特許第6232318号(P6232318)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立GEニュークリア・エナジー株式会社の特許一覧

<>
  • 特許6232318-水中調査装置 図000002
  • 特許6232318-水中調査装置 図000003
  • 特許6232318-水中調査装置 図000004
  • 特許6232318-水中調査装置 図000005
  • 特許6232318-水中調査装置 図000006
  • 特許6232318-水中調査装置 図000007
  • 特許6232318-水中調査装置 図000008
  • 特許6232318-水中調査装置 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6232318
(24)【登録日】2017年10月27日
(45)【発行日】2017年11月15日
(54)【発明の名称】水中調査装置
(51)【国際特許分類】
   H04B 7/15 20060101AFI20171106BHJP
   H04W 4/04 20090101ALI20171106BHJP
   H04W 84/18 20090101ALI20171106BHJP
   H04N 21/238 20110101ALI20171106BHJP
   H04N 21/2343 20110101ALI20171106BHJP
   G21C 17/013 20060101ALN20171106BHJP
   G21C 17/08 20060101ALN20171106BHJP
【FI】
   H04B7/15
   H04W4/04
   H04W84/18 110
   H04N21/238
   H04N21/2343
   !G21C17/00 H
   !G21C17/08
【請求項の数】5
【全頁数】12
(21)【出願番号】特願2014-53120(P2014-53120)
(22)【出願日】2014年3月17日
(65)【公開番号】特開2015-177395(P2015-177395A)
(43)【公開日】2015年10月5日
【審査請求日】2016年7月8日
(73)【特許権者】
【識別番号】507250427
【氏名又は名称】日立GEニュークリア・エナジー株式会社
(74)【代理人】
【識別番号】110000350
【氏名又は名称】ポレール特許業務法人
(72)【発明者】
【氏名】岡田 聡
(72)【発明者】
【氏名】石澤 幸治
(72)【発明者】
【氏名】小林 亮介
(72)【発明者】
【氏名】河野 尚幸
【審査官】 前田 典之
(56)【参考文献】
【文献】 特開2001−308766(JP,A)
【文献】 特開2013−211731(JP,A)
【文献】 特開2008−199413(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/15
H04N 21/2343
H04N 21/238
H04W 4/04
H04W 84/18
G21C 17/013
G21C 17/08
(57)【特許請求の範囲】
【請求項1】
撮像部を備え、水中で前記撮像部により映像を撮影する調査部と、
水中に設置され、前記調査部と水中で無線により通信をする水中中継器と、
気中に設置され、前記調査部を制御する制御部と、
気中に設置され、前記制御部に接続された気中通信器と、
気中に設置された気中アンテナと、少なくとも一部が水中に設置された水中アンテナとを有し、前記気中通信器と気中で無線により通信するとともに、前記水中中継器と水中で無線により通信する相変換中継器とを備え、
前記水中中継器は、前記調査部と前記相変換中継器との水中での通信を中継し、
気中での前記気中通信器と前記相変換中継器との通信と、水中での前記調査部と前記相変換中継器との通信は、通信レートが異な
水中での前記調査部と前記水中中継器との通信、及び水中での前記水中中継器と前記相変換中継器との通信は、音波を用いて行い、
気中での前記気中通信器と前記相変換中継器との通信は、電波を用いて行う、
ことを特徴とする水中調査装置。
【請求項2】
前記相変換中継器は、前記気中通信器と気中で無線により通信する気中通信部と、前記水中中継器と水中で無線により通信する水中通信部と、レート変換部とを備え、
前記レート変換部は、前記通信レートを変換して、気中での前記気中通信器と前記気中通信部との通信と、水中での前記水中中継器と前記水中通信部との通信とを接続する、請求項1に記載の水中調査装置。
【請求項3】
前記レート変換部は、前記水中通信部が前記水中中継器から受信した信号の受信強度の値が、予め設定したしきい値以下である場合には、水中での前記通信の信号の搬送周波数を予め設定した値だけ小さくする、請求項2に記載の水中調査装置。
【請求項4】
前記調査部は、前記撮像部が撮影した映像を圧縮し、前記水中中継器を経由して前記相変換中継器の前記水中通信部に送信し、
前記レート変換部は、前記水中通信部が前記水中中継器から受信した信号の受信強度の値が、予め設定したしきい値以下である場合には、前記調査部が前記映像を圧縮するときの圧縮係数を予め設定した値だけ小さくする、請求項3に記載の水中調査装置。
【請求項5】
前記水中中継器を複数備える請求項1からのいずれか1項に記載の水中調査装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水中の構造物の調査や点検をするための水中調査装置に関する。
【背景技術】
【0002】
原子力発電所や産業用プラントでは、水中の構造物の調査・点検や水中の異物の調査のために、水中調査装置を利用する。水中調査装置は、構造物の周囲や内部を調査・点検する調査部を備える。内部構造が複雑な構造物の場合には、調査部がケーブルで接続されていると、ケーブルと構造物とが摩擦を起こしたりケーブルが構造物を回り込んだりするために、調査部の動作が制限される。このため、ケーブルが接続されていない調査部を備える水中調査装置が望まれている。また、水中の構造物や異物から取得した情報(例えば、映像情報)を構造物の外部で監視しながら構造物の調査や点検をする場合には、水中から気中へ情報を伝送する必要がある。このように情報を伝送する際にも、調査部は、上述したようにケーブルを用いないのが望ましい。
【0003】
特許文献1には、レーザー光信号を用いた水中通信システムが開示されている。特許文献2には、海中センサのセンサデータを取得可能な海中センサネットワークシステムが開示されている。特許文献3には、ユニットの内部では無線通信をし、ユニット間は非導電性の伝達媒体によって通信する水中ロボットが開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−55408号公報
【特許文献2】特開2007−323391号公報
【特許文献3】特開2013−63702号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載の水中通信システムのようにレーザー光信号を用いて通信を行うと、構造が複雑な構造物ではレーザー光が寸断されたり、通信距離が長くなるとレーザー光が届かなくなったりして、通信ができなくなる場合がある。
【0006】
特許文献2に記載の海中センサネットワークシステムでは、水中無線機を備えた海中センサを航空機から投下して設置し、水中無線機による水中通信によりデータを送受信し、最終的に、海底ケーブルを経由して陸上局と通信する。このため、水中の構造物が複雑な構造であると、構造物の内部に海中センサを配置するのが困難であり、所望の情報を取得できないことが懸念される。
【0007】
特許文献3に記載の水中ロボットでは、水中ロボットと外部との通信は考慮されていない。このため、水中ロボットで取得した情報を水中から気中へ伝送し、この情報を監視しながら構造物の調査や点検を行うことは困難である。
【0008】
本発明は、構造が複雑な水中の構造物に対しても利用可能であり、通信経路に気中部分と水中部分がある場合でも、両部分を中継して通信が可能な水中調査装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明による水中調査装置は、次のような特徴を有する。撮像部を備え、水中で前記撮像部により映像を撮影する調査部と、水中に設置され、前記調査部と水中で無線により通信をする水中中継器と、気中に設置され、前記調査部を制御する制御部と、気中に設置され、前記制御部に接続された気中通信器と、気中に設置された気中アンテナと、少なくとも一部が水中に設置された水中アンテナとを有し、前記気中通信器と気中で無線により通信するとともに、前記水中中継器と水中で無線により通信する相変換中継器とを備える。前記水中中継器は、前記調査部と前記相変換中継器との水中での通信を中継する。気中での前記気中通信器と前記相変換中継器との通信と、水中での前記調査部と前記相変換中継器との通信は、通信レートが異なる。
【発明の効果】
【0010】
本発明による水中調査装置は、構造が複雑な水中の構造物に対しても利用可能であり、通信経路に気中部分と水中部分がある場合でも、両部分を中継して通信が可能である。
【図面の簡単な説明】
【0011】
図1】本発明の実施例1による水中調査装置が配置された原子炉格納容器とその内部を示す図。
図2】実施例1による水中調査装置の構成を示すブロック図。
図3】実施例1による水中調査装置の相変換中継器の構成を示す図。
図4】実施例1による水中調査装置の調査部の構成を示す図。
図5】音波の信号の搬送周波数と受信強度との関係を示す図。
図6】実施例1による水中調査装置の相変換中継器が行う処理のフローチャート。
図7】実施例1による水中調査装置の調査部が行う処理のフローチャート。
図8】本発明の実施例2による水中調査装置が配置された産業用プラントのタンクを示す図。
【発明を実施するための形態】
【0012】
本発明による水中調査装置は、制御、通信、又は電源の供給などのためのケーブルが、水中で調査を行う調査部に接続されておらず、構造が複雑な水中の構造物の調査に好適に利用可能である。また、通信経路に気中部分と水中部分がある場合でも、両方の部分を中継して通信が可能である。本発明による水中調査装置は、例えば、原子力プラントの格納容器や産業用プラントのタンクの内部が水で満たされた場合においても、水中の構造物を調査することができる。
【0013】
以下、本発明の実施例による水中調査装置について、図面を用いて説明する。以下の実施例において、無線通信とは、伝送線を用いない通信のことであり、電気通信に限らない。なお、以下の実施例では、気中部分は主に電波によって、水中部分は主に音波によって無線通信をする例を説明するが、本発明による水中調査装置は、気中部分は主に音波によって、水中部分は主に電波によって無線通信をすることもできる。気中部分は主に音波によって、水中部分は主に電波によって通信する場合には、以下の実施例において、電波についての説明と音波についての説明を適宜入れ替えるものとする。ただし、水中で電波によって通信する際には、水中での電波の減衰を考慮し、中継器の数を増やすなどして、水中での電波通信が短距離で行われるようにする。
【実施例1】
【0014】
図1から図7を用いて、本発明の実施例1による水中調査装置の構成及び動作について説明する。本実施例では、水中調査装置を、内部が水で満たされた原子力プラントの格納容器の調査に用いる例を説明する。
【0015】
図1は、本実施例による水中調査装置が配置された原子炉格納容器とその内部を示す図である。原子炉建屋1の内部に原子炉格納容器2があり、原子炉格納容器2の内部に原子炉圧力容器3がある。原子炉圧力容器3は、ペデスタル4で保持されている。原子炉格納容器2は、電線や配管などが通る貫通部8を備えるとともに、トーラス室5の内部に設置した圧力抑制室6が接続されている。また、原子炉格納容器2の内部には、原子炉建屋床7とほぼ同一の高さにグレーチング9が設けられている。グレーチング9は、一部に開口部10を有する。また、ペデスタル4は、原子炉格納容器2の底部11の近傍に、作業員が出入りするための開口部12を有する。
【0016】
通常、原子炉格納容器2の内部に水は入っていないが、緊急時には、原子炉格納容器2の内部に水が注入され、原子炉格納容器2の内部に水が入っている場合がある。本実施例では、このような状況を想定している。なお、本実施例では、水面13がグレーチング9の下にある場合を想定している。
【0017】
本実施例の水中調査装置は、制御装置14、気中通信器15、相変換中継器17、水中中継器18、及び調査部19を備える。
【0018】
制御装置14は、原子炉建屋1の外部に配置され、気中通信器15と接続され、調査部19を制御する。例えば、制御装置14は、調査部19が調査対象の映像を撮影するのを指示したり、調査部19が走行型や遊泳型の場合には調査部19の移動を指示したりする。また、制御装置14は、調査部19が撮影した映像を取得する。
【0019】
気中通信器15は、原子炉建屋1の中の原子炉建屋床7上に設置され、制御装置14と接続する。また、気中通信器15は、通信用ケーブルの一端と接続する。この通信用ケーブルは、貫通部8を通って原子炉格納容器2の内部に延伸し、他端が原子炉格納容器2の内部で気中アンテナ16と接続する。
【0020】
気中アンテナ16は、原子炉格納容器2の内部の気中に位置し、相変換中継器17との間で電波を送受信する。
【0021】
相変換中継器17は、原子炉格納容器2の内部のグレーチング9上に設置され、気中アンテナ30と水中アンテナ31を備える。気中アンテナ30は、気中に位置し、気中アンテナ16との間で電波を送受信する。水中アンテナ31は、一端が水面13より下に位置し(すなわち、水中アンテナ31の一部は水中に位置する)、水中中継器18との間で音波を送受信する。
【0022】
水中中継器18は、グレーチング9から降下させられ、水中で原子炉格納容器2の底部11上に、相変換中継器17の水中アンテナ31との間で音波を送受信できる位置に配置される。水中中継器18は、相変換中継器17との間及び調査部19との間でそれぞれ音波を送受信し、音波による相変換中継器17と調査部19との間の通信を中継する。
【0023】
調査部19は、グレーチング9から降下させられ、水中で原子炉格納容器2の底部11上に、水中中継器18との間で音波を送受信できる位置に配置される。調査部19は、映像を撮影することで、水中の構造物の調査・点検や、水中の異物の調査を実施する。調査部19が撮影した映像は、水中中継器18、相変換中継器17、及び気中通信器15を経由して、制御装置14へ送信される。
【0024】
図2は、本実施例による水中調査装置の構成を示すブロック図である。図2を用いて、水中調査装置の各構成部間の接続関係を説明する。制御装置14と気中通信器15は、ケーブルで接続される。気中通信器15は、図1を用いて前述した通り、通信用ケーブルで気中アンテナ16と接続され、相変換中継器17との間で無線通信を行う。
【0025】
相変換中継器17は、水中中継器18との間で音波による通信で情報の伝送をする。相変換中継器17は、気中通信部20、レート変換部21、及び水中通信部22を備え、これらは互いに接続されている。気中通信部20は、気中通信器15との間で、電波による無線通信を行う。水中通信部22は、水中中継器18との間で、音波による通信を行う。気中通信部20が行う電波による無線通信と、水中通信部22が行う音波による無線通信では、通信レート(通信速度)が異なる。このため、レート変換部21は、一方の通信レートを他方の通信レートに合わせるように通信レートを変換して、通信レートが異なる2つの通信を接続して中継する。また、レート変換部21は、水中通信部22が行う無線通信での音波の信号の搬送周波数と、調査部19が行う映像圧縮での圧縮係数(または圧縮比)を制御する。
【0026】
水中中継器18は、相変換中継器17(水中通信部22)との間及び調査部19との間で音波による通信を行い、相変換中継器17と調査部19との間の通信を中継する。なお、相変換中継器17と水中中継器18との間の通信と、水中中継器18と調査部19との間の通信とでは、信号の搬送周波数は、同じである。
【0027】
図3は、本実施例による水中調査装置の相変換中継器17の構成を示す図である。図2を用いて説明したように、相変換中継器17は、気中通信部20、レート変換部21、及び水中通信部22を実装し、気中通信器15との間では電波による無線通信で情報の伝送をし、調査部19との間では水中中継器18を経由して音波による無線通信で情報の伝送をする。気中通信部20には気中アンテナ30が接続され、水中通信部22には水中アンテナ31が接続されている。また、相変換中継器17は、バッテリ23を備え、このバッテリ23により電源が供給されて駆動する。
【0028】
図4は、本実施例による水中調査装置の調査部19の構成を示す図である。本実施例では、調査部19は、走行型であり、原子炉格納容器2の底部11上を走行して移動し、原子炉格納容器2の内部を調査する。ただし、本発明による水中調査装置には、水中を調査可能な調査部19として、水中を遊泳して移動する遊泳型や、固定部材により原子炉格納容器2に固定される固定型を用いることもできる。
【0029】
調査部19は、筐体40を備え、筐体40には、2つのクローラ41、撮像部42、水中通信器43、アンテナ44が設けられ、これらは互いにケーブルで接続される。調査部19は、クローラ41(例えば、無限軌道)により走行可能である。撮像部42は、調査対象の映像(動画と静止画の少なくとも一方)を撮影する装置であり、例えばカメラを用いることができる。また、撮像部42は、撮影した映像を圧縮する。水中通信器43は、アンテナ44を介して、水中中継器18との間で音波による通信を行う。アンテナ44は、水中中継器18との間で音波を送受信する。また、調査部19は、バッテリ45を備え、このバッテリ45により電源が供給されて駆動する。
【0030】
調査部19は、水中中継器18との間で音波による通信を行い、撮像部42が撮影した映像を水中中継器18に送信するなどして、水中中継器18を経由して相変換中継器17との間で情報を送受信する。
【0031】
図5は、音波の信号の搬送周波数と受信強度との関係を示す図である。図5に示すように、音波は、搬送周波数が高くなると、減衰が大きくなって受信強度が低下する。従って、水中通信では、音波の受信強度に合わせて、搬送周波数を選択する必要がある。本実施例による水中調査装置では、相変換中継器17のレート変換部21が、音波の信号の受信強度を監視し、この受信強度が一定値以上になるように、搬送周波数を制御する。
【0032】
音波は、通信距離が大きくなると減衰し、受信強度が低下する。しかし、音波による信号を確実に受信するためには、音波の受信強度が一定値(しきい値)以上である必要がある。そこで、調査部19が移動して調査部19と水中中継器18との距離が大きくなり、相変換中継器17で受信する音波の信号の受信強度が低下した場合には、レート変換部21は、音波の信号の受信強度が大きくなるように音波の信号の搬送周波数を小さくする。
【0033】
また、通信距離の増加による音波の減衰に伴い、音波が伝送する情報量を低減する必要がある。このため、映像圧縮での圧縮係数を小さくする必要がある。圧縮係数とは、データが圧縮によってどれだけの大きさになるかを示す指標であり、圧縮比の逆数である。圧縮比は、圧縮前のデータ量と圧縮後のデータ量の比である。すなわち、
圧縮係数=1/圧縮比
=(圧縮後のデータ量)/(圧縮前のデータ量)
と表される。圧縮係数を小さくして音波が伝送する情報量を低減することで、通信距離が増加して音波が減衰しても、相変換中継器17と調査部19との間の通信は、途切れずに可能である。このため、本実施例による水中調査装置では、調査部19が移動して調査部19と水中中継器18との距離が大きくなっても、制御装置14は、調査部19の調査結果を途切れずに受信可能である。
【0034】
図6は、相変換中継器17が行う処理のフローチャートである。図6を用いて、相変換中継器17が行う処理について説明する。上述したように、相変換中継器17は、水中中継器18を経由して調査部19との間で音波による通信を行うとともに、音波の信号の搬送周波数と調査部19が行う映像圧縮での圧縮係数とを制御する。
【0035】
ステップS100で、水中調査装置は、調査を開始する。
【0036】
ステップS101で、レート変換部21は、送信パラメータの初期設定を行う。送信パラメータとは、水中通信部22が調査部19との間で行う音波による通信での、音波の信号の搬送周波数fSGと、調査部19が行う映像圧縮での、情報(映像データ)の圧縮係数PSである。相変換中継器17は、搬送周波数fSGをf0に設定し、圧縮係数PSを1に設定する。搬送周波数fSGの初期値f0は、原子炉格納容器2の底部11上に配置された水中中継器18と相変換中継器17の水中アンテナ31との位置関係や、水中中継器18と調査部19との位置関係に応じて、定めることができる。
【0037】
ステップS102で、水中通信部22は、調査部19から映像信号を受信する。調査部19は、相変換中継器17へ、撮像部42が撮影した調査対象の映像の信号を送信したり、後述するようにダミーの映像信号を送信したりする。
【0038】
ステップS103で、レート変換部21は、調査部19から受信した音波の信号の受信強度P(例えば、映像信号の受信強度)を解析して求める。
【0039】
ステップS104で、受信強度Pの値が、予め設定したしきい値Shよりも大きい場合は、ステップS102に戻り、引き続き映像信号を受信する。受信強度Pの値が、しきい値Sh以下である場合は、ステップS105に進む。しきい値Shは、相変換中継器17のレート変換部21の特性や、撮影した映像に要求される解像度などに応じて、定めることができる。
【0040】
ステップS105で、レート変換部21は、送信パラメータを変更する。レート変換部21は、搬送周波数fSGをΔfSGだけ小さくし、圧縮係数PSをΔPSだけ小さくする。すなわち、(fSG−ΔfSG)を新たな搬送周波数fSGとし、(PS−ΔPS)を新たな圧縮係数PSとする。なお、このΔfSG及びΔPSは、予め設定した値であり、例えばこれらの初期設定の値(f0及び1)などに基づいて、定めることができる。
【0041】
ステップS106で、水中通信部22は、この変更した送信パラメータを、音波による水中無線通信(搬送周波数はfSG)で調査部19へ送信する。送信パラメータの送信後、相変換中継器17の処理は、ステップS102の映像信号の受信に戻る。
【0042】
図7は、調査部19が行う処理のフローチャートである。図7を用いて、調査部19が行う処理について説明する。上述したように、調査部19は、撮像部42が映像を撮影して水中の構造物の調査・点検や水中の異物の調査を実施し、水中中継器18を経由して相変換中継器17との間で音波による通信を行う。また、調査部19は、撮像部42が撮影した映像の情報を圧縮して、相変換中継器17へ送信する。
【0043】
ステップS200で、調査部19は、調査を開始する。
【0044】
ステップS201で、水中通信器43は、送信パラメータ(図6のステップS101で述べたように、音波の信号の搬送周波数fSGと映像情報の圧縮係数PS)の初期設定を行う。水中通信器43は、搬送周波数fSGをf0に設定し、圧縮係数PSを1に設定する。搬送周波数fSGの初期値f0は、相変換中継器17のレート変換部21が設定した搬送周波数fSGの初期値f0と同じ値である(図6のステップS101を参照)。
【0045】
ステップS202で、水中通信器43は、相変換中継器17にダミーの映像信号を送信する。ダミーの映像信号としては、任意の信号を用いることができる。
【0046】
ステップS203で、水中通信器43は、相変換中継器17から送信パラメータの信号を受信したか否かを判定する。相変換中継器17は、変更した送信パラメータを、音波による水中無線通信で調査部19へ送信する(図6のステップS106を参照)。相変換中継器17から送信パラメータの信号を受信した場合は、ステップS204に進み、送信パラメータの信号を受信しなかった場合は、ステップS205に進む。
【0047】
ステップS204で、水中通信器43は、送信パラメータを、相変換中継器17から受信した送信パラメータに変更する。すなわち、搬送周波数fSGをΔfSGだけ小さくして(fSG−ΔfSG)を新たな搬送周波数fSGとし、圧縮係数PSをΔPSだけ小さくして(PS−ΔPS)を新たな圧縮係数PSとする。
【0048】
ステップS205で、調査部19は、調査対象(例えば、水中の構造物や異物)の映像を取得する。撮像部42は、調査対象の映像を撮影する。
【0049】
ステップS206で、撮像部42は、圧縮係数PSを用いて、撮影した映像を圧縮する。例えば、圧縮係数PSが0.25の場合、映像の上下、左右のそれぞれの方向に、1画素ずつ間引く操作をする。映像を圧縮する方法には、任意の方法を用いることができ、画素を間引く方法以外にも、隣り合う画素値を平均化する方法や、差分情報を用いた圧縮技術などを用いることができる。なお、圧縮係数PSが1の場合には、映像を圧縮しない。
【0050】
ステップS207で、水中通信器43は、圧縮した映像の信号を、音波による水中無線通信(搬送周波数はfSG)で相変換中継器17へ送信する。映像信号の送信後、調査部19の処理は、ステップS203の送信パラメータの受信の有無の判定に戻る。
【0051】
以上説明したように、本実施例による水中調査装置は、相変換中継器17を備え、気中に設置した制御装置14と水中に設置した調査部19との間で、制御信号及び調査映像の伝送を主に無線によって行うことが可能である。相変換中継器17は、音波による通信での音波の信号の搬送周波数fSGと、映像圧縮での情報の圧縮係数PSとを制御し、通信レートが異なる2つの通信(水中での音波による通信と気中での電波による通信)を接続することができる。従って、本実施例による水中調査装置は、気中と水中での無線通信を接続することができ、搬送周波数fSGと圧縮係数PSの制御により、調査部19が移動して相変換中継器17が受信する音波の受信強度が低下しても、相変換中継器17と調査部19との間の通信が途切れることがない。このため、本実施例による水中調査装置を用いると、調査部19の調査結果を途切れずに取得することができるので、水中の構造物や異物から取得した情報(例えば、映像情報)を構造物の外部で連続的に監視しながら、構造物の調査や点検をすることができる。
【実施例2】
【0052】
図8を用いて、本発明の実施例2による水中調査装置について説明する。本実施例では、水中調査装置を、内部が水で満たされた産業用プラントのタンクの調査に用いた例を説明する。
【0053】
図8は、本実施例による水中調査装置が配置された産業用プラントのタンクを示す図である。図8において、実施例1と同一の符号は、実施例1と同一又は共通する要素を示し、これらの要素については説明を省略する。本実施例による水中調査装置は、実施例1の水中調査装置と同様の構成を取るが、相変換中継器17が気中部53と水中部54の2つの部分に分割された点と、複数の水中中継器18a、18bを備える点とが相違する。なお、本実施例では、水中中継器の数は2個であるが、3個以上でもよい。複数の水中中継器は、直列に互いに接続される。
【0054】
制御装置14と気中通信器15は、水が収納されているタンク60の外部に設置され、互いにケーブルで接続される。相変換中継器17は、気中部53と水中部54を備え、気中部53は、タンク60の外部又は水面50より上の気中に設置され、水中部54は、水面50より下の水中に設置される。気中部53と水中部54は、互いにケーブル55で接続される。
【0055】
相変換中継器17の気中部53は、実施例1で述べた相変換中継器17の気中通信部20とレート変換部21とを備え、水中部54は、実施例1で述べた相変換中継器17の水中通信部22を備える。なお、レート変換部21は、水中部54に設けられてもよい。気中部53は、気中に位置する気中アンテナ30を備え、気中通信器15との間で気中での電波を利用した無線通信を実施する。水中部54は、水中に位置する水中アンテナ31を備え、水中中継器18aとの間で水中での音波を利用した無線通信を実施する。気中部53の気中通信部20とレート変換部21、及び水中部54の水中通信部22が行う処理は、実施例1と同様である。
【0056】
水中中継器18a、18bは、実施例1で述べた水中中継器18と同様の構成を取り、水中でタンク60の壁面上(又は底面上)に設置される。水中中継器18aは、相変換中継器17の水中部54との間及び水中中継器18bとの間でそれぞれ音波を送受信し、水中部54との間及び水中中継器18bとの間で音波を送受信できる位置に配置される。水中中継器18bは、水中中継器18aとの間及び調査部19との間でそれぞれ音波を送受信し、水中中継器18aとの間及び調査部19との間で音波を送受信できる位置に配置される。すなわち、水中中継器18a、18bは、相変換中継器17と調査部19との間の、音波による制御信号及び調査映像の通信を中継する。
【0057】
本実施例による水中調査装置では、相変換中継器17のうち水中部54が水中に位置し、複数の水中中継器18a、18bを用いるので、音波について必要な受信強度を確保し、良好な通信を行うことがより容易である。
【0058】
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成を追加・削除・置換することが可能である。
【符号の説明】
【0059】
1…原子炉建屋、2…原子炉格納容器、3…原子炉圧力容器、4…ペデスタル、5…トーラス室、6…圧力抑制室、7…原子炉建屋床、8…貫通部、9…グレーチング、10…グレーチングの開口部、11…原子炉格納容器の底部、12…ペデスタルの開口部、13…水面、14…制御装置、15…気中通信器、16…気中アンテナ、17…相変換中継器、18、18a、18b…水中中継器、19…調査部、20…気中通信部、21…レート変換部、22…水中通信部、23…バッテリ、30…相変換中継器の気中アンテナ、31…相変換中継器の水中アンテナ、40…筐体、41…クローラ、42…撮像部、43…水中通信器、44…アンテナ、45…バッテリ、50…水面、53…相変換中継器の気中部、54…相変換中継器の水中部、55…ケーブル、60…タンク。
図1
図2
図3
図4
図5
図6
図7
図8