【実施例】
【0187】
本発明が更に十分に理解されるように、以下の実施例を提供する。これらの実施例は説明のみを目的にしていて、決して発明を限定するように解釈されてはならない。
【0188】
(一般的な実験方法)
1. MCL−1の強力で選択的な小分子調節剤を同定するために、競合的蛍光偏光アッセイによって小分子結合スクリーニングを実施した。小分子を、FITC−MCL−1 SAHB/MCL−1ΔNΔC相互作用及びFITC−BAD BH3/BCL−X
LΔC相互作用に対して同時にスクリーニングした。FITC−MCL−1 SAHB/MCL−1ΔNΔC相互作用を選択的に妨害する化合物を第二次スクリーニングアッセイに進めた。
【0189】
2. 一連の確認結合アッセイを実施した。最初に、FITC−MCL−1 SAHB/MCL−1ΔNΔCを用いる競合結合アッセイを、用量反応分析を用いて繰り返して、用量反応性結合を確認し、小分子のK
i値を確定した。その後、MCL−1ΔNΔC、BCL−2ΔC、BCL−X
LΔC、BCL−wΔC、及びBFL1/A1ΔCと組合わせたFITC−BID BH3の相互作用に対する小分子の競合的蛍光偏光結合アッセイによって特異性分析を実施した。他の抗アポトーシスタンパク質よりMCL−1ΔNΔCに対して高忠実度の特異性を示す小分子をSAR、結合部位、及び機能分析に進めた。結合解析を実施して、小分子の構造と、構造的に定義付けた(すなわち、X線結晶学的に)MCL−1ΔNΔCのBH3結合ポケットのエネルギー的に有望な結合部位との親和性を確認した。希釈アッセイを行って非共有及び共有MCL−1結合剤を区別した。これらの試験は一連の共有結合相互作用剤を同定した;例えば、MCL−1結合活性を阻害するための新規な相互作用部位を、システイン286にある分子によるMCL−1の共有結合修飾に基づいて確認した。最後に、選択的MVL−1阻害剤を、BAX介在リポゾーム放出アッセイで試験してMCL−1の阻害/抗アポトーシス活性をブロックするそれらの能力を評価した。
【0190】
3. 次いで、MCL−1の小分子調節剤を、小分子の連続希釈の存在下又は非存在下で、TRAILの亜細胞毒用量に暴露させたOPM2細胞を用いる細胞アポトーシス感作アッセイで試験した。感作活性も併用処理のCalcuSyn分析の使用によって確認した。
【0191】
(方法)
SAHBの合成。
BCL−2ファミリーBH3ドメインに対応する炭化水素で架橋したペプチド及びそれらのFITC−βAla誘導体を合成し、精製して、以前に記載されている方法
24、27、29を用いて特徴付けた。
【0192】
抗アポトーシスタンパク質の製造。
組み替え型でタグレスの MCL−1ΔNΔC、BCL−2ΔC、BCL−XLΔC、BCL−wΔC、及びBFL1/A1ΔCを以前に記載されている方法
27、29、31を用いて製造した。
【0193】
小分子のスクリーニング。
小分子スクリーニングを、Harvard Medical School の Institute for Chemistry and Cellular Biology において実施して、市販のライブラリー(Asinex, Chembridge, ChemDiv, Enamine, Life Chemicals, 及びMaybridge)を利用した。ハイスループット競合FP結合アッセイを、FITC−MCL−1SAHB(15nM)とMCL−1ΔNΔC(45nM)との相互作用を妨害する小分子をスクリーニングするために用いた。MCL−1ΔNΔCを発現してFPLCで精製し、自動化リキッドハンドラーによって384ウェルのプレートに移し、次いで、小分子ライブラリーを添加した。室温で15分間培養した後、FITC−MCL−1 SAHB(15nM)をリキッドハンドラーで各ウェルに添加して、平衡状態で(例えば、1時間)FPを読み取った。ヒットした小分子を、化合物の連続希釈を用いてこのアッセイで再試験して用量反応性のFITC−MCL−1 SAHB結合阻害を確認した。
【0194】
確認結合分析。
最も強くヒットしたものを結合活性及び特異性の厳密な定量化に進めた。最初に、小分子の連続希釈3組をFITC−MCL−1 SAHB(15nM)と混合した後、結合緩衝液(50mMのTris、100mMのNaCl、0.0625%のCHAPS、pH8.0)に希釈したMCL−1ΔNΔC(45nM)を含有する384ウェルの黒色Costerプレートに添加した。プレートを暗所において室温で平衡状態に達する(すなわち、結合等温線の安定化)まで培養して、マイクロプレートリーダー(例えば、Spectramax)を用いてFP(mP単位)を確認した。Prismソフトウェア(Graphpad)を用いる用量反応性曲線の非線形回帰分析によってK
i値を算出した。次いで、ヒットした小分子は、小分子希釈物をFITC−BAK BH3(25nM)及びMCL−1ΔNΔC(250nM)の溶液に添加して阻害性MCL−1タンパク質からアポトーシス促進性BAKへの生理学的置換をシミュレートする以外は上記のように実施した、競合FPアッセイでMCL−1ΔNΔCからFITC−BAK BH3を解離するそれらの能力について試験した。精密な特異性分析のために、ヒットした小分子の連続希釈を汎抗アポトーシス(pan-anti-apoptotic)結合剤FITC−BID BH3(15nM)と混合した後、MCL−1ΔNΔC、BCL−2ΔC、BCL−X
LΔC、BCL−wΔC、又はBFL1/A1ΔCの何れかを含有しているプレートに添加すること以外は、同じ競合FPタイプ実験を実施した。GST−MCL−1ΔNΔC、BCL−2ΔC、BCL−X
LΔC、BCL−wΔC、及びBFL1/A1ΔCを発現するためにpGEXベクターを用いた後、トロンビン切断及びFPLCによるゲル濾過クロマトグラフィーを行った。特に、C末端アルファ螺旋をこれらの構築物それぞれから欠失させてタンパク質発現及び精製を促進させ;MCL−1の追加的N末端欠失を実施してさらに発現、精製、及び安定性を増強した。上記のようにFP分析を実施して、MCL−1ΔNΔCに対して排他結合活性を示すこれらの分子を構造結合試験及び機能試験に進めた。
【0195】
希釈アッセイ。
MCL−1ΔNΔC(2μM、500mL)を化合物(先に確認したEC
50値をはるかに超える比率で)と室温で1時間、FP緩衝液(100mMのNaCl、50nMのTris、pH8)中で培養した。少量の試料を希釈前の対照として採取した。次いで、化合物で処理したタンパク質及び非修飾タンパク質を20mLの容量に希釈し、続いて10K遠心濾過機ユニット(Amicon)を用いて500mLまで再濃縮した。希釈前と後の両方で、化合物で修飾したMCL−1及び非修飾MCL−1の連続希釈を、次いでFITC−BID BH3(15nm)を96ウェルの黒色平底プレート(Costar)に添加して、上記のようにFP結合分析を実施した。次いで、FP測定及び分析を上記のように実施した。
【0196】
質量分析による共有結合修飾部位の同定。
MCL−1ΔNΔC(90μM)を1:1.25比の化合物と室温で2時間、150mMのNaCl、50mMのTris、pH7.4中で培養した。過剰の化合物をゲル濾過で除去してタンパク質をトリプシンで1晩37℃で消化した。Ficarro et al., 2009
34に記載されているように通気式カラム装置を用いて、ナノ−LC/ESI/MSによってペプチドを分析した。すなわち、オートサンプラー及びHPLC(Water NanoAquity)を用いて、ペプチドを自動充填プレカラム(4cm、100μmI.D.、POROS10R2, Applied Biosystems)上に注入し、分解カラム(自動充填式30μmI.D.、12cm、5μm Monitor C18、Column Engineering)に、濃度勾配溶出して(0〜30%Bを20分、A=0.2M酢酸水溶液、B=0.2M酢酸含有アセトニトリル)、ESI(スプレー電圧=2.2kV)を介して質量分析計(Thermo Fisher LTQ-Orbitrap XL)に導入した。各MSスキャン(イメージ電流検出、分解能=30,000)中で量が多い上位8つの前駆体をCAD(電子増倍管検出、衝突エネルギー=35%)に付した。化合物で修飾したペプチド(例えば、TINQES
*CIEPLAESITDVLVR〔
*C=修飾したシステイン〕)を用いて別個の標的化ナノ−LC/ESI/MS実験を実施して、これをHCD(高エネルギー衝突活性化解離)に付した。
【0197】
リポソーム放出アッセイ。
既に詳細に述べられている(Pitter et al., 2008)
31ようにミトコンドリア外膜の組成を反映する脂質の混合物からリポソームを調製した。混合した脂質の一定量(合計1mg)をグラスの中で、窒素雰囲気下−20℃で保存して、使用前に、12.5mMの蛍光染料ANTS(8−アミノナフタレン−1,3,6−トリスルホン酸二ナトリウム塩)及び45mMの消光剤DPX(p−キシレン−ビス−ピリジニウムブロマイド)を用いて、リポソームアッセイ緩衝液(10mMのHEPES、200mMのKCl、1mMのMgCl
2、pH7)に再懸濁した。得られた懸濁液を10分間ボルテックスして、液体窒素中と40℃の水浴中の間を5回繰り返して凍結溶解した。次いで溶液を、100nmのフィルターを備えたアバンティ ミニ−エクストルーダー セット(Avanti Mini-Extruder Set; #610000)に通した後、セファロースカラム(GE Healthcare)に通して残余のANTS/PDXを除去した。リポソームを3mLの容量にして最終リポソームストックを作った。リポソーム放出アッセイのために、384ウェルの黒色平底プレート(Costar)で総容量30μLを用い、8μLリポソームの蛍光測定基準値を、Tecan Infinite M1000(励起;355nm、放出;520nm)を用いて10分間作成する。基準値を読み取った後、1:1の比の化合物と前培養した組み替えMCL−1ΔNΔCをリポソームに添加する。次に、20nMのカスパーゼ切断マウスBID(R&D systems)及び250nMの精製した組み替え単量体BAXを加えて、蛍光測定値(F)をゼロ時点(F0)から放出読み込みが平坦になるまで毎分記録する。次いで、リポソームを1%のトリトンX−100でクエンチして(100%放出;F100)、ANTS/DPX放出パーセントを((F−F0)/F100−F0))×100として算出する。
【0198】
チトクロームc放出アッセイ。
マウス肝臓ミトコンドリア(0.5mg/mL)を単離して記述されている
31ようにして放出アッセイを実施する。ミトコンドリアをMCL−1標的小分子の連続希釈物の、単独又はBID BH3と組合わせたものと共に培養して、40分後に、ペレット及び上澄画分を単離して、比色ELISAアッセイ(R&D Systems)を用いてチトクロームcを定量する。放出可能なミトコンドリアプールから上澄液内へのチトクロームc放出パーセント(%cytoC
sup)を次の式:%cytoc=〔cytoc
sup−cytoc
backgr)/(cytoc
total−cytoc
backgr)〕*100:に従って算出した。ここで、バックグラウンド放出は、賦形剤(1%DMSO)で処理した試料の上澄液中で検出されたチトクロームcを表し、総放出は1%トリトンX100で処理した試料中で測定されたチトクロームcを表す。観察された野生型ミトコンドリアからのチトクロームc放出がBAK活性化に由来していることを保証するために、全ての実験条件をBak
−/−ミトコンドリア上でも試験する。
【0199】
免疫沈降アッセイ。
MCL−1発現癌細胞(10×10
6)をMCL−1標的小分子又は賦形剤と共に、無血清培地中、37℃で4時間、次いで血清に置き換えて更に6時間培養した。50mMのTris(pH7.4)、150mMのNaCl、1mMのEDTA、1mMのDTT、0.5%のNP40及びコンプリートプロテアーゼインヒビタ−ペレット(complete protease inhibitor pellet)中で細胞溶解した後、細胞残屑を14,000g、4℃で10分間ペレット化する。上澄液を前もって平衡化してあるタンパク質A/Gセファロースビーズに触れさせて、次に前もって精製した上澄液を、抗MCL−1抗体と4℃で1.5時間、その後プロテインA/Gセファロースビーズを加えて1時間培養した。ビーズをペレット化して溶解緩衝液で10分間、4℃で洗浄する。次いで洗浄したビーズをペレット化し、SDS負荷緩衝液中、90℃で10分間加熱し、SDS/PAGEで分析し、次いでMCL−1及びBAKについて免疫ブロットする。
【0200】
結晶学。
主な小分子−MCL−1ΔNΔC複合体の結晶化条件は、96ウェルのシッティングドロッププレートでPhoenix結晶化ロボットを用いてスクリーニングする。初期条件は、HT Index Screen、JSCG+Suite、及びPro−Complex Suiteを包含する。pH、塩、及び洗浄濃度を変えることを含む、最良ヒット周辺のスクリーニングを実施して結晶の生育に対する最良の条件を確認する。生成したら、結晶を除去し、結晶化緩衝液中で洗浄し、質量分析に付して結晶内の化合物とタンパク質の存在を検証する。次いで結晶を抗凍結剤に浸し、急速冷凍して液体窒素中で保存する。適当な結晶を、Argonne National Laboratory シンクロトロン施設で試験する。分子置換、次いでデータ分析及び純化によって相を得る(Phaser, Phenix, amd Coots ソフトウェア)。
【0201】
細胞アポトーシス誘導アッセイ。
MCL−1の小分子阻害剤を、OPM−2(多発性骨髄腫)細胞のような、MCL−1発現癌細胞株中でスクリーニングした。細胞は小分子MCL−1阻害剤単独で又は治療量以下のアポトーシス促進刺激剤(例えば、TRAIL、Fasリガンド、ABT−737)と併用して処理して、製造会社(Roche)のプロトコールに従って実施するMTTアッセイによって、48時間時点に細胞生存能力を測定して、ELISAマイクロプレートリーダー(Biorad)によって定量する。IC
50値を、Prismソフトウエア(Graphpad)を用いる非線形回帰分析によって確認した。次いで、細胞生存能力を減少する小分子を、アネキシンV結合及びFACS分析によって、そして記載されている
28ようにして、細胞分割法によるミトコンドリアのチトクロームc放出によって、細胞アポトーシス誘導についてスクリーニングする。アポトーシスは、上記のように実施されるMCL−1/BAK複合体のin situ 解離(免疫沈降)にも相関している。小分子のMCL−1特異性の更なる測定として、小分子の選択的MCL−1標的能力をアポトーシスの感作と明確に関連付けるために、野生型対McL−1
−/−MEFにおいて同一実験を実施する。小分子活性のカスパーゼ依存性も、汎カスパーゼ阻害剤Z−VADとの同時処理による活性の妨害をモニタリングすることによって確認する。
【0202】
薬物動態解析。
主要な小分子は、DF/HCC Clinical Pharmacology Core と協力して実施した、マウスにおける薬物動態(PK)解析を受ける。血清中の化合物濃度を検出及び定量するためにLC/MSによる分析的アッセイを展開する。PK解析のために、小分子(例えば、10、50、100mg/kg)を、雄生C57/BL6マウスの尾静脈内又は腹腔内に注射する。血液試料を多種の時点で後眼窩出血によって採取して、血漿を単離して、化合物を定量したのち、血漿半減期、最高血漿濃度、総血漿クリアランス、及び分配の見掛け容量を算出する。細胞において選択的MCL−1標的性を示して、好ましい薬物動態プロファイルを示す小分子をインビボ試験に進める。
【0203】
インビボ有効性の研究。
小分子感受性癌細胞株をレトロウィルスで形質導入して、安定なルシフェラーゼ発現(pMMP−LucNeo)を達成して、既に記載されている
27、32ようにしてSCIDベージュマウスに移植する。最初の異種移植研究では、賦形剤単独、低及び高用量の小分子単独、治療量以下のアポトーシス促進刺激剤(例えば、TRAIL、ABT−737、ドキソルビシン、エトポシド、デキサメタゾン)と組合わせた低/高用量小分子の何れかで処置した、マウスの5群(n=10)を試験する。実験第1日から、1日1回マウスに小分子(例えば、併用処置あり又はなしで、25又は100mg/kg)を尾内注射する。隔日のインビボ腫瘍画像化のために、マウスをイソフルラン吸入で麻酔して、D−ルシフェリンの腹腔内投与で併用処置する。光子放出を、Xenogen In Vivo Imaging Systemを用いて画像化(2分間照射)して、Xenogen’s Living Image Softwareを用いて光子束(光子/秒)を積分して、総身体生物発光を定量する。実験マウスの生存分布を、Kaplan−Meier法を用いて測定し、ログランク検定を用いて比較する。フィッシャーの正確確立検定を、処置に失敗したマウス(ここで、処置の失敗は進展又は死亡と定義する)と安定した疾患又は回復として成功したマウスの割合を比較するために用いる。特定の小分子で処置応答が観察された場合は、賦形剤、小分子、又は小分子組合せの何れかで処置する追加の3群を、TUNEL及び活性化カスパーゼ−3免疫組織化学的染色によって組織におけるアポトーシス促進活性を評価する薬力学的研究のために用いる。
【0204】
実施例:
FITC−MCL−1 SAHB及びMCL−1ΔNΔCを用いる競合的蛍光偏光結合アッセイによるMCL−1選択的小分子の同定。
ハイスループットな競合的FP結合アッセイを用いて、FITC−MCL−1 SAHB/MCL−1ΔNΔCとFITC−BAD BH3/BCL−X
LΔCの間の相互作用を妨害した小分子をスクリーニングした(
図1)。BCL−X
LΔCを上回ってMCL−1ΔNΔCを標的とするそれらの選択性に基づいて化合物を順位付けして、表にした(表1(副表1−A〜1−Pを含む)を参照されたい)。
【0205】
小分子/MCL−1複合体の構造はMCL−1結合活性及び特異性を精緻化するための鋳型を提供する。
MCL−1ΔNΔCの結晶構造を用いて、同定された小分子をMCL−1ΔNΔCのBH3結合ポケットにドッキングさせて、相互作用の位置及びエネルギー有利性(energetic favorability)を分析した。化合物はBH3結合ポケットトポグラフィーの個々の小区域をカバーし(
図2)、複合体とMCL−1の延長されたBH3結合表面を結合するための分子又はその小断片の組合わせを組み込んだ、選択的な、より大きい分子を設計する青写真を提供した。
【0206】
非共有結合性対共有結合性相互作用に基づく選択的MCL−1阻害剤の下位分類。
MCL−1に結合する小分子のメカニズムを試験するために、化合物を急速希釈アッセイに付した(
図2C)。つまり、MCL−1ΔNΔCを緩衝液で希釈する前に小分子阻害剤と前培養した。溶液をその元の容量まで濃縮して、蛍光偏光を実施した。共有結合する化合物はタンパク質との結合を保持するのに対して、可逆的に結合する化合物は希釈によって交換されるだろう。陽性対照として、急速希釈アッセイは、ゴシポール(1570G15)がMCL−1ΔNΔCと可逆的に結合することを確認した(
図2C、上図)。対照的に、1725P16及び1597E07は希釈によって交換されず、この化合物がMCL−1ΔNΔCと結合して共有結合的に修飾することを示唆している(
図2C、中、下図)。
【0207】
C286結合に基づくMCL−1阻害の新規相互作用部位の同定。
共有結合的修飾の部位を突き止めるために、小分子で処理したMCL−1ΔNΔC(例えば、1929A19)を質量分析に付した。共有結合的に拘束された化合物の分子量に対応する質量の増加と共に、小分子に拘束されたタンパク質に対して追加のMALDIピークが観察された。MCL−1ΔNΔC付加物を更にタンデムMS/MSに付し、システイン286が1929A19に対する修飾部位であることが明らかになった(
図2D)。重要なことは、システイン286が基準のBH3結合ポッケトに位置していないことで(
図2D)、この新規な結合部位への結合がMCL−1の抗アポトーシス/BH3結合活性をアロステリックに調節できることを示唆している。C286結合の機能的重要性を確認するために、MCL−1ΔNΔCのC286構築物を部位特異的突然変異誘発法によって作成して、FITC−BID BH3及び野生型並びに突然変異MCL−1ΔNΔCタンパク質を用いる競合的FPアッセイで、小分子の結合活性を比較した。MCL−1ΔNΔC結合に対して1929A18及び1616N08がFITC−BID BH3と競合したのに対して、化合物の存在において、MCL−1ΔNΔCC286Sに対して結合活性を保持するFITC−BID BH3の能力によって明らかにされたように、分子はMCL−1ΔNΔCのC286S構築物と結合しなかった。
【0208】
競合的結合アッセイの使用による小分子の結合活性及び選択性の確認。
同定された小分子のMCL−1ΔNΔCを選択的に標的にする能力を確認するために、ヒットした小分子は、MCL−1ΔNΔC C、BCL−2ΔC、BCL−XLΔC、BCL−wΔC、及びBFL1/A1ΔCを包含する、抗アポトーシスタンパク質のパネルからFITC−BID BH3を解離するそれらの分化能力について試験した。
図3及び4に例示したように、MCL−1ΔNΔC選択性であるとして同定された小分子は実際に、試験した他の抗アポトーシスタンパク質と比べてMCL−1ΔNΔCから優先的にFITC−BID BH3の転移を示した。
【0209】
選択的MCL−1阻害剤の構造活性相関。
クラスA(
図4C)とJ(
図4D)分子の化学誘導体は結合活性において有意差を明らかにした。重要なことは、クラスAのR1位にある5員のチアゾール環が、より小さい、非芳香族の置換基と比べてMCL−1ΔNΔCに対する結合親和性を増大した。R2位において芳香族残基は、フェニル環のパラ位に小さい疎水性側鎖又は水素結合受容体を有しているのが好ましい。クラスJに関して、小さい脂肪族基がR1位で良好な耐用性を示し、R2位のトリヒドロキシフェニル環がMCL−1ΔNΔCに対して優れた結合親和性を示した。最後に、R3位の5員又は6員の芳香族環が好ましい。特に、R3にメチル置換基を含有している類縁体はR1位の大きい脂肪族基と対にならなければ活性を示さない。
【0210】
小分子のMCL−1結合剤は癌細胞をアポトーシス促進刺激に感作する。
生存についてMCL−1に依存している癌細胞を、他のアポトーシス促進剤と組合わせた選択的小分子MCL−1ΔNΔC結合剤で処理して相乗性の抗腫瘍活性について評価した。
図5に例示したように、小分子の生物活性は、MTT生存率アッセイ及びCalcuSynソフトウェアを用いる併用治療分析によって評価されたように、TRAILと相乗的にOPM2多発性骨髄腫細胞を殺傷した。
【0211】
選択的MCL−1結合剤はBAX介在リポソーム放出アッセイにおいてMCL−1の抗アポトーシス機能を妨害する。
リポソーム放出アッセイを、ミトコンドリア外膜内にBAXを含有する孔を形成してミトコンドリアチトクロームc機能的放出を模倣するように設計する。ここで、組み替え全長BAXを、MCL−1ΔNΔCの存在下又は非存在下で、組み替えtBIDと培養した。
図6に示したように、tBIDは、リポソームからフルオロフォアのBAX介在放出を時間依存的に誘発した。MCL−1ΔNΔCは、フルオロフォア放出を阻害する、BAXの活性化を妨害した。MCL−1ΔNΔCを阻害することによる、1929A19及び1616N08がフルオロフォアのtBID誘発性のBAX介在リポソーム放出を、容量依存的に回復させて、この小分子MCL−1阻害剤のMCL−1の抗アポトーシス活性を妨害する能力を強調している。
【0212】
【表1-A(1)】
【0213】
【表1-A(2)】
【0214】
【表1-B(1)】
【0215】
【表1-B(2)】
【0216】
【表1-C(1)】
【0217】
【表1-C(2)】
【0218】
【表1-D(1)】
【0219】
【表1-D(2)】
【0220】
【表1-E(1)】
【0221】
【表1-E(2)】
【0222】
【表1-E(3)】
【0223】
【表1-E(4)】
【0224】
【表1-E(5)】
【0225】
【表1-F(1)】
【0226】
【表1-F(2)】
【0227】
【表1-G(1)】
【0228】
【表1-G(2)】
【0229】
【表1-H(1)】
【0230】
【表1-H(2)】
【0231】
【表1-H(3)】
【0232】
【表1-H(4)】
【0233】
【表1-I(1)】
【0234】
【表1-I(2)】
【0235】
【表1-J(1)】
【0236】
【表1-J(2)】
【0237】
【表1-J(3)】
【0238】
【表1-J(4)】
【0239】
【表1-K(1)】
【0240】
【表1-K(2)】
【0241】
【表1-K(3)】
【0242】
【表1-L(1)】
【0243】
【表1-L(2)】
【0244】
【表1-L(3)】
【0245】
【表1-L(4)】
【0246】
【表1-L(5)】
【0247】
【表1-M】
【0248】
【表1-N(1)】
【0249】
【表1-N(2)】
【0250】
【表1-N(3)】
【0251】
【表1-N(4)】
【0252】
【表1-N(5)】
【0253】
【表1-N(6)】
【0254】
【表1-N(7)】
【0255】
【表1-N(8)】
【0256】
【表1-N(9)】
【0257】
【表1-N(10)】
【0258】
【表1-N(11)】
【0259】
【表1-N(12)】
【0260】
【表1-N(13)】
【0261】
【表1-N(14)】
【0262】
【表1-N(15)】
【0263】
【表1-N(16)】
【0264】
【表1-N(17)】
【0265】
【表1-N(18)】
【0266】
【表1-N(19)】
【0267】
【表1-N(20)】
【0268】
【表1-N(21)】
【0269】
【表1-N(22)】
【0270】
【表1-N(23)】
【0271】
【表1-N(24)】
【0272】
【表1-N(25)】
【0273】
【表1-N(26)】
【0274】
【表1-N(27)】
【0275】
【表1-N(28)】
【0276】
【表1-N(29)】
【0277】
【表1-N(30)】
【0278】
【表1-N(31)】
【0279】
【表1-N(32)】
【0280】
【表1-N(33)】
【0281】
【表1-N(34)】
【0282】
【表1-N(35)】
【0283】
【表1-N(36)】
【0284】
【表1-N(37)】
【0285】
【表1-N(38)】
【0286】
【表1-N(39)】
【0287】
【表1-N(40)】
【0288】
【表1-O】
【0289】
【表1-P(1)】
【0290】
【表1-P(2)】
【0291】
参考文献
1. Bakhshi,A., Jensen, J.P., Goldman, P., Wright, J.J., McBride, O.W., et al. (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18 Cell 41(3), 899-906.
2. Cleary, M. L., and Sklar, J. (1985) Nucleotide sequence of a t(14;18) chro mosomal breakpoint in follicular lymphoma and demonstration of a breakpoin t-cluster region near a transcriptionally active locus on chromosome 18 Pr oc Natl Acad Sci U S A 82(21), 7439-7443.
3. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E., and Croce, C. M. (1985) The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining Science 229(4720), 1390-1393.
4. Sattler, M., Liang, H., Nettesheim, D., Meadows, R. P., Harlan, J. E., et al. (1997) Structure of Bcl-xL-Bak peptide complex: recognition between re gulators of apoptosis Science 275(5302), 983-986.
5. Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., Harlan, J. E., et al. (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of progra mmed cell death Nature 381(6580), 335-341.
6. Chen, L., Willis, S. N., Wei, A., Smith, B. J., Fletcher, J. I., et al. (2 005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-onl yligands allows complementary apoptotic function Mol Cell 17(3), 393-403.
7. Zhai, D., Jin, C., Huang, Z., Satterthwait, A. C., and Reed, J. C. (2008) Differential regulation of Bax and Bak by anti-apoptotic Bcl-2 family prot eins Bcl-B and Mcl-1 J Biol Chem 283(15), 9580-9586.
8. Kitada, S., Leone, M., Sareth, S., Zhai, D., Reed, J. C., et al. (2003) Di scovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins J Med Chem 46(20), 4259-4264.
9. Nguyen, M., Marcellus, R. C., Roulston, A., Watson, M., Serfass, L., et al. (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overc omes MCL-1-mediated resistance to apoptosis Proc Natl Acad Sci U S A 104(4 9), 1951 2-19517.
10.Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong, R. C., Augeri, D. J., et al. (2005) An inhibitor of Bcl-2 family proteins induces regres sion of solid tumours Nature 435(7042), 677-681.
11.Tse, C., Shoemaker, A. R., Adickes, J., Anderson, M. G., Chen, J., et al. (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor Ca ncer Res 68(9), 3421-3428.
12.Wang, G., Nikolovska-Coleska, Z., Yang, C. Y., Wang, R., Tang, G., et al. (2006) Structure-based design of potent small-molecule inhibitors of anti- apoptotic Bcl-2 proteins J Med Chem 49(21), 6139-6142.
13.MacVicar, G. R., Kuzel, T. M., Curti, B. D., and al., e. (2008) An open-la bel, multicenter, phase I/II study of AT-101 in combination with docetaxel (D) and prednisone (P) in men with hormone refractory prostate cancer. J Clin Oncol 26, 16048 (Abstract).
14.Kline, M. P., Rajkumar, S. V., Timm, M. M., Kimlinger, T. K., Haug, J. L., et al. (2007) ABT-737, an inhibitor of Bcl-2 family proteins, is a potent inducer of apoptosis in multiple myeloma cells Leukemia 21(7), 1549-1560.
15.van Delft, M. F., Wei, A. H., Mason, K. D., Vandenberg, C. J., Chen, L., e t al. (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized Cancer C ell 10(5), 389-399.
16.Konopleva, M., Contractor, R., Tsao, T., Samudio, I., Ruvolo, P.P., et al. (2006)Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia Cancer Cell 10(5), 375-388.
17.Deng, J., Carlson, N., Takeyama, K., Dal Cin, P., Shipp, M., et al. (2007) BH3 profiling identifies three distinct classes of apoptotic blocks to pre dict response to ABT-737 and conventional chemotherapeutic agents Cancer C ell 12(2), 171-185.
18.Derenne, S., Monia, B., Dean, N. M., Taylor, J. K., Rapp, M. J., et al.(20 02)Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells Blood 100(1), 194-199.
19.Zhang, B., Gojo, I., and Fenton, R. G. (2002) Myeloid cell factor-1 is a c ritical survival factor for multiple myeloma Blood 99(6), 1885-1893.
20.Boisvert-Adamo, K., Longmate, W., Abel, E. V., and Aplin, A. E. (2009) Mcl -1 is required for melanoma cell resistance to anoikis Mol Cancer Res 7 (4), 549-556.
21.Ding, Q., He, X., Xia, W., Hsu, J. M., Chen, C. T., et al. (2007) Myeloid Cell Leukemia-1 Inversely Correlates with Glycogen Synthase Kinase-3{beta} Activity and Associates with Poor Prognosis in Human Breast Cancer Cancer Res 67(10), 4564-4571.
22.Lin, X., Morgan-Lappe, S., Huang, X., Li, L., Zakula, D. M., et al. (2007) 'Seed' analysis of off-target siRNAs reveals an essential role of Mcl-1 in resistance to the small-molecule Bcl-2/Bcl-XL inhibitor ABT-737 Oncogene 26(27), 3972-3979.
23.Taniai, M., Grambihler, A., Higuchi, H., Werneburg, N., Bronk, S. F., et a l. (2004) Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells Cancer Res 64(10), 351 7-3524.
24.Bird, G. H., Bernal, F., Pitter, K., and Walensky, L. D. (2008) Chapter 22 Synthesis and Biophysical Characterization of Stabilized alpha-Helices of BCL-2 Domains Methods Enzymol 446, 369-386.
25.Schafmeister, C., Po, J., and Verdine, G. (2000) An all-hydrocarbon cross- linking system for enhancing the helicity and metabolic stability of pepti des J Am Chem Soc 122, 5891-5892.
26.Danial, N. N., Walensky, L. D., Zhang, C. Y., Choi, C. S., Fisher, J. K., et al. (2008) Dual role of proapoptotic BAD in insulin secretion and beta cell survival Nat Med 14(2), 144-153.
27.Walensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S. et al. (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix Science 305(5689), 1466-1470.
28.Gavathiotis, E., Suzuki, M., Davis, M. L., Pitter, K., Bird, G. H., et al. (2008) BAX activation is initiated at a novel interaction site Nature 455 (7216), 1076-1081.
29.Walensky, L. D., Pitter, K., Morash, J., Oh, K. J., Barbuto, S., et al. (2 006) A stapled BID BH3 helix directly binds and activates BAX Mol Cell 24 (2), 199-210.
30.Walensky, L. D. (2006) BCL-2 in the crosshairs: tipping the balance of lif e and death Cell Death Differ 13(8), 1339-1350.
31.Pitter, K., Bernal, F., LaBelle, J. L., and Walensky, L. D. (2008) Chapter 23 Dissection of the BCL-2 Family Signaling Network with Stabilized alpha -Helices of BCL-2 Domains Methods Enzymol 446, 387-408.
32.Armstrong, S. A., Kung, A. L., Mabon, M. E., Silverman, L. B., Stam, R.W., et al.(2003) Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification Cancer Cell 3(2), 173- 183.
33.Shuker, S. B., Hajduk, P. J., Meadows, R. P., and Fesik, S. W. (1996) Disc overing high-affinity ligands for proteins: SAR by NMR Science 274(5292), 1531-1534.
34.Ficarro SB, Zhang Y, Lu Y, Moghimi AR, Askenazi M, Hyatt E, Smith ED, Boye r L, Schlaeger TM, Luckey CJ, Marto JA. Improved electrospray ionization e fficiency compensates for diminished chromatographic resolution and enable s proteomics analysis of tyrosine signaling in embryonic stem cells. Anal Chem. 2009 May 1;81(9):3440-7