特許第6232493号(P6232493)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 台湾立凱電能科技股▲ふん▼有限公司の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6232493
(24)【登録日】2017年10月27日
(45)【発行日】2017年11月15日
(54)【発明の名称】電池複合材料及びその前駆体の製造方法
(51)【国際特許分類】
   H01M 4/58 20100101AFI20171106BHJP
   H01M 4/36 20060101ALI20171106BHJP
   C01B 25/45 20060101ALN20171106BHJP
【FI】
   H01M4/58
   H01M4/36 A
   !C01B25/45 Z
【請求項の数】8
【全頁数】13
(21)【出願番号】特願2016-512216(P2016-512216)
(86)(22)【出願日】2014年5月8日
(65)【公表番号】特表2016-519407(P2016-519407A)
(43)【公表日】2016年6月30日
(86)【国際出願番号】CN2014077082
(87)【国際公開番号】WO2014180334
(87)【国際公開日】20141113
【審査請求日】2016年1月6日
(31)【優先権主張番号】61/820,935
(32)【優先日】2013年5月8日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】508015782
【氏名又は名称】台湾立凱電能科技股▲ふん▼有限公司
(74)【代理人】
【識別番号】110001139
【氏名又は名称】SK特許業務法人
(74)【代理人】
【識別番号】100130328
【弁理士】
【氏名又は名称】奥野 彰彦
(74)【代理人】
【識別番号】100130672
【弁理士】
【氏名又は名称】伊藤 寛之
(72)【発明者】
【氏名】謝瀚緯
(72)【発明者】
【氏名】林翔斌
(72)【発明者】
【氏名】洪辰宗
【審査官】 近藤 政克
(56)【参考文献】
【文献】 国際公開第2011/111628(WO,A1)
【文献】 国際公開第2012/006725(WO,A1)
【文献】 特開2012−195157(JP,A)
【文献】 国際公開第2004/036672(WO,A1)
【文献】 特開2007−284271(JP,A)
【文献】 特開2000−007311(JP,A)
【文献】 特開2012−012279(JP,A)
【文献】 特開2001−082083(JP,A)
【文献】 特開2009−295465(JP,A)
【文献】 特表2014−524123(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/58
H01M 4/36
C01B 25/45
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
電池複合材料の製造方法であって、工程(a)〜(d)を含み、
工程(a)では、リン酸と、第1金属源と、第2金属源と、水を供給し、前記リン酸の化学式がHPOであり、前記第1金属源が鉄源であり、前記第2金属源がマンガン源であり、前記鉄源の化学式がFe(POであり、
工程(b)では、前記第1金属源と、前記第2金属源と、前記リン酸と、前記水を反応させて第1生成物を生成し、
工程(c)では、前記第1生成物を焼成し第1前駆体又は第2前駆体を生成し、前記第1前駆体及び前記第2前駆体のそれぞれが第1金属及び第2金属を含有する固溶体であり、前記第1金属は鉄であり、前記第2金属はマンガンであり、前記第1前駆体及び前記第2前駆体の化学式が(MnFe1−xであり、1>x>0であり、
工程(c)は、工程(c1)又は工程(c2)であり
工程(c1)では、空気雰囲気下で前記第1生成物を焼成し前記第1前駆体を生成し、
工程(c2)では、保護雰囲気下で前記第1生成物を焼成し前記第2前駆体を生成する、
工程(d)では、前記第1前駆体又は前記第2前駆体と、少なくとも第1反応物を反応させて生成した反応混合物を焼成し前記電池複合材料を生成し、前記第1反応物が水酸化リチウムであり、前記水酸化リチウムの化学式がLiOHである、
電池複合材料の製造方法。
【請求項2】
前記電池複合材料の化学式がLiMnFe1−xPOである、請求項1に記載の製造方法。
【請求項3】
xが0.5以上であり、0.95以下である、請求項1に記載の製造方法。
【請求項4】
工程(b)は、副工程として工程(b1)及び工程(b2)を含み、
工程(b1)では、第1の量の前記水に第2の量の前記第1金属源及び第3の量の前記リン酸を溶解させ第1溶液を生成し、
工程(b2)では、前記第1溶液及び前記第2金属源を反応させ少なくとも第1の期間待つことにより前記第1生成物を生成する、請求項1に記載の製造方法。
【請求項5】
前記第3の量のリン酸に対する前記第2の量の前記第1金属の重量比の比率が1:1である、請求項4に記載の製造方法。
【請求項6】
前記第1の量が5Lであり、前記第2の量が904.9gであり、前記第3の量が2772.7gであり、前記第1の期間が8時間である、請求項4に記載の製造方法。
【請求項7】
前記保護雰囲気が窒素雰囲気又はアルゴン雰囲気である、請求項1に記載の製造方法。
【請求項8】
工程(d)は、副工程として工程(d1)、副工程(d2)、及び副工程(d3)を含み、
工程(d1)では、少なくとも前記第1反応物と、前記第1前駆体又は前記第2前駆体を混合し、
工程(d2)では、500℃より高い温度で高温焼成を行い、
工程(d3)では、前記電池複合材料を生成する、
請求項1に記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は製造方法に関し、特に電池複合材料の製造方法に関する。
【背景技術】
【0002】
世界的な慢性的エネルギー不足に起因して、石油の価格が高くなり、環境に対するの意識は日々高まっている。エネルギー産業の中で最も注目されている課題は、クリーンで効率的にエネルギーを提供する方法である。様々な代替エネルギーの中で、化学電池は最も活発に開発が進められている技術である。関連産業の研究開発への継続的な投資により、化学電池技術は、継続的に改良、強化されているだけでなく、家電、医療機器、電動自転車、電動バイク、電気自動車及び電気バス等として広く日常生活で使用されている。
【0003】
特に、リチウム金属リン酸塩(LiMPO、Mは例えば鉄、コバルト、マンガン等の任意の金属であってもよい)複合電池は、大電流かつ長寿命であるため広く市場に受け入れられている。また、リチウム金属リン酸塩複合電池は、爆発の危険がなく、高電力効率、低公害という利点を有するため、従来の鉛酸、ニッケル水素、ニッケルカドミウム電池に代わり用いられる。長年の研究により、リチウム金属リン酸塩ナノ共結晶オリビン(以下、「LMP−NCO」という)電池が開発された。LMP−NCO電池は、Liと、Pと、金属又は金属成分を含有する前駆体のいずれか一方により構成される単一化合物であり、かつ非被覆及び非ドープ材料である。このような単一化合物の材料であるLMP−NCO電池は、電力伝導性を大幅に向上させ、不純物を除去することが可能である。また、LMP−NCO電池の価格は、従来のリチウム金属リン酸塩材料より低く、LMP−NCO電池は高い市場競争力を持ち、業界の主要製品となる。
【0004】
一般に、リチウムリン酸鉄及びリチウムマンガンリン酸塩は、一般にLMP−NCOの製造方法に用いられ、電池複合材料はその製造方法によって製造される。しかし、酸化還元反応が原因で製造プロセスは安定性に欠け、それ故に製造プロセスを困難なものとなっている。また、凝集作用が化合物間で発生しやすく、生成物の大きさが実用的要件を満たさず、電池の性能が想定ほど良好でない原因となっている。
【0005】
従来技術の有する上記欠点を解消するために、電池複合材料及びその前駆体の製造方法を提供する必要がある。
【発明の概要】
【0006】
本発明の目的は、電池複合材料及びその前駆体の製造方法の提供であり、生成物の大きさが実用的な要件を満たさないことにより生じる不安定な製造プロセスの欠点、製造プロセスの困難性、及び電池の劣悪な性能を解消することにある。
【0007】
本発明の目的は、電池複合材料及びその前駆体の製造方法の提供であり、複数回の反応により生成された前駆体を用い製造される電池複合材料の製造方法において、酸化還元反応の回数を減らし、製造プロセスの安定性を向上させ、製造プロセスの困難性を低減することにある。
【0008】
本発明の別の目的は、電池複合材料及びその前駆体の製造方法の提供である。第1金属及び第2金属を含む固溶体を、最終的に電池複合材料を製造するための前駆体として調製することにより、電池複合材料及び電池は二つの安定充放電のプラットフォームを有し、安定性や電気的性能を向上させることの優位性が達成される。
【0009】
本開示の一態様によれば、電池複合材料の製造方法が提供される。上記製造方法は、リン酸(HPO)と、第1金属源と、第2金属源と、水を供給する工程と、前記第1金属源と、前記第2金属源と、前記リン酸と、前記水を反応させ第1生成物を生成する工程と、第1生成物を焼成し、第1金属及び第2金属を含む第1前駆体、又は、第1金属及び第2金属を含む第2前駆体を生成する工程と、第1前駆体又は第2前駆体、及び第1反応物を反応させ生成した反応混合物を焼成し電池複合材料を得る工程を含む。
【0010】
本開示の別の態様によれば、電池複合材料の前駆体の製造方法が提供される。上記製造方法は、第1金属と、第2金属と、溶液中においてリン酸イオンを放出する化合物を反応させ第1生成物を生成する工程と、第1生成物を熱処理し第1金属及び第2金属を含む固溶体である前駆体を生成する工程を含む。
【0011】
本開示のさらに別の態様によれば、電池複合材料の前駆体の製造方法が提供される。上記製造方法は、化学式が(MnFe1−xである前駆体と、少なくとも第1反応物を反応させ生成した反応混合物を焼成し電池複合材料を得る工程を含み、電池複合材料がリチウム二鉄リン酸マンガン又はリチウム二鉄リン酸マンガンナノ共結晶オリビンであり、リチウム二鉄リン酸マンガンの化学式がLiMnFe1−xPOであり、x>0である。
【0012】
上述した本発明の内容は、以下に示す詳細な説明及び添付の図面を参照すると、当業者にとってより明確となる。
【図面の簡単な説明】
【0013】
図1は、本発明の一実施形態に係る電池複合材料の製造方法のフローチャートを概略的に示す。
【0014】
図2は、本発明の一実施形態に係る電池複合材料の製造方法の詳細なフローチャートを概略的に示す。
【0015】
図3は、本発明の一実施形態に係る電池複合材料の製造方法の別の詳細なフローチャートを概略的に示す。
【0016】
図4は、本発明の一実施形態に係る電池複合材料の製造方法の別の詳細なフローチャートを概略的に示す。
【0017】
図5Aは、本発明の電池複合材料の製造方法により空気雰囲気下で調製された前駆体のX線回折分析図を概略的に示す。
【0018】
図5Bは、本発明の電池複合材料の製造方法により保護雰囲気下で調製された前駆体のX線回折分析図を概略的に示す。
【0019】
図6Aは、本発明の電池複合材料の製造方法により第1前駆体を用いて製造された電池複合材料のX線回折分析図を概略的に示す。
【0020】
図6Bは、本発明の電池複合材料の製造方法により第2前駆体を用いて製造された電池複合材料のX線回折分析図を概略的に示す。
【0021】
図7Aは、本発明の電池複合材料の製造方法により製造された電池複合材料を用いたセル電池の充放電特性図を概略的に示す。
【0022】
図7Bは、本発明の電池複合材料の製造方法により製造された別の電池複合材料を用いたセル電池の充放電特性図を概略的に示す。
【0023】
図7Cは、本発明の電池複合材料の製造方法により製造された別の電池複合材料を用いたセル電池の充放電特性図を概略的に示す。
【0024】
図7Dは、本発明の電池複合材料の製造方法により製造された別の電池複合材料を用いたセル電池の充放電特性図を概略的に示す。
【0025】
図8は、本発明の電池複合材料の前駆体の製造方法により製造された前駆体のTEM分析図を概略的に示す。
【0026】
図9は、本発明の電池複合材料の前駆体の製造方法により製造された前駆体のEDS(エネルギー分散分光法)分析図を概略的に示す。
【0027】
図10A及び図10Bは、本発明の電池複合材料の製造方法における追加工程により、第1前駆体を用いて製造された電池複合材料のTEM分析図を概略的に示す。
【0028】
図11A及び図11Bは、本発明の電池複合材料の製造方法における追加工程により、第1前駆体を用いて製造された電池複合材料のTEM分析図を概略的に示す。
【発明を実施するための形態】
【0029】
本発明は、以下に示す実施形態によって、より詳細に説明される。以下に示す本発明の好ましい実施形態の説明は、本発明を説明する目的のみのために示されることを注意されたい。つまり、下記に示す実施形態は、網羅的であることを意図するものではなく、また、開示された詳細な形態に限定することを意図するものでもない。
【0030】
図1は、本発明の一実施形態に係る電池複合材料の製造方法のフローチャートを概略的に示す。本発明の電池複合材料の製造方法は、以下の工程を含む。まず、工程S100に示すようにリン酸(HPO)と、第1金属源と、第2金属源と、水を供給する。いくつかの実施形態では、第1金属源及び第2金属源は、鉄源、マンガン源、コバルト源、及びニッケル源からそれぞれ少なくとも一つ選ばれ、それぞれ鉄源及びマンガン源が好ましい
【0031】
次に、工程S200に示すように、第1金属源と、第2金属源と、リン酸と、水を反応させ第1生成物を生成した。いくつかの実施形態では、工程S200は2つの副工程を含むことが好ましい。図2は、本発明の一実施形態に係る電池複合材料の製造方法の詳細なフローチャートを概略的に示す。図1及び図2に示すように、工程S200の詳細なフローチャートは、工程S201に示すように第1の量の水により第2の量の第1金属源及び第3の量のリン酸を溶解させ第1溶液を生成する第1副工程を含み、工程S202に示すように第1溶液と第2金属源を反応させ少なくとも第1の期間待ち第1生成物を生成する第2副工程を含む。本実施形態では、前記第1の期間は例えば8時間であるが、これに限定されない。さらに、第3の量のリン酸に対する第2の量の第1金属の重量比は1:1である。すなわち、第3の量に対する第2の量を調整することにより、第1金属及びリン酸は同じ量を有し、以降の工程においてすべての反応が進行させ第1生成物を完全に生成することが可能である。また、本発明のコンセプトによれば、第1生成物は、第1金属と、第2金属と、液中においてリン酸イオンを放出する化合物の反応により生成し得るが、これに限定されない。
【0032】
そして、工程S300において示すように、工程S200において得られた第1生成物を焼成し、第1金属及び第2金属を含む第1前駆体、又は、第1金属及び第2金属を含む第2前駆体を生成する。上記第1前駆体又は第2前駆体はオリビン結晶構造を有するリチウムイオン陰極電池複合材料の製造に用いることが好ましい。第2前駆体は、例えば鉄ピロリン酸マンガン(MnFe1−xであるが、これに限定されない。加えて、いくつかの実施形態では、工程S300は副工程をさらに含む。図3は、本発明の一実施形態に係る電池複合材料の製造方法の別の詳細なフローチャートを概略的に示す。図1及び図3に示すように、本発明の電池複合材料の製造方法である工程S300は、副工程S301及びS302をさらに含む。工程S300では、実際には副工程S301及びS302のうち一方が選択的に行われる。工程S301においては、前記第1生成物を空気雰囲気下で焼成し第1前駆体を生成し、工程S302においては、第1生成物を保護雰囲気下で焼成し第2前駆体を生成する。言い換えれば、工程S301と工程S302の違いは第1生成物の熱処理が、空気雰囲気下あるいは保護雰囲気下(窒素雰囲気、アルゴン雰囲気など)で行われるかの違いである。
【0033】
最後に、工程S400において示すように、第1前駆体又は第2前駆体と、第1反応物が反応し生成する反応混合物を焼成し電池複合材料を生成する。電池複合材料は、例えば、リチウム二鉄リン酸マンガン又はリチウム二鉄リン酸マンガンナノ共結晶オリビンであり、リチウム二鉄リン酸マンガンの化学式はLiMnFe1−xPOで表され、x>0である。好ましくは、xが0.5以上であり、0.95以下である。このような場合、電池複合材料の電気的性能がより向上する。工程S400において、第1前駆体又は第2前駆体は「少なくとも」第1反応物と反応することに留意すべきであり、第1前駆体又は第2前駆体は第1反応物とのみ反応するだけでなく、第1反応物及び他の反応物とも反応し得る。
【0034】
図4は、本発明の一実施形態に係る電池複合材料の製造方法の別の詳細なフローチャートを概略的に示す。図1及び図4に示すように、本発明の電池複合材料の製造方法における工程S400は、以下のように副工程をさらに含む。まず、S401工程に示すように、少なくとも第1反応物と、第1前駆体又は第2前駆体を混合する。なお、第1反応物は炭酸リチウム、リチウムを含有する化合物、又はリチウムを含有するいくつかの化合物の混合物である。次に、工程S402に示すように、高温焼成(例えば、500℃より高温で)を行う。最終的に、工程S403に示すように、リチウム二鉄リン酸マンガン又はリチウム二鉄リン酸マンガンナノ共結晶オリビン等の電池複合材料を生成する。
【0035】
工程S200又は工程S400において、V、TiO又はMgO等の金属酸化物は反応に添加することが可能であり、「リチウム二鉄リン酸マンガンナノ共結晶オリビン(LFMP−NCO)」と呼ばれるか又は名付けられる、上記の金属酸化物を含有するLiMnFe1−xPO類縁体の材料を得ることができる。
【0036】
このような場合には、本発明は、複数回の反応により生成された前駆体を用い製造される電池複合材料の製造方法において、酸化還元反応の回数を減らし、製造プロセスの安定性を向上させ、製造プロセスの困難性を低減することが可能な電池複合材料及びその前駆体の製造方法を提供する。
【0037】
以下の実施形態は、本開示による電池複合材料の製造方法の例示及び説明の目的のためのものである。
【0038】
第1実施形態
【0039】
まず、904.9gのFe(POと、2772.7gのリン酸(純度>85%)と、5.0Lの脱イオン水と、マンガン源を供給し、第1金属源又は第2金属源としてFe(POを、脱イオン水と混合し、続いてリン酸を加えて撹拌し反応させる。次に、第2金属源又は主要金属源としてマンガン源を加え、少なくとも8時間待ちすべての反応を進行させて前駆体溶液を生成する。続いて、前駆体溶液を空気雰囲気又は保護雰囲気(例えば窒素雰囲気又はアルゴン雰囲気)下で400℃より高温で焼成した。空気雰囲気又は保護雰囲気下で焼成された化合物をX線回折により分析し、X線回折分析図をそれぞれ図5A及び図5Bに示す。上記X線回折分析図をJCPDSカードと比較し、第1前駆体がMn及びFeを含む固溶体であり、第1前駆体の構造がMnに類似し、第2前駆体の構造もMnに類似していることが確認された。しかし、第1前駆体及び第2前駆体においては、MnはFeに置換されている。第1前駆体及び第2前駆体は(Mn、Fe1−xと表すことが可能である。MnのFeに対する比率は、化学量論により得ることができ、前駆体は(Mn0.73Fe0.27であった。
【0040】
次に、例えば18モルのリチウム二鉄リン酸マンガンを調製した。上記工程において得た2059.6gの第1前駆体又は第2前駆体と、755〜792.7gの水酸化リチウム(すなわちのLiOH)を10Lの純水に加え反応させ、続いて適切な炭素源を加えた。500℃より高温で反応生成物に対し焼成を行った。焼成された化合物をX線回折により分析し、X線回折分析図をそれぞれ図6A及び図6Bに示した。上記X線回折分析図をJCPDSカードと比較し、上記焼成された化合物がリチウム二鉄リン酸マンガン(すなわち、LiMnFe1−xPO)であることが確認された。MnのFeに対する比率は、化学量論により得ることができ、上記焼成された化合物はLiMn0.73Fe0.27POであった。
【0041】
次に、上記工程において得たLiMn0.73Fe0.27PO導電性材料Super P及び4重量%のバインダー(PVDF+NMP)を8.5:0.5:1の比率で混合した。まず、0.5gの導電性カーボンブラック(Super P)と25gのバインダー(PVDF:NMP=40:960)を1200rpm回転速度で10分間撹拌した。続いて、8.5gのLiMn0.73Fe0.27POを加えさらに10分間撹拌した。次に、ブレードコーターでアルミニウム基板上に分散させたスラリーを厚さ3mmで塗布した。そして、スラリーが塗布されたアルミニウム基板をオーブンに入れ、被覆されたアルミニウム基板を110℃で1時間焼成した。最後に、アルミニウム基板を直径1.3cmの円板状に成形し、この円板と、リチウム金属(負極として)と、1モルの濃度のLiPFと、EC及びDMCの混合電解液(体積比=3:7)を用いてコイン型電池を作製した。コイン型電池の充放電の電気的特性、充放電装置を用いて試験し分析した。試験・分析は、0.1Cで2サイクル、2Cで2サイクルで行われ、充放電特性図を図7Aに示す。コイン型電池の充放電のカットオフ電圧はそれぞれ2.5V、4.5Vであった。
【0042】
第2実施形態
【0043】
第1実施形態のマンガン源に対する鉄源の比率を、最終生成物である電池複合材料におけるMnとFeの比率が8:2となるように調整した。言い換えれば、電池複合材料はLiMn0.8Fe0.2POとなるように調製される。充放電の電気的特性は同じ条件で試験され、充放電特性図を図7Bに示す。本実施形態の残りの部分は第1実施形態と同様であるため省略する。
【0044】
第3実施形態
【0045】
第1実施形態のマンガン源に対する鉄源の比率を、最終生成物である電池複合材料におけるMnとFeの比率が85:15となるように調整した。言い換えれば、電池複合材料はLiMn0.85Fe0.15POとなるように調製される。充放電の電気的特性は同じ条件で試験され、充放電特性図を図7Cに示す。本実施形態の残りの部分は第1実施形態と同様であるため省略する。
【0046】
第4実施形態
【0047】
第1実施形態のマンガン源に対する鉄源の比率を、最終生成物である電池複合材料におけるMnとFeの比率が9:1となるように調整した。言い換えれば、電池複合材料はLiMn0.9Fe0.1POとなるように調製される。充放電の電気的特性は同じ条件で試験され、充放電特性図を図7Dに示す。本実施形態の残りの部分は第1実施形態と同様であるため省略する。
【0048】
第5実施形態
【0049】
第1実施形態の工程S200又は工程S400において、V、TiO又はMgO等の金属酸化物を反応に添加し、リチウム二鉄リン酸マンガンナノ共結晶オリビンを生成した。本実施形態の残りの部分は第1実施形態と同様であるため省略する。
【0050】
第6実施形態
【0051】
まず、2445.6gのFe(C・5HOと、3947.1gのリン酸(純度>85%)と、5.0Lの脱イオン水と、マンガン源を供給し、第1金属源又は第2金属源としてFe(C・5Hと脱イオン水を混合し、リン酸を加えて撹拌し反応させた。次に、第2金属源又は主要金属源としてマンガン源を加え少なくとも8時間待ち反応を全て進行させて前駆体溶液を生成した。そして、空気雰囲気又は保護雰囲気(例えば、窒素雰囲気又はアルゴン雰囲気)下で、400℃より高温で前駆体溶液を焼成し前記第1前駆体又は前記第2前駆体を生成した。
【0052】
次に、例えば18モルのリチウム二鉄リン酸マンガンを調製した。上記工程において得た2059.6gの第1前駆体又は第2前駆体と、755〜792.7gの水酸化リチウム(すなわちのLiOH)を10Lの純水に加え反応させ、続いて適切な炭素源を加えた。500℃より高温で反応生成物に対し焼成を行った。焼成された化合物は、X線回折によりリチウム二鉄リン酸マンガンLiMn0.73Fe0.27POであることが確認された。
【0053】
第7実施形態
【0054】
まず、1789gのFe(Cと、3947.1gのリン酸(純度>85%)と、5.0Lの脱イオン水と、マンガン源を供給し、第1金属源又は第2金属源としてFe(Cと脱イオン水を混合し、リン酸を加えて撹拌し反応させた。次に、第2金属源又は主要金属源としてマンガン源を加え少なくとも8時間待ち反応を全て進行させて前駆体溶液を生成した。そして、空気雰囲気又は保護雰囲気(例えば、窒素雰囲気又はアルゴン雰囲気)下で、400℃より高温で前駆体溶液を焼成し前記第1前駆体又は前記第2前駆体を生成した。
【0055】
次に、例えば18モルのリチウム二鉄リン酸マンガンを調製した。上記工程において得た2059.6gの第1前駆体又は第2前駆体と、755〜792.7gの水酸化リチウム(すなわちのLiOH)を10Lの純水に加え反応させ、続いて適切な炭素源を加えた。500℃より高温で反応生成物に対し焼成を行った。焼成された化合物は、X線回折によりリチウム二鉄リン酸マンガンLiMn0.73Fe0.27POであることが確認された。
【0056】
第8実施形態
【0057】
まず、821.3gのFeと、3947.1gのリン酸(純度>85%)と、5.0Lの脱イオン水と、マンガン源を供給し、第1金属源又は第2金属源としてFeと、脱イオン水を混合し、リン酸を加えて撹拌し反応させた。次に、第2金属源又は主要金属源として、マンガン源を加え少なくとも8時間待ち反応を全て進行させて前駆体溶液を生成した。そして、空気雰囲気又は保護雰囲気(例えば、窒素雰囲気又はアルゴン雰囲気)下で、400℃より高温で前駆体溶液を焼成し前記第1前駆体又は前記第2前駆体を生成した。




【0058】
次に、例えば18モルのリチウム二鉄リン酸マンガンを調製した。上記工程において得た2059.6gの第1前駆体又は第2前駆体と、755〜792.7gの水酸化リチウム(すなわちのLiOH)を10Lの純水に加え反応させ、続いて適切な炭素源を加えた。500℃より高温で反応生成物に対し焼成を行った。焼成された化合物は、X線回折によりリチウム二鉄リン酸マンガンLiMn0.73Fe0.27POであることが確認された。
【0059】
図8は、本発明の電池複合材料の前駆体の製造方法により製造された前駆体のTEM分析図を概略的に示す。図9は、本発明の電池複合材料の前駆体の製造方法により製造された前駆体のEDS(エネルギー分散分光法)分析図を概略的に示す。図8及び図9に示すように、TEM分析図及びEDS分析図において、本発明の電池複合材料の前駆体の製造方法によって調製された前駆体は、リンと、鉄と、マンガン(すなわち、P、Fe、Mn)を含むことが示唆されている。前駆体の化学式は(MnFe1−xと一致することが確かめられた。加えて、MnのFeに対する比率をEDSを用いてによって分析した。検証結果は前駆体の化学式が(Mn0.7Fe0.3であることを示した。
【0060】
図10A及び図10Bは、本発明の電池複合材料の製造方法における追加工程により、第1前駆体を用いて製造された電池複合材料のTEM分析図を概略的に示す。図10A及び図10Bに示すように、上記実施形態と本発明の電池複合材料の製造方法の追加工程により第1前駆体を用い製造されたリチウム二鉄リン酸マンガンをTEMを用いて分析し、150000xと300000xの倍率の下で撮影されたTEM分析図を図10A及び図10Bにそれぞれ示す。
【0061】
図11A及び図11Bは、本発明の電池複合材料の製造方法における追加工程により、第2前駆体を用いて製造された電池複合材料のTEM分析図を概略的に示す。図11A及び図11Bに示すように、上記実施形態と本発明の電池複合材料の製造方法の追加工程により第2前駆体を用い製造されたリチウム二鉄リン酸マンガンをTEMを用いて分析し、150000xと300000xの倍率の下で撮影されたTEM分析図を図11A及び図11Bにそれぞれ示す。
【0062】
本発明は、複数回の反応により生成された前駆体を用い製造される電池複合材料の製造方法において、酸化還元反応の回数を減らし、製造プロセスの安定性を向上させ、製造プロセスの困難性を低減するための電池複合材料及びその前駆体の製造方法を提供する。さらに、第1金属及び第2金属を含む固溶体を電池複合材料を最終的に製造するための前駆体として調製することにより、電池複合材料及び電池は二つの安定充放電のプラットフォームを有し、安定性や電気的性能を向上させることの優位性が達成される。
【0063】
以上、本発明について、現在最も実用的且つ好ましい実施形態と考えられるものに関して説明してきたが、本発明は、開示された実施形態に限定される必要はない。逆に、様々な改良及び類似の構成を添付の特許請求の範囲及び趣旨に含むことが意図されており、全ての改良及び類似の構成を包含するよう、最も広い解釈に従うべきである。
図1
図2
図3
図4
図5A
図5B
図6A
図6B
図7A
図7B
図7C
図7D
図8
図9
図10A
図10B
図11A
図11B