適切な寸法を選択することで、浸透設備の有効装填空間全体を占めるのに適したプリフォーム装填体を形成できる。
【0013】
また、チャンバ内の各装填装置は、ヒートシンクを構成し、従って、個別にサセプタとして機能する。
【0014】
さらに、各積層体において、装填装置が互いに協働して反応チャンバ内を鉛直方向に延びる装填空間を形成し、これにより、各積層体内で実質的に直線状の流れが起こり、その結果として、ガスの流れおよび消費を良好に制御できる。本発明の単一の装填体には多数のプリフォームがあるにも関わらず、各積層体においてはガスは限られた数のプリフォームのみを通過するため、ガスがプリフォームを通過する際に過剰に消費されることを回避できる。
【0015】
最後に、反応チャンバは、少なくとも該チャンバの側壁を介して加熱されるので、チャンバ内において温度をより均一に制御できる。
【0016】
本発明の第1の側面において、反応チャンバは直方体形状であり、装填装置の複数の積層体から成る列を少なくとも1列収容し、この列は反応チャンバの長手方向に延びる。反応チャンバの加熱が特に反応チャンバの側壁によって行われるため、チャンバの長さは制限されず、それゆえ装填体の長さが制限されない。このため、非常に大きな装填率が得られる。
【0017】
本発明の第2の側面において、装填装置はそれぞれ直方体形状の筐体によって構成され、積層体は、装填装置のそれぞれの長辺が反応チャンバ内をチャンバの長手方向に垂直な方向に延びるように、チャンバに配置される。
【0018】
本発明の第3の側面において、反応チャンバは、反応チャンバの長手方向に延びる装填装置の積層体の列を複数列収容し、加熱手段が装填装置の積層体の2つの列の間に配置される。このような場合、反応チャンバの幅を、この幅の方向における温度制御を確保しながら大きくし得る。
【0019】
本発明の第4の側面において、積層体はそれぞれ、その両端部に、高密度化の対象である多孔質基体が装填されない緩衝部を備える。積層体の頂部、すなわちガスが導入される箇所では、緩衝領域が、特に、ガスが予熱領域から出てから直接プリフォームに当たることを回避する機能を果たす。それぞれの積層体の底部では、緩衝領域が、反応チャンバから排出される前にガス流の方向を変える機能を果たす。
【0020】
本発明の第5の側面において、反応チャンバの水平壁は、加熱手段を備えている。
【0021】
本発明の第6の側面において、それぞれの積層体の装填装置は、航空機エンジンブレード用繊維プリフォームを収容する。
【0022】
本発明の第7の側面において、ブレード用繊維プリフォームは、それらの加圧側の面または吸気側の面が同一の方向を向くようにして互いに隣り合って配列される。このような場合、装填装置の積層体のそれぞれにおいて、第1装填装置の繊維プリフォームは、それらの加圧側の面または吸気側の面が第1方向を向くようにして互いに隣り合って配列され、一方、第1装置に隣接する第2装填装置の繊維プリフォームは、それらの加圧側の面または吸気側の面が第1方向とは反対の第2方向を向くようにして互いに隣り合って配列されることが好ましい。これにより、プリフォームの近傍にガス流の良好な流れを形成できる。
【0023】
本発明のその他の特徴および利点が、非限定的な例として、添付の図面を参照して提示される本発明の具体的な実施形態に関する以下の説明から明らかになる。
【図面の簡単な説明】
【0024】
【
図1】
図1は、ブレードプリフォームを装填した本発明の一実施形態に係る装填装置の斜視図である。
【
図3】
図3は、ブレードプリフォームを装填した本発明の別の実施形態に係る装填装置の斜視図である。
【
図4】
図4は、互いに積層された複数の
図1の装填装置により構成された、本発明の一実施形態に係る積層体の斜視図である。
【
図5A】
図5Aは、
図4の積層体の複数の列により構成された装填体の斜視図である。
【
図6】
図6は、本発明の一実施形態に係る化学気相浸透設備の分解斜視図である。
【
図7】
図7は、
図6の化学気相浸透設備に
図5Bの装填体が配置される様子を示す断面図である。
【
図8】
図8は、
図6の設備の動作中に多孔質プリフォームを高密度化している間、反応ガス流がたどる経路を示す断面図である。
【
図9】
図9は、装填装置の積層体の2つの列の間に配置された加熱壁を備える、本発明の一実施形態に係る化学気相浸透設備の分解斜視図である。
【発明を実施するための形態】
【0025】
本発明は、多孔質プリフォームの化学気相浸透処理に適用される。この浸透処理は、特に、プリフォームを高密度化するためおよび/またはプリフォーム内部に界面層などの層を堆積させるために実施され得る。
【0026】
図1および
図2は、浸透処理の対象である基体を装填した後の、工業用の化学気相浸透設備の平行六面体形状の反応チャンバに配置される装填装置または装填器具10を示している。ここで説明する例では、器具10は、航空機エンジンブレード用繊維プリフォーム20を収容するためのものである。
【0027】
各プリフォーム20は、両端部21、22間を長手方向に延び、翼形部120と、例えば球状部を有する厚さの大きい部分により形成された根元部130とを備え、根元部130にはタング132が連なっている(
図1)。翼形部120は、根元部130と先端部121との間を長手方向に延び、その断面が、翼形部120の吸気側の面および加圧側の面にそれぞれ対応する2つの面122、123を画定する厚さの変動する湾曲した形状を有する。ここで説明する例では、翼形部120はまた、内側ブレードプラットフォーム140と外側ブレードプラットフォーム160とを備える。
【0028】
ここで説明する装填装置10は、2つの縦壁110、111と2つの横壁112、113とを有する直方体形状の支持フレームまたは筐体11によって構成され、縦壁110、111間にプリフォーム20のための装填スペース16が画定されている。各縦壁には、各ブレードプリフォーム20の端部21、22の一方を受けるための支持要素が設けられている。より正確には、長さ方向に均等に分布した切り欠き1101を有する第1支持プレート1100が、壁110の内側部分110aにナット‐ボルト式の締結部材1102を用いて固定されている。切り欠き1101は、プリフォーム20の端部21を受けるためのものである。同様に、長さ方向に均等に分布した切り欠き1111を有する第2支持プレート1110が、壁111の内側部分111aにナット‐ボルト式の締結部材1112を用いて固定されている。切り欠き1111は、プリフォーム20の端部22を受けるためのものである。ある変形形態では、切り欠きは、装填装置の縦壁に直接加工される。
【0029】
プリフォーム20は、装填装置10に配置されたとき、その長辺が壁110、111間に延びる。このため、大きな装填容量を有する装置を得ることが可能になる。さらに、壁に支持手段を設けることで、高密度化の対象である基体と装填装置の接触面積を最小化でき、その結果として反応ガスの浸透のための到達可能な面積が大きくなる。
【0030】
ここで説明する例では、装填装置はまた、縦壁111および横壁112の外側部分に配置された中心合わせ用ペグ12を有し、加えて、フレーム11の頂部11aに配置された2つの係止用ペグ13と、フレーム11の底部11bに配置された2つの係止用開口部14とを有する。係止用開口部14は、他の同様の装填装置と積層する場合に、他の装置の係止用ペグと協働するためのものである。係止用開口部14は、より詳細に後述するように、このような装置を複数積層する場合に、プリフォーム20の向きを1つの装填装置と隣接する他の装置との間で180度反対にできるように、係止用ペグ13に対してオフセットして配置されている。装填装置はまた、フレーム11の頂部11aに配置された黒鉛ガスケット15を有し、該ガスケットは、積層された他の装填装置への接着を回避することと、プリフォームを高密度化した後の他の装填装置との分離を容易にすることとを目的としている。
【0031】
図3は、正方形の形を有している点で上記装填装置10と異なる本発明の別の装填装置30を示している。装填装置30は、4つの壁310〜313を有する正方形状の支持フレームまたは筐体31を備え、縦壁310、311間に上記ブレードプリフォーム20と同様のブレードプリフォーム320のための装填スペース36が画定されている。長さ方向に均等に分布した切り欠き3101を有する第1支持プレート3100が、壁310の内側部分にナット‐ボルト式の締結部材(
図3には示さず)を用いて固定されている。切り欠き3101は、プリフォーム320の端部321を受けるためのものである。同様に、長さ方向に均等に分布した切り欠き3111を有する第2支持プレート3110が、壁311の内側部分にナット‐ボルト式の締結部材(
図3には示さず)を用いて固定されている。切り欠き3111は、プリフォーム320の端部322を受けるためのものである。ある変形形態では、切り欠きは、装填装置30の縦壁310、311に直接加工される。
【0032】
プリフォーム320は、装填装置30に配置されたとき、その長辺が壁310、311間に延びる。このため、大きな装填容量を有する装置を得ることが可能になる。さらに、壁に支持手段を設けることで、高密度化の対象である基体と装填装置の接触面積を最小化でき、その結果として反応ガスの浸透のための到達可能な面積が大きくなる。
【0033】
ここで説明する例では、装填装置はまた、縦壁311および横壁312の外側部分に配置された中心合わせ用ペグ32を有し、加えて、フレーム31の頂部に配置された2つの係止用ペグ33と、フレーム31の底部に配置された2つの係止用開口部(
図3には示さず)とを有し、この係止用開口部は、他の同様の装填装置と積層する場合に、他の装置の係止用ペグと協働するためのものである。装填装置はまた、フレーム31の頂部31aに配置された黒鉛ガスケット35を有し、該ガスケットは、積層された他の装填装置への接着を回避することと、プリフォームを高密度化した後の他の装填装置との分離を容易にすることとを目的としている。
【0034】
上記黒鉛ガスケットは、好ましくは、Sigraflex(登録商標)またはPapyex(登録商標)という商標で販売されている材料などの膨張黒鉛でできている。
【0035】
図4は、
図1Aおよび1Bを参照して上述したような複数の装填装置10から構成された積層体50を示している。
図4に示すように、複数の装填装置10が互いに積層されるが、それらは全て同一であって、それぞれに高密度化の対象であるブレードプリフォーム20が予め装填されており、これらプリフォームは全て同じ方向に並んでいる。装填装置10を積層体50にすでに存在している他の装填装置の上に積層する場合、この追加で積層される装填装置の向きがその下の装填装置の向きと180度異なるように、積層対象の装填装置の開口部14が積層体にすでに存在している装填装置の係止用ペグ13と協働する。装填装置のそれぞれにおいて、全てのブレードプリフォームがはじめ同じ向きに装填されるため、積層体内の1つの装填装置と隣接する装填装置とでブレードプリフォームの向きが180度異なる。積層体内の2つの隣接する装填装置間でブレードプリフォームの向きがこのような角度で異なっていることで、積層体全体を通じて反応ガス流の流れが良好になる。具体的には、ブレードプリフォームの加圧側の面(または吸気側の面)の向きを積層体内の1つの装填装置と隣接する装填装置とである1つの方向とその反対方向とに交互にすることによって、積層体の高さ全体にわたってガスがプリフォーム間で良好に配分され、それにより、プリフォームのより均一な高密度化を達成できる。
【0036】
図5Aは、
図1および
図2を参照して上述したような積層体50をそれぞれ複数体含み、かつ長手方向D
Lに延びる3つの列510、520、530から構成された装填体500を示している。
図5Bでは、第1緩衝領域540が装填体500の頂部の上に配置され、第2緩衝領域550が装填体500の底部の下に配置されている。緩衝領域540、550はそれぞれ、装填体500に存在している積層体50の数と同じ数の平行六面体形状のフレームまたは筐体5401、5501によって形成されており、フレーム5401、5501は、装填装置10のフレーム13の寸法と同じ寸法を有している。
【0037】
図6は、高密度化の対象である多孔質プリフォームを収容している装填体500を設置するための化学気相浸透設備または浸透炉600の概略図である。化学気相浸透設備600は、4つの側壁611〜614によって画定される直方体形状の反応チャンバ610を備え、壁611、612はチャンバの長手方向に延び、一方壁613、614はチャンバの短手方向に延びている。壁611〜614のそれぞれに加熱手段が設けられ、この例では加熱手段は、壁611〜614のそれぞれに埋め込まれた電気抵抗615である。反応チャンバの頂部は、高密度化の対象であるプリフォームを収容している反応チャンバ610内にガスを分散させる前にガスを加熱するための予熱領域622に開口しているガス導入管621が設けられた取り外し可能なカバー620によって閉じられる。残留ガスは、吸引手段(図示せず)に接続された排出管631を介して設備の底部630から抜き出される。反応チャンバの底面を閉じる底部630は、複数のガス排出開口部6320を有するプレート632を備え、使用時には、装填体500がこのプレート632に載置される。ガス導入管621および排出管631の数は、ガスを供給する対象である反応チャンバの寸法に応じて定められる。
【0038】
反応チャンバ610内の予熱領域622とプレート632との間に存在するスペースは、浸透設備600の有効装填空間、すなわち、浸透処理の対象である繊維プリフォームを装填するために利用可能な空間に相当する。
【0039】
以下、多孔質プリフォーム20を装填した複数の積層体50を備える装填体500の化学気相浸透設備600への設置について説明する。
図7に示すように、装填体500を第1および第2緩衝領域540、550とともに反応チャンバ610に導入できるようにするために、カバー620を設備600から取り外す。プレート632ひいては装填体500がスペーサー6301を介して底部630上の支持部に載置されるまで、装填体500をプレート632およびハンガーロッド640を用いてチャンバ610内を下降させる。
【0040】
装填体500が反応チャンバ610に配置された後、
図8に示すように、カバー620が反応チャンバの頂部に取り付けられる。こうして、化学気相浸透設備の運転の準備が整う。
【0041】
ここで説明する例では、設備は多孔質プリフォームを高密度化するために用いられる。プリフォームを高密度化するために、堆積させるべきマトリクス材料の1つまたは複数の前駆体を含有する反応ガスが反応チャンバ610に導入される。例えば、炭素の場合には、典型的にはプロパン、メタン、または両者の混合物であるガス状の炭化水素化合物が用いられる。例えば炭化ケイ素(SiC)などのセラミック材料の場合には、周知のように、メチルトリクロロシラン(MTS)をSiCの前駆体として使用できる。
【0042】
多孔質プリフォームは、周知の方法で、基体の内部の到達可能な空孔内に拡散した反応ガスに含有される(1つまたは複数の)前駆体の分解によって生成されるマトリクス材料を多孔質プリフォームの内部に堆積させることによって、高密度化される。化学気相浸透によって種々のマトリクス堆積物を得るために必要な圧力条件および温度条件はそれ自体周知である。
【0043】
チャンバ内にある各装填装置は、ヒートシンクを構成する。このため、反応チャンバの壁の加熱手段が作動されると、各装填装置が、該装置内にあるプリフォームの温度を上げる役割を果たすサセプタとして個別に機能する。
【0044】
図8は、導入管621を介して反応チャンバ610に導入された反応ガス流Fgがたどる経路を示している。各積層体50の装填装置10内の反応ガス流の通過を促進するために、供給管621と排出管631との間に圧力勾配を生じさせる。流れFgは、まず予熱領域622を通過し、次いで、予熱領域から出てくるガスがプリフォームに直接当たることを防止する役割を果たす第1緩衝領域540に入る。次いで、反応ガス流Fgは、最上部の積層体50aから最下部の積層体50bに向かって各積層体50の装填装置10内を流れ、そして、プリフォームと反応しなかったガス流の残部が、ガス流を排出する前に方向を変える役割を果たす第2緩衝領域550を通過し、次いで、ガス流はプレート632の排出開口部6320を通過して反応チャンバ610から排出管631を介して抜き出される。
【0045】
本発明の装填体は、上述したように、平行六面体形状、例えば、直方体または立方体形状の装填装置の1つまたは複数の積層体によって構成される。装置の積層体は、1列または複数の列に配列される。
【0046】
一般的に、装填装置の形状および寸法、ならびに、装填装置の積層の仕方および装填体を構成する積層体の配列の仕方は、浸透設備におけるプリフォームの装填率ができる限り最適化されるように選択される。
【0047】
平行六面体形状であって少なくともその側壁を通じて加熱される反応チャンバを有する浸透設備を、同じく平行六面体形状である装填体と組み合わせて用いることで、装填体全体にわたって温度を制御できる。チャンバの幅、ひいては有効装填空間の幅は、壁611、612などの反応チャンバの長手方向に延びるチャンバの側壁間に生じうる温度勾配を最小限に抑えるように制限される。また、流れを制御するためおよびガスが積層体内部で消費される度合いを抑えるために、装填体の高さが制限される。一方、チャンバの長さ、ひいては装填体の長さは何ら制限されず、このため、非常に大きな装填率が得られる。
【0048】
有効装填空間が所定の平行六面体形状である場合の装填容量の例を以下に示す。
・高さ0.52メートル(m)、幅0.26m、長さ14.6mの有効装填空間の場合、本発明を用いれば、長さ約10センチメートル(cm)のブレードプリフォームをそれぞれ7個収容している直方体形状の装填装置をそれぞれ7体備える積層体を65体1列に配列することによって、3185個のブレードプリフォームを装填できる。
・高さ0.74m、幅0.34m、長さ7.2mの有効装填空間の場合、本発明を用いれば、ブレードプリフォームをそれぞれ10個収容している直方体形状の装填装置をそれぞれ10体備える積層体を32体1列に配列することによって、3200個のブレードプリフォームを装填できる。
・高さ0.74m、幅1m、長さ2.5mの有効装填空間の場合、本発明を用いれば、ブレードプリフォームをそれぞれ10個収容している直方体形状の装填装置をそれぞれ10体備える積層体を各列に11体で3列に配列することによって、3300個のブレードプリフォームを装填できる。
【0049】
有効装填空間の幅方向において温度の均一性を保つために課される反応チャンバの幅に対する制限は、
図9に示す化学気相浸透設備700の場合のように、上記装填装置10と同様の平行六面体形状の装填装置90の積層体900によってそれぞれ構成される2つの列810、820間に加熱壁716を介在させることによって解消され得る。壁716は、加熱手段、具体的には壁716に埋め込まれた電気抵抗717によって加熱される。反応チャンバ710の有効装填空間もまた、電気抵抗715が埋め込まれた側壁711〜714によって加熱される。
【0050】
ある変形形態では、電気抵抗などの加熱手段が、反応チャンバの頂壁および/または底壁にもある。