(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0029】
以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
【0030】
1.光検出ユニット
図1は、本実施形態の光検出ユニットの構成例を示す斜視図であり、
図2(A)、
図2(B)は平面図、側面図である。
【0031】
本実施形態の光検出ユニットは、受光部140、発光部150、遮光用部材70を含む。また基板160を含むことができる。
【0032】
発光部150は、対象物(被検体等)に対して光を出射し、受光部140は、対象物からの光を受光する。例えば発光部150が光を出射し、その光が対象物により反射されると、受光部140が、その反射光を受光する。受光部140は、例えばフォトダイオード等の受光素子により実現できる。発光部150は、例えばLED等の発光素子により実現できる。例えば受光部140は、半導体の基板に形成されたPN接合のダイオード素子などにより実現できる。この場合に、受光角度を絞るための角度制限フィルターや受光素子に入射する光の波長を制限する波長制限フィルターを、このダイオード素子上に形成してもよい。
【0033】
脈拍計などの生体情報検出装置に適用した場合を例にとると、発光部150からの光は、対象物である被検体の内部を進み、表皮、真皮及び皮下組織等で拡散又は散乱する。その後、この光は、血管(被検出部位)に到達し、反射される。この際に、光の一部は血管により吸収される。そして、脈拍の影響により血管での光の吸収率が変化し、反射光の光量も変化するため、受光部140がこの反射光を受光して、その光量の変化を検出することで、生体情報である脈拍数等を検出できるようになる。
【0034】
なお発光部150に設けられるドーム型レンズ152(広義には集光レンズ)は、発光部150に樹脂封止(光透過樹脂で封止)されるLEDチップ(広義には発光素子チップ)からの光を集光するためのレンズである。即ち、表面実装型の発光部150では、LEDチップがドーム型レンズ152の下方に配置されており、LEDチップからの光は、ドーム型レンズ152により集光されて対象物に出射される。これにより光検出ユニットの光学的な効率を向上できる。
【0035】
遮光用部材70は光の遮光を行うための部材である。例えば
図1では遮光用部材70は受光部140を遮光している。即ち、遮光用部材70は、発光部150側には設けられておらず、受光部140側に設けられている。例えば、遮光用部材70は受光部140を覆うように設けられ、受光部140への入射光を遮光しているが、発光部150については遮光を行っていない。但し、遮光用部材70を発光部150側に設ける変形実施も可能である。
【0036】
遮光用部材70の少なくとも内側面に対しては、反射抑制加工を行うことが望ましい。例えば遮光用部材70の表面(内側面等)の色を、黒色等の所定色にして、光の乱反射を防ぐようにする。或いは、遮光用部材70の表面をモスアイ構造にしてもよい。例えば数十〜数百nm周期の凹凸構造を表面に形成して、反射防止構造とする。このような反射抑制加工をすれば、例えば遮光用部材70の表面での反射光が迷光となって、検出信号のノイズ成分となってしまう事態を効果的に抑制できる。
【0037】
受光部140、発光部150、遮光用部材70は、基板160に実装される。基板160は例えばリジッド基板である。基板160には、受光部140の信号・電源の端子142と接続するための端子162や、外部のメイン基板との間で信号・電源を接続するための端子164が設けられている。例えば受光部140の端子142と基板160の端子162はワイヤボンディング等により接続される。
【0038】
そして本実施形態では、遮光用部材70は、金属(例えば錫と銅の合金)を板金加工することで形成されている。例えば1枚の金属板を板金加工することで
図1、
図2(A)、
図2(B)に示すような形状の遮光用部材70が形成される。そして遮光用部材70は、発光部150と受光部140の間に設けられる遮光壁100を有している。この遮光壁100は、発光部150からの光(直接光等)が受光部140に入射されるのを遮光する。そして、この遮光壁100は、板金加工により形成された遮光用部材70の第1の金属面71により形成されている。即ち、遮光壁100となる第1の金属面71が、受光部140と発光部150との間に設けられており、これにより発光部150からの光が受光部140に入射されるのが抑制される。
【0039】
また遮光用部材70は、第2、第3の金属面72、73を有する。これらの第2、第3の金属面72、73は、第1の金属面71に交差(例えば直交)する方向に沿って設けられる。例えば第1の金属面71を正面側の金属面とした場合に、第2、第3の金属面72、73は側面側の金属面であり、側面側の遮光壁となる。
【0040】
そして
図1、
図2(A)に示すように、第1の金属面71のD1に示す第1の端面(左側端面)は、第1の金属面71を発光部150側から見た正面視において、第2の金属面72のD3に示す端面よりも、一方側(左側)に突出している。一方、第1の金属面71の第1の端面に対向する、D2に示す第2の端面(右側端面)は、上記の正面視において、第3の金属面73のD4に示す端面よりも、一方とは異なる他方側(右側)に突出している。即ち、第1の金属面71のD1、D2に示す端面が、第2、第3の金属面のD3、D4に示す端面よりも、両側に突出している。
【0041】
例えば第1の金属面71と第2の金属面72とは、
図2(B)のE1に示す第1の隙間領域を介して隣接して設けられる。また第1の金属面71と第3の金属面73とは第2の隙間領域を介して隣接して設けられる。即ち、第1の金属面71の背面と、第2、第3の金属面のD3、D4に示す端面とは接しておらず、当該背面と端面との間には隙間領域が存在している。
【0042】
そして、このような隙間領域が存在すると、後に詳述するようにこの隙間領域を介して発光部150からの光が受光部140に入射されてしまうおそれがある。しかしながら、本実施形態では、前述のように第1の金属面71のD1、D2に示す端面が、第2、第3の金属面72、73よりも正面視において両側に突出しているため、このような発光部150からの光が受光部140に入射されてしまう事態を効果的に抑制できる。
【0043】
また遮光用部材70は、第1の金属面71に交差(例えば直交)する方向に沿って設けられ、受光部140への光の入射を遮光する第4の金属面74を有する。この第4の金属面74は、例えば遮光用部材70の上面の金属面である。
【0044】
そして、この第4の金属面74には、対象物と受光部140の間の光路において対象物からの光(反射光等)を絞る絞り部80が形成されている。即ち、第4の金属面74には、絞り部80の開口部81が形成されている。なお遮光用部材70は、背面の遮光壁となる第5の金属面75も設けられており、背面側から入射される光を遮光している。
【0045】
2.遮光用部材
2.1 板金加工
本実施形態の光検出ユニットでは、
図1に示すように、受光部140等を外部光から遮光するための遮光用部材70を設けている。そして、遮光用部材70は、金属を板金加工することで形成されており、この遮光用部材70の例えば金属面71により、遮光壁100を実現している。また遮光用部材70の例えば金属面74により、開口部81を有する絞り部80を実現している。ここで遮光壁100は、例えば受光部140の中心位置と発光部150の中心位置を結ぶ線分に対して交差(直交)する方向に沿った壁面を有するものである。このような遮光壁100を設けることで、発光部150からの光(直接光)が受光部140に入射されるのが抑止されて、検出データの信頼性等を向上できるようになる。
【0046】
即ち、後に詳述するように、発光部150と受光部140の間の距離が近いほど、光検出ユニットの光学的な効率・性能が向上する。例えば光学的な効率・性能は距離の二乗に反比例して低下する。従って、できる限り発光部150と受光部140の間の距離を近づけることが望ましい。
【0047】
一方、発光部150と受光部140の間の距離を近づけると、発光部150からの直接光が受光部140に入射してしまい、DC成分の増加等が生じて、性能が低下してしまう。このため本実施形態の光検出ユニットでは、受光部140と発光部150の間に遮光壁100を設けている。
【0048】
この場合に本実施形態の比較例の手法として、遮光用部材70を射出成型により形成する手法が考えられる。射出成型を用いる比較例の手法は、機器の量産性等の観点からは有利な手法である。
【0049】
しかしながら、遮光用部材70を射出成型で形成すると、遮光壁100の壁厚が厚くなってしまう。即ち、遮光壁100の壁厚を薄い設計にすると、射出成形時に遮光壁100の部分に樹脂が十分に充填されなくなってしまい、十分な強度を有する遮光壁100を実現できない。このため、射出成型を用いる比較例の手法では、遮光壁100の厚さが例えば0.4mm以上になってしまう。
【0050】
そして、このように遮光壁100が厚くなると、発光部150と受光部140の間の距離も長くなってしまう。従って、例えば発光部150と受光部140との間の対象物を介した光路長も長くなってしまい、光検出ユニットの光学的な効率・性能が低下してしまう。
【0051】
そこで本実施形態では遮光用部材70を金属の板金加工により形成する。例えば
図3は遮光用部材70の詳細な形状を示す平面図、側面図、正面図、背面図である。例えば1枚の金属板を板金加工により折り曲げることで、金属面71、72、73、74、75からなる遮光用部材70が形成される。具体的には、上面である金属面74に対して、金属面71、72、73、75を直角(略直角)に折り曲げることで、遮光用部材70が形成される。
【0052】
そして
図1において発光部150と対向する金属面71が、発光部150からの直接光が受光部140に入射されるのを遮光する遮光壁100となる。また上面の金属面74には、対象物と受光部140の間の光路において対象物からの光を絞る絞り部80が形成される。即ち、開口部81を有する絞り部80が形成される。
【0053】
このように、板金加工による金属面71を用いて遮光壁100を実現すれば、射出成型を用いる比較例の手法に比べて、遮光壁100の厚さを薄くできる。例えば板金加工を用いた場合には、その金属面の厚さが例えば0.1mm程度であっても、十分な強度を有する遮光用部材70を実現できる。このため、遮光壁100となる金属面71の厚さも例えば0.1mm程度にすることが可能になる。従って、遮光壁100の厚さが例えば0.4mm以上になってしまう射出成型を用いる比較例の手法に比べて、遮光壁100の厚さを十分に薄くでき、その分だけ、発光部150と受光部140の間の距離も短くできる。従って、発光部150からの直接光が受光部140に入射されるのを遮光壁100により抑制しながら、発光部150から受光部140への対象物を介した光の光路長も短くできるため、光検出ユニットの検出性能等を向上できるようになる。
【0054】
特に
図1では、チップパッケージ型の発光部150を使用している。このチップパッケージ型の発光部150では、例えばドーム型レンズ152がLEDチップの上に配置されることで、対象物への光の出射効率が高くなり、光検出ユニットの検出感度を高めることができる。
【0055】
しかしながら、チップパッケージ型の発光部150は、例えばリフレクターにLEDチップを配置して実現するタイプのものに比べて、その配置占有面積が大きい。従って、その分だけ発光部150と受光部140の間の距離も長くなってしまうという問題がある。この点、本実施形態によれば、前述のように遮光壁100の厚さを十分に薄くできるため、このようなチップパッケージ型の発光部150を用いた場合にも、これに対応することが可能となり、光検出ユニットの感度等の検出性能を向上できる。
【0056】
また
図1〜
図2(B)では、遮光用部材70は、発光部150側には設けられず受光部140側にだけ設けられている。即ち、遮光用部材70は、受光部140を覆ってその遮光を行っているが、発光部150については覆っていない。
【0057】
例えば、遮光用部材70を、発光部150についても遮光するような形状にすると、発光部150から対象物へと向かう光の一部が、遮光用部材70により遮られてしまい、対象物へ照射される光量等が減少し、感度等の検出性能が低下するおそれがある。
【0058】
この点、
図1〜
図2(B)のように、遮光用部材70の形状を、受光部140側だけを遮光するような形状にすれば、発光部150からの出射光が遮光用部材70により遮られて対象物への光の光量が減少してしまう事態の発生を抑制できる。
【0059】
また遮光用部材70を発光部150側に設けず受光部140側だけに設ける構成は、光検出ユニットの薄型化という観点においても有利な構成である。例えば
図2(B)に示すように、ドーム型レンズ152を有する発光部150は、受光部140に比べてその高さが高くなる。従って、発光部150側に遮光用部材70を設けると、その分だけ発光部150側での高さが高くなってしまい、光検出ユニットの薄型化の妨げとなる。
【0060】
この点、遮光用部材70を受光部140側だけに設ける構成であれば、発光部150側には遮光用部材70が存在しないため、例えば
図2(B)に示すように受光部140側での高さと発光部150側での高さを揃えることが可能になる。従って、発光部150側にも遮光用部材70を設ける手法に比べて、光検出ユニットの全体として高さを低くすることが可能になり、光検出ユニットの薄型化の実現が容易になる。
【0061】
また、上述のように遮光用部材70には絞り部80が設けられている。即ち、遮光用部材70の上面の金属面74に開口部81が形成され、この開口部81により絞り部80が実現される。この場合に、絞り部80の開口部81は、発光部150に近いほど広く開いている。例えば開口部81は、半円形状(略半円形状)になっており、その半円の直径が発光部150側に位置している。絞り部80の開口部81をこのような形状にすれば、発光部150から出射されて対象物により反射された光を、効率良く受光部140に入射させることが可能になり、感度等の検出性能を向上できる。なお、絞り部80の詳細については後に詳述する。
【0062】
2.2 隙間領域
遮光用部材70を板金加工により形成する場合には、
図3のE1に示すように、隣り合う金属面71と金属面72の間に隙間領域が設けられる。またE2に示すように、隣り合う金属面71と金属面73の間にも隙間領域が設けられる。また金属面75と金属面72、73との間にもE3、E4に示すように隙間領域が設けられる。このような隙間領域を設けないと、上面の金属面74に対して金属面71、72、73、75を板金加工で折り曲げた場合に、折り曲げ部分に歪み等が生じて、折り曲げ加工が上手く行かなくなってしまうという問題がある。
【0063】
この点、
図3のE1、E2、E3、E4に示すように隙間領域を設けて、例えば金属面の折り曲げのコーナー部分を曲線形状(R形状)にすれば、このような問題の発生を抑制できる。
【0064】
しかしながら、E1、E2に示すような隙間領域が形成されると、例えば発光部150からの光が、この隙間領域を通って受光部140に入射されてしまい、直接光によるDC成分等が増加し、性能が低下してしまうおそれがある。
【0065】
そこで本実施形態では、
図3の金属面71のD1、D2に示す端面が、発光部150側から見た正面視(金属面71に直交する方向での正面視)において、金属面72、73のD3、D4に示す端面よりも両側に突出するように、遮光用部材70を形成している。例えば金属面71のD1に示す端面は、金属面72のD3に示す端面よりも左側(一方側)に突出しており、金属面71のD2に示す端面は、金属面73のD4に示す端面よりも右側(他方側)に突出している。即ち、金属面71において、
図3のF1、F2に示すような突出部分を延在形成している。
【0066】
このようにすれば、E1、E2に示す隙間領域が形成されている場合においても、発光部150からの直接光は、この金属面71のF1、F2に示す突出部分に遮られて、受光部140に入射されないようになる。即ち、直接光以外の外光については、隙間領域から入射される可能性があるものの、少なくとも発光部150からの直接光については、この金属面71の突出部分が障壁になって、受光部140には入射されないようになる。
【0067】
従って、金属面の各辺の境界に隙間領域を形成することで板金加工における折り曲げ時の不具合を解消すると共に、この隙間領域の存在を原因とする直接光の入射を抑制して、検出性能の低下を防止することが可能になり、2つの問題点を両立して解決することに成功している。
【0068】
なお、金属面71のD1、D2に示す端面と、金属面72、73のD3、D4に示す端面との位置関係・形状等は、
図3に示す位置関係・形状等に限定されるものではない。即ち、少なくともF1、F2に示すように、D3、D4に示す端面に対する突出部分が金属面71に延在形成されており、発光部150からの光がこの突出部分により遮光されるような位置関係・形状であれば、種々の変形実施が可能である。
【0069】
また前述の
図1に示すように、発光部150、受光部140、遮光用部材70は基板160に実装されている。そして
図3に示すように、遮光用部材70は突起部78、79(第1、第2の突起部)を有している。即ち、遮光用部材70を基板160に固定するための突起部78、79を有している。これらの突起部78、79は、基板160に形成された穴部に係止され、これにより遮光用部材70は基板160に固定される。
【0070】
具体的には
図3では、突起部78は背面の金属面75に形成され、突起部79は、右側面の金属面73に形成される。この場合、突起部78、79の位置・形状は、遮光用部材70の中心線CLに対して線対称な位置・形状になっておらず、非線対称な位置・形状になっている。例えば突起部78、79は、中心線CLに対して線対称な位置には設けられておらず、非線対称な位置に設けられている。ここで中心線CLは、例えば受光部140の中心位置と発光部150の中心位置を結んだ線に対応している。また突起部78、79の面の向きも、中心線CLに対して線対称な向きにはなっていない。例えば突起部78の面は、中心線に直交する方向に沿った面となっており、突起部79は、中心線の方向に沿った面となっている。
【0071】
このように、突起部78、79を非線対称な位置・形状にすれば、遮光用部材70を基板160に取り付ける際に、遮光用部材70が誤った位置・方向で基板160に取り付けられてしまう事態を抑制できる。従って、光検出ユニットの組み立て作業の簡素化や効率化を図ることが可能になり、コスト低減等を実現できる。また本実施形態では、遮光用部材70は板金加工で形成されるものであるため、このような非線対称な位置・形状の突起部78、79を容易に形成できるという利点もある。即ち、
図3に示すように、背面の金属面75の例えば左側に突起部78を形成し、右側面の金属面73の例えば前方側に突起部79を形成することで、非線対称な位置・形状の突起部78、79を実現することが可能になる。
【0072】
2.3 発光部−受光部間距離
図4は、発光部150と受光部140の間の距離LDと信号強度の関係を示す図である。ここで信号強度は、本実施形態の光検出ユニットが適用される検出装置の検出信号の強度である。例えば後述するような脈波等の生体情報の検出装置に光検出ユニットを適用した場合には、脈波等の生体情報検出信号の強度である。また発光部150と受光部140の間の距離LDは、例えば発光部150、受光部140の中心位置(代表位置)の間の距離である。例えば受光部140が矩形形状(略矩形形状)である場合には、受光部140の位置は、この矩形形状の中心位置である。また発光部150が前述のようなドーム型レンズ152を有する場合には、発光部150の位置は、例えばドーム型レンズ152の中心位置(LEDチップの位置)である。
【0073】
図4から明らかなように発光部150と受光部140の距離LDが近いほど、検出信号の信号強度が高くなり、感度等の検出性能が向上する。従って、発光部150と受光部140の距離LDは近ければ近いほど望ましい。
【0074】
この点、本実施形態では前述の
図1〜
図3に示すように、遮光用部材70は金属を板金加工することで形成され、その金属面71により遮光壁100が実現されている。従って、射出成型で遮光用部材70を実現する場合に比べて、遮光壁100の厚さを薄くすることが可能であり、例えば0.1mm程度にすることができる。従って、遮光壁100の厚さが薄くなった分だけ、発光部150と受光部140の距離LDを近づけることが可能となり、
図4から明らかなように検出装置の検出性能を向上できる。
【0075】
この場合に
図4に示すように、受光部140と発光部150の間の距離はLD<3mmであることが望ましい。例えば
図4の特性曲線G1における、距離が大きい側の接線G2から明らかなように、LD≧3mmとなる範囲では、特性曲線G1が飽和している。これに対して、LD<3mmの範囲では、距離LDが短くなるにつれて、信号強度が大きく増加している。従って、この意味においてLD<3mmであることが望ましい。
【0076】
更に、距離LDについてはLD<2.5mmであることが望ましい。例えば距離が大きい側の接線G2と小さい側の接線G3の関係から理解されるように、距離がLD<2.5mm(2.4mm)となる範囲で、距離に対する信号強度の増加率が更に高くなっている。従って、この意味においてLD<2.5mmであることが更に望ましい。
【0077】
そして
図1〜
図3に示す本実施形態の光検出ユニットでは、例えば距離LDはLD=2.0mm程度となっている。従って、
図4に示すように、LD≧3mmとなる従来の光検出ユニットに比べて、検出性能を大幅に向上できる。
【0078】
また距離LDについては下限値も存在し、距離LDを近づけすぎることも望ましくない。例えば
図5は、本実施形態の光検出ユニットを脈波等の生体情報の検出装置に適用した場合について示す図である。この場合には、発光部150からの光は、被検体の血管等で拡散又は散乱し、その光が受光部140に入射されて、脈波が検出される。そして
図5において、発光部150と受光部140の間の距離LDと、深さ方向での測定距離LBとの間には、LD=2×LBの関係が一般的に成り立つ。例えば距離LDだけ離れた発光部150と受光部140からなる光検出ユニットによる測定限界距離は、LB=LD/2程度となる。そして距離LBが例えば100μm〜150μmとなる範囲には、脈波の検出対象物となる血管は存在しない。従って、距離LDが、LD≦2×LB=2×100μm〜2×150μm)=0.2mm〜0.3mmになると、脈波の検出信号が極めて小さくなることが予想される。即ち、距離LDが近くなると、それに伴い深さ方向での測定距離LBも小さくなり、その距離LBの範囲に検出対象物が存在しないと、検出信号が極めて小さくなってしまう。つまり、距離LDは近いほどが検出性能は向上するが、それにも限界があり、下限値が存在する。従って、この意味においてLD>0.3mmであることが望ましい。即ち、0.3mm<LD<2.5mm(或いは0.3mm<LD<3.0mm)であることが望ましい。
【0079】
3.生体情報検出装置
図6(A)は本実施形態の光検出ユニットを有する生体情報検出装置(生体情報測定装置)の一例を示す外観図である。この生体情報検出装置は時計タイプの脈拍計であり、本体部300と、被検体の手首400に生体情報検出装置を取り付けるためのバンド320、322(リストバンド)を有する。機器本体である本体部300には、各種の情報を表示する表示部310や、脈波センサー(検出部、透光部材等で構成されるセンサー。光検出ユニット)や、各種の処理を行う処理部などが設けられる。表示部310には、測定された脈拍数や時刻が表示されている。なお
図6(A)では、手首400(又は腕)の周長方向を第1の方向DR1とし、手410から下腕420に向かう方向を第2の方向DR2としている。
【0080】
図6(B)は生体情報検出装置の詳細な構成例を示す外観図である。バンド320、322は、伸縮部330、332を介して本体部300に接続される。伸縮部330、332は、
図6(A)の第1の方向DR1及び第2の方向DR2等に沿って変形可能となっている。バンド320の一端には連結部340が接続される。この連結部340は時計におけるバックルに相当するものであり、バックルの棒部が挿入されるバンド穴部は、逆側のバンド322に形成されている。
【0081】
図7(A)に示すように、連結部340は、バンド320に固定される固定部材342や、スライド部材344や、弾性部材であるバネ350、352を有する。そして
図7(B)、
図7(C)に示すように、スライド部材344は、固定部材342に対して、スライド方向DRSに沿ってスライド自在に取り付けられており、バネ350、352は、スライド時における引っ張り力を発生する。これらのバネ350、352や伸縮部330、332やバンド320、322等により、本実施形態の荷重機構が実現される。
【0082】
固定部材342には表示器343が設けられており、適正なスライド範囲(押圧範囲)を示す点P1、P2が付されている。これらの点P1、P2の範囲内に、スライド部材344のバンド320側の端部が位置していれば、適正なスライド範囲(押圧範囲)内にあり、適切な引っ張り力が作用していることが保証される。ユーザーは、この適正なスライド範囲内になるように、バックルである連結部340の棒部を、バンド322のバンド穴部に挿入して、生体情報検出装置を手首に装着する。こうすることで、被検体に対する脈波センサー(透光部材の凸部)の押圧が、想定した適切な押圧になることが、ある程度保証されることになる。
【0083】
なお、
図6(A)〜
図7(C)では、生体情報検出装置が、手首に装着する時計タイプの脈拍計である場合を例にとり説明したが、本実施形態はこれに限定されない。例えば、本実施形態の生体情報検出装置は、手首以外の部位(例えば、指、上腕、胸等)に装着されて生体情報を検出(測定)するものであってもよい。また、生体情報検出装置の検出対象となる生体情報も、脈波(脈拍数)には限定されず、生体情報検出装置は、脈波以外の生体情報(例えば血液中の酸素飽和度、体温、心拍等)を検出する装置であってもよい。
【0084】
図8は、生体情報検出装置の本体部300の裏側に設けられる裏蓋部10の構成例を示す斜視図であり、
図9は、
図8のA−A’での断面図である。裏蓋部10は、カバー部材20と透光部材30により構成され、この裏蓋部10により、本体部300の裏側の筐体面22(裏面)が構成される。
【0085】
透光部材30は、生体情報検出装置の被検体(広義には対象物)に接触する筺体面22側に設けられる。そして受光部140への入射光(被検体からの光)を透過する。また発光部150からの出射光を透過する。また透光部材30は、被検体の生体情報の測定時に被検体に接触する。例えば透光部材30は、被検体の生体情報の測定時に被検体に接触して押圧を与える凸部40を有する。なお凸部40の表面形状は、曲面形状(球面形状)であることが望ましいが、これに限定されるものではなく、種々の形状を採用できる。また、透光部材30は被検体からの光の波長に対して透明であればよく、透明な材料を用いてもよいし、有色の材料を用いてもよい。
【0086】
図9に示すように、カバー部材20は、透光部材30を覆うように形成される。透光部材30は透光性を有するが、カバー部材20は、透光性を有さず、非透光性の部材となっている。例えば、透光部材30は、透明な樹脂(プラスチック)で形成され、カバー部材20は、黒等の所定色の樹脂で形成される。なお、非透光性とは生体情報検出装置が検知可能な波長の光を透過しない材料のことを意味する。
【0087】
そして
図8、
図9に示すように、透光部材30は、その一部が、カバー部材20の開口から被検体側に露出しており、この露出部分に凸部40が形成されている。従って、生体情報の測定時に、この露出部分に形成された凸部40が、被検体(例えばユーザの手首の肌)に接触することになる。
図8、
図9では、この露出部分に形成された凸部40により、生体情報検出装置の検出窓が構成されている。ここで、
図9では、この検出窓以外の部分、つまりカバー部材20(押圧抑制部60)の裏側部分にも透光部材30が設けられている。但し本実施形態はこれに限定されず、検出窓の部分にだけ透光部材30を設けてもよい。
【0088】
なお
図9に示すように、凸部40の周囲には、押圧変動等を抑制するための溝部42が設けられている。また、透光部材30において凸部40が設けられる側の面を第1の面とした場合に、透光部材30は、その第1の面の裏側の第2の面において凸部40に対応する位置に、凹部32を有している。また裏蓋部10には、裏蓋部10をネジ止めするためのねじ穴部24や、信号伝達や電源供給用の端子を接続するための端子穴部26なども設けられている。
【0089】
図8に示すように、生体情報検出装置の筺体面22(裏面)が、第1の方向DR1に沿った中心線CLにより第1の領域RG1と第2の領域RG2に区画される場合に、凸部40は、第1の領域RG1に設けられている。
図6(A)に示すような手首に装着するタイプの生体情報検出装置を例にとれば、第1の領域RG1は手側(時計における3時方向)の領域であり、第2の領域RG2は下腕側(時計における9時方向)の領域である。このように透光部材30の凸部40は、筐体面22において手に近い側の第1の領域RG1に設けられる。こうすることで、腕の径変化が小さい場所に凸部40が配置されるようになるため、押圧変動等を抑制できる。
【0090】
そして凸部40は、被検体の生体情報の測定時に被検体に接触して押圧(押圧力)を与える。具体的には、ユーザーが生体情報検出装置を手首に装着して、脈波等の生体情報を検出する際に、凸部40がユーザーの手首の肌に接触して押圧を与える。この押圧は、
図6(A)〜
図7(C)で説明した荷重機構による荷重により発生することになる。
【0091】
また生体情報検出装置の筐体面22には、凸部40が被検体(手首の肌)に与える押圧を抑制する押圧抑制部60が設けられている。
図8、
図9では、押圧抑制部60は、筐体面22において、透光部材30の凸部40を囲むように設けられている。そしてカバー部材20の面が押圧抑制部60として機能している。即ち、カバー部材20の面を土手形状に成型することで、押圧抑制部60が形成されている。
図9に示すように、この押圧抑制部60の押圧抑制面は、凸部40の位置から第2の方向DR2(手首から下腕側への方向)に向かうにつれて低くなるように傾斜している。つまり、筐体面22に直交する方向DRHでの高さが、第2の方向DR2に向かうにつれて低くなるように傾斜している。
【0092】
なお、
図8、
図9では、検出部130や凸部40(検出窓)が、筺体面22(裏面)の手側(3時方向)の第1の領域RG1に設けられているが、本実施形態はこれに限定されない。例えば検出部130や凸部40(検出窓)を、筺体面22の中央部の領域(中心線CLが通る領域)などに設け、その周辺に押圧抑制部60を設けてもよい。
【0093】
図9に示すように、透光部材30の凸部40の下方には、検出部130が設けられている。ここで、上方は、方向DRHの方向であり、下方は、方向DRHの反対方向である。別の言い方をすれば、下方は、生体情報検出装置の本体部300の裏面(被検体に接触する側の面)から表面(被検体に接触しない側の面)へと向かう方向である。
【0094】
検出部130は、本実施形態の光検出ユニットを構成するものであり、受光部140と発光部150を有する。なお受光部140、発光部150の詳細については前述したので、ここでは詳細な説明は省略する。
【0095】
そして本実施形態では
図9に示すように、受光部140と発光部150との間に遮光壁100(遮光部)が設けられており、この遮光壁100により、発光部150から受光部140への直接光の入射を抑止している。この遮光壁100は
図1の遮光用部材70の金属面71により形成される。また受光部140側には、開口部81を有する絞り部80が設けられている。この絞り部80は、被検体と受光部140の間の光路において、被検体からの光を絞る。この絞り部80は
図1の遮光用部材70の金属面74により形成される。
【0096】
4.絞り部
さて、
図6(A)〜
図9で説明した生体情報検出装置では、透光部材30において、被検体である肌に接触する面は有限面積の接触面となっている。そして、例えば樹脂やガラス等で形成される硬い素材の透光部材30の有限面積の接触面に対して、肌のように相対的に柔らかいものを接触させている。すると、弾性力学の観点で見ると、透光部材30の周縁部(外周部)の付近においては、肌と接触していない領域や、接触圧の弱い領域が生じる。また生体情報検出装置の機器に外力が加えられて、機器にモーメントが発生するときなども、接触面の周縁部の付近の領域は、最も浮きやすい。
【0097】
このような領域を介して、発光部150、肌、受光部140の間を通過する光には、動的な接触状態の変化に起因して、光学的に光の強弱が発生しやすい。そして、そのような光が受光部140に入射すれば、脈成分とは相関の無いノイズとなってしまう。
【0098】
また、静的な接触状態であっても、信号品位の低下は起こり得る。肌にきちんと接触していなければ、発光部150を起源としない外光が、受光部140に入射することがある。一方、過大な接触圧となっている場合には、皮下の血管を潰してしまうことにより、この領域を通過した光には、拍動成分が入りにくくなる。
【0099】
このようなノイズが大きく重畳するほど、脈波検出信号の信号品位は低下し、脈拍計測などの様々な生体計測において、計測データの信頼性が低下してしまう。
【0100】
例えば
図10(A)は、透光部材30の凸部40(接触面)が、被検体である肌2に与える押圧が小さい場合を示し、
図10(B)は当該押圧が大きい場合を示している。
図10(A)、
図10(B)のA1、A2に示す場所に着目すると、押圧の変化により、肌2と凸部40との間の接触状態が変化している。例えば
図10(A)では、A1、A2の場所において肌2と凸部40が非接触状態又は弱い接触状態になっているが、
図10(B)では接触状態になっている。従って、発光部150から出射されて受光部140に戻ってくる光の強弱などが、
図10(A)と
図10(B)とで変化してしまい、計測データの信頼性が低下する。即ち、
図10(A)、
図10(B)のA1、A2に示す場所では、荷重の微少な変化によって、接触面での押圧が急激に変化してしまい、計測データの信頼性が著しく低下する。
【0101】
例えば
図10(A)、
図10(B)では、人体の皮膚に接触する透光部材30の接触面を、曲面形状の凸形状(凸部)で構成している。このようにすることで、皮膚表面に対する透光部材30の密着度が向上するため、皮膚表面からの反射光量や外乱光等のノイズ光の侵入を防止できる。
【0102】
しかしながら、凸形状の周縁部(外周部)では中心部に対して相対的に肌との接触圧が低下する。この場合に、中心部の接触圧で最適化すると、周縁部の接触圧は最適範囲未満となる。一方、周縁部の接触圧で最適化すると、中心部の接触圧が最適範囲に対し過剰となる。
【0103】
接触圧が最適範囲未満の場合は、機器の揺れにより脈波センサーが肌と接触したり離れたりするケースや、接触したままとしても脈波センサーが静脈を潰しきれていないことにより、脈波検出信号に体動ノイズが重畳する。このノイズ成分を低減すれば、より高いM/N比(S/N比)の脈波検出信号を得ることが可能になる。ここでMは脈波検出信号の信号レベルを表し、Nはノイズレベルを表す。
【0104】
以上のような問題を解決するために、本実施形態では、
図1、
図9等に示すような絞り部80を設けている。即ち、
図10(A)、
図10(B)のA1、A2に示す場所等での光(迷光)が検出されないように、絞り部80を設けて、光を絞っている。例えば、最適押圧化された透光部材30の透光領域の中心部(例えば凸部の頂点)を通過する光は、できるだけ遮断せずに透過させる一方で、透光部材30の透光領域(例えば凸部)の周縁部の付近を介した光は遮断する。このようにすれば、
図10(A)、
図10(B)に示すようにA1、A2に示す場所で接触状態が変化した場合にも、A1、A2に示す場所での光の状態が受光結果に影響を及ばさなくなる。従って、計測データの信頼性等を向上できるようになる。
【0105】
なお、以上では、遮光用部材70の金属面74を用いて絞り部80を実現する場合について説明した。この場合には、
図9に示すように、絞り部80は、透光部材30と検出部130(受光部140)の間に設けられることになる。このように、透光部材30と検出部130の間に絞り部80を配置すれば、被検体と検出部130の間の光路上において、絞り部80により迷光を効果的に遮って、この迷光によるノイズが計測データに重畳されてしまう事態を効果的に抑制できる。但し、絞り部80の配置形成手法は、これに限定されず、種々の変形実施が可能であり、絞り部80を、透光部材30と被検体との間又は透光部材30内に設けてもよい。
【0106】
例えば
図11(A)では、絞り部80は、透光部材30と検出部130(受光部140)の間に設けられているものの、透光部材30に対して密着するように絞り部80が配置形成されている。また
図11(B)では、透光部材30内(材質中)に絞り部80が配置形成されている。また
図11(C)では、被検体と透光部材30の間に絞り部80が配置形成されている。このように絞り部80の配置形成手法としては種々の態様を想定できる。
【0107】
また絞り部80の形成手法も、
図1のように板金加工された金属面74により実現する手法に限定されず、種々の手法を採用できる。例えば
図11(A)、
図11(C)のように透光部材30に密着するように絞り部80を形成する場合には、塗装、蒸着又は印刷などの手法により絞り部80を形成すればよい。或いは
図11(B)のように透光部材30の中に絞り部80を形成する場合には、例えばインサート成型などの手法により絞り部80を形成すればよい。
【0108】
5.透光部材の凸部
図12(A)に示すように本実施形態では、透光部材30は、被検体の生体情報の測定時に被検体に接触して押圧を与える凸部40を有している。
【0109】
そして絞り部80は、C1に示すように、この凸部40の周縁領域を通過する光を遮光している。こうすれば、C1のように接触状態が不安定な場所での迷光を原因とする計測データの信頼性の低下等を抑制できる。
【0110】
また
図12(A)では、押圧抑制部60が設けられている。この押圧抑制部60は、生体情報検出装置の筺体面(被検体側の面)において凸部40を囲むように設けられ、凸部40が被検体に与える押圧を抑制する。この押圧抑制部60は、
図8、
図9では、凸部40の位置から第2の方向DR2側(手から下腕へと向かう方向側)に広がる押圧抑制面を有している。具体的には、押圧抑制部60は、カバー部材20に形成された土手形状の部分により実現されている。
【0111】
この場合に、例えば、生体情報検出装置の筺体面に直交する方向DRHでの凸部40の高さをHA(例えば凸部40の曲面形状の頂点の高さ)とし、押圧抑制部60の高さをHB(例えば最も高い場所での高さ)とし、高さHAから高さHBを減じた値(高さHAとHBの差)をΔhとした場合に、Δh=HA−HB>0の関係が成り立っている。例えば、凸部40は、押圧抑制部60の押圧抑制面から被検体側に、Δh>0となるように突出している。即ち、凸部40は、押圧抑制部60の押圧抑制面よりも、Δhの分だけ被検体側に突出している。
【0112】
このように、Δh>0となる凸部40を設けることで、例えば静脈消失点を超えるための初期押圧を被検体に対して与えることが可能になる。また、凸部40が被検体に与える押圧を抑制するための押圧抑制部60を設けることで、生体情報検出装置により生体情報の測定を行う使用範囲において、押圧変動を最小限に抑えることが可能になり、ノイズ成分等の低減を図れる。ここで静脈消失点とは、被検体に凸部40を接触させ押圧を次第に強くした時に、脈波信号に重畳された静脈に起因する信号が消失、または脈波測定に影響しない程度に小さくなる点のことである。
【0113】
例えば
図12(B)では、横軸は、
図6(B)〜
図7(C)で説明した荷重機構(バネ、伸縮部などの弾性部材や、バンド等で構成される機構)が発生する荷重を表しており、縦軸は、凸部40が被検体に与える押圧(血管にかかる圧力)を表している。そして凸部40の押圧を発生させる荷重機構による荷重に対する凸部40の押圧の変化量を押圧変化量としたとする。この押圧変化量は、荷重に対する押圧の変化特性の傾きに相当する。
【0114】
この場合に押圧抑制部60は、荷重機構の荷重が0〜FL1となる第1の荷重範囲RF1での押圧変化量VF1に対して、荷重機構の荷重がFL1よりも大きくなる第2の荷重範囲RF2での押圧変化量VF2が小さくなるように、凸部40が被検体に与える押圧を抑制する。即ち、初期押圧範囲である第1の荷重範囲RF1では、押圧変化量VF1を大きくする一方で、生体情報検出装置の使用範囲である第2の荷重範囲RF2では、押圧変化量VF2を小さくする。
【0115】
つまり、第1の荷重範囲RF1では、押圧変化量VF1を大きくして、荷重に対する押圧の変化特性の傾きを大きくしている。このような変化特性の傾きが大きな押圧は、凸部40の飛び出し量に相当するΔhにより実現される。即ち、Δh>0となる凸部40を設けることで、荷重機構による荷重が少ない場合であっても、静脈消失点を超えるのに必要十分な初期押圧を、被検体に対して与えることが可能になる。
【0116】
一方、第2の荷重範囲RF2では、押圧変化量VF2を小さくして、荷重に対する押圧の変化特性の傾きを小さくしている。このような変化特性の傾きが小さな押圧は、押圧抑制部60による押圧抑制により実現される。即ち、凸部40が被検体に与える押圧を、押圧抑制部60が抑制することで、生体情報検出装置の使用範囲では、荷重の変動等があった場合にも、押圧の変動を最小限に抑えることが可能になる。これにより、ノイズ成分の低減等を図れる。
【0117】
このように、最適化された押圧(例えば16kPa程度)が被検体に与えられるようにすることで、脈波センサーの信号成分(M)を増加させると共に、ノイズ成分(N)を低減できる。また、脈波測定に使用する押圧の範囲を、第2の荷重範囲RF2に対応する範囲に設定することで、最小限の押圧変動(例えば±4kPa程度)に抑えることが可能になり、ノイズ成分を低減できる。また、絞り部80や遮光壁100を用いて、光学的なノイズを低減することで、脈波検出信号に乗るノイズ成分を、更に低減することが可能になる。
【0118】
さて、凸部40の飛び出し量を表すΔhは、最適押圧を規定する重要なパラメーターとなる。即ち、静脈消失点を超えるための押圧を常に与えるためには、ある程度の飛び出し量が必要であり、Δhを大きな値にする必要がある。しかしながら、Δhが過大な値になってしまうと、脈波センサーの信号成分の低減や押圧変動の増加の要因となるおそれがある。
【0119】
そこで、脈波センサーの信号成分を十分確保できる範囲、つまり最適押圧を与えることができる範囲で、最小のΔhを選択するようにする。即ち、最適押圧を与えることができる範囲であれば、Δhが小さいほど、ノイズ成分を低く抑えることができる。
【0120】
具体的には、Δhの範囲は、0.01mm≦Δh≦0.5mmであることが望ましく、更に好ましくは、0.05mm≦Δh≦0.35mmであることが望ましい。例えばΔh=0.25mm程度にすることで、MN比(SN比)を最も大きくすることが可能になる。即ち、このようにΔhを小さな値にすることで、静脈消失点を超えるための最低限の押圧を被検体に与えながら、押圧変動等を要因とするノイズ成分の増加を抑制して、信号の品位を表すMN比を高めることが可能になる。
【0121】
6.生体情報検出装置の全体構成
図13は、生体情報検出装置の全体構成の例を示す機能ブロック図である。
図13の生体情報検出装置は、検出部130、体動検出部190、処理部200、記憶部240、表示部310を含む。なお本実施形態の生体情報検出装置は
図13の構成に限定されず、その構成要素の一部を省略したり、他の構成要素を追加するなどの種々の変形実施が可能である。
【0122】
検出部130は、脈波等の生体情報を検出するものであり、受光部140、発光部150を含む。これらの受光部140、発光部150等により脈波センサー(光電センサー)が実現される。検出部130は、脈波センサーにより検出された信号を、脈波検出信号として出力する。
【0123】
体動検出部190は、種々のセンサーのセンサー情報に基づいて、体動に応じて変化する信号である体動検出信号を出力する。体動検出部190は、体動センサーとして例えば加速度センサー192を含む。なお、体動検出部190は、体動センサーとして圧力センサーやジャイロセンサーなどを有していてもよい。
【0124】
処理部200は、例えば記憶部240をワーク領域として、各種の信号処理や制御処理を行うものであり、例えばCPU等のプロセッサー或いはASICなどの論理回路により実現できる。処理部200は、信号処理部210、拍動情報演算部220、表示制御部230を含む。
【0125】
信号処理部210は各種の信号処理(フィルター処理等)を行うものであり、例えば、検出部130からの脈波検出信号や体動検出部190からの体動検出信号などに対して信号処理を行う。例えば信号処理部210は体動ノイズ低減部212を含む。体動ノイズ低減部212は、体動検出部190からの体動検出信号に基づいて、脈波検出信号から、体動に起因したノイズである体動ノイズを低減(除去)する処理を行う。具体的には、例えば適応フィルターなどを用いたノイズ低減処理を行う。
【0126】
拍動情報演算部220は、信号処理部210からの信号等に基づいて、拍動情報の演算処理を行う。拍動情報は例えば脈拍数などの情報である。具体的には、拍動情報演算部220は、体動ノイズ低減部212でのノイズ低減処理後の脈波検出信号に対してFFT等の周波数解析処理を行って、スペクトルを求め、求めたスペクトルにおいて代表的な周波数を心拍の周波数とする処理を行う。求めた周波数を60倍にした値が、一般的に用いられる脈拍数(心拍数)となる。なお、拍動情報は脈拍数そのものには限定されず、例えば脈拍数を表す他の種々の情報(例えば心拍の周波数や周期等)であってもよい。また、拍動の状態を表す情報であってもよく、例えば血液量そのものを表す値を拍動情報としてもよい。
【0127】
表示制御部230は、表示部310に各種の情報や画像を表示するための表示制御を行う。例えば
図6(A)に示すように、脈拍数などの拍動情報や時刻情報などの各種情報を、表示部310に表示する制御を行う。また、表示部310の代わりとして光、音又は振動等のユーザーの知覚を刺激する出力を行う報知デバイスを設けてもよい。このような報知デバイスとしては例えばLED、ブザー又はバイブレーターなどを想定できる。
【0128】
なお、以上のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また光検出ユニット、生体情報検出装置の構成、動作も本実施形態で説明したものに限定されず、種々の変形実施が可能である。