(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、圧電素子として水晶を用いた力測定装置では、機械加工中に生じた熱により水晶が変形してしまい、その結果、圧電素子の出力における真値に対するノイズ成分となってしまう。そして、特許文献1に記載の力測定装置では、このようなノイズ対策が考慮されていない。
そこで、本発明の目的は、温度の変動による影響を受けにくい力検出装置、ロボットおよび電子部品搬送装置を提供することにある。
【課題を解決するための手段】
【0005】
このような目的は、下記の本発明により達成される。
(適用例1)
本発明に係わる力検出装置は、第1基部と、
第2基部と、
前記第1基部と前記第2基部とによって挟持され、前記第1基部と前記第2基部とに加わる外力を検出する複数の圧電素子と、を備える力検出装置であって、
前記第1基部は測定対象に固定される第1取付面を含み、前記第2基部は測定対象に固定される第2取付面を含み、
前記各圧電素子は、Yカット水晶板で構成された第1基板と、Yカット水晶板で構成された第2基板とを有し、前記第1基板と前記第2基板とが平行に積層され、前記第1基板と前記第2基板との積層方向において、前記第1基板のx軸と前記第2基板のx軸とが交差し、前記第1基板のz軸と前記第2基板のz軸とが交差しており、
前記圧電素子は、前記第1取付面または前記第2取付面の法線と前記積層方向とが直交となるように設置されていることを特徴とする。
これにより、力検出装置は、温度の変動による影響を受けにくい装置となり、よって、外力を正確に検出することができる。
(適用例2)
本発明に係わる力検出装置では、前記第1基板および前記第2基板の面内の直交する2方向と、前記2方向と直交する1方向の計3方向の外力を検出するのが好ましい。
これにより、3次元での外力を確実に検出することができる。
【0006】
(適用例3)
本発明に係わる力検出装置では、前記第1基部および前記第2基部のうちの少なくとも一方の基部は、板状をなす部材で構成され、前記部材の面内の直交する2方向をA軸、B軸とし、前記A軸および前記B軸と直交する方向をC軸とし、
前記各圧電素子の前記A軸に対する傾斜角度をεとし、
前記各圧電素子の前記第1基板のx軸と前記部材とのなす角度をηとし、
前記2つの圧電素子のうちの一方の圧電素子の前記第1基板のx軸方向に加わる力をfx
1−1、前記第2基板のx軸方向に加わる力をfx
1−2とし、他方の圧電素子の前記第1基板のx軸方向に加わる力をfx
2−1、前記第2基板のx軸方向に加わる力をfx
2−2、としたとき、
前記A軸方向の力F
A、前記B軸方向の力F
Bおよび前記C軸方向の力F
Cは、それぞれ、下記式(1)、(2)および(3)で表されるのが好ましい。
F
A=fx
1−1・cosη・cosε−fx
1−2・sinη・cosε
−fx
2−1・cosη・cosε+fx
2−2・sinη・cosε・・・(1)
F
B=−fx
1−1・cosη・sinε+fx
1−2・sinη・sinε
−fx
2−1・cosη・sinε+fx
2−2・sinη・sinε・・・(2)
F
C=−fx
1−1・sinη−fx
1−2・cosη−fx
2−1・sinη
−fx
2−2・cosη・・・(3)
これにより、温度の変動による影響を受けにくい状態で、3次元での外力を確実に検出することができる。
【0007】
(適用例4)
本発明に係わる力検出装置では、前記圧電素子の周りに設けられて前記圧電素子に与圧を加える与圧ネジを複数備え、
前記与圧ネジの与圧方向が、前記第1基板および前記第2基板の積層方向に平行な方向であるのが好ましい。
これにより、圧電素子に剪断力が作用したとき、圧電素子を構成する基板同士の間での摩擦力が確実に生じ、よって、電荷を確実に検出することができる。
【0008】
(適用例5)
本発明に係わる力検出装置では、前記複数の圧電素子には、互いに同一平面上に配置されておらず、互いに平行に配置されていない前記圧電素子が含まれるのが好ましい。
これにより、外力が付与された際に前記各圧電素子が電荷を発生し易くなる。
(適用例6)
本発明に係わる力検出装置では、前記第1基部および前記第2基部のうちの少なくとも一方の基部は、板状をなし、
前記各圧電素子は、前記第1基板と前記第2基板とが前記一方の基部に対して垂直に配置されているのが好ましい。
これにより、外力が付与された際に前記各圧電素子が電荷を発生し易くなる。
【0009】
(適用例7)
本発明に係わる力検出装置では、前記第1基部および前記第2基部のうちの少なくとも一方の基部は、板状をなし、
4つ以上の前記圧電素子が、前記取付面からみて前記一方の基部の中心部から離間した位置にそれぞれ配置されているのが好ましい。
これにより、外力を偏りなく検出することができる。
【0010】
(適用例8)
本発明に係わる力検出装置では、前記圧電素子は、Xカット水晶板で構成された第3基板を有するのが好ましい。
これにより、水晶板を用いるという簡単な構成で、3次元での外力を確実に検出することができる。
【0011】
(適用例9)
本発明に係わるロボットは、アームと、
前記アームに設けられたエンドエフェクタと、
前記アームと前記エンドエフェクタの間に設けられ、前記エンドエフェクタに加えられる外力を検出する力検出装置とを備え、
前記力検出装置は、測定対象に固定される第1取付面を含む第1基部と、測定対象に固定される第2取付面を含む第2基部と、前記第1基部と前記第2基部とによって挟持されて前記第1基部と前記第2基部とに加わる外力を検出する圧電素子と、を備え、
前記圧電素子は、Yカット水晶板で構成された第1基板と、Yカット水晶板で構成された第2基板とを有し、前記第1基板と前記第2基板とが平行に積層され、前記第1基板と前記第2基板との積層方向において、前記第1基板のx軸と前記第2基板のx軸とが交差し、前記第1基板のz軸と前記第2基板のz軸とが交差しており、
前記圧電素子は、前記第1取付面または前記第2取付面の法線方向と前記積層方向とが直交となるように設置されていることを特徴とする。
これにより、ロボットは、温度の変動による影響を受けにくいロボットとなり、よって、外力が正確に検出され、エンドエフェクターによる作業を適正に行なうことができる。
【0012】
(適用例10)
本発明に係わる電子部品搬送装置は、電子部品を把持する把持部と、
前記把持部に加えられる外力を検出する力検出装置とを備え、
前記力検出装置は、測定対象に固定できる第1取付面を有する第1基部と、測定対象に固定できる第2取付面を有する第2基部と、前記第1基部と前記第2基部とによって挟持方向に挟持され、前記第1基部と前記第2基部とに加わる外力を検出する圧電素子と、を備え、
前記圧電素子は、Yカット水晶板で構成された第1基板と、Yカット水晶板で構成された第2基板とを有し、前記第1基板と前記第2基板とが平行に積層され、前記第1基板と前記第2基板との積層方向において、前記第1基板のx軸と前記第2基板のx軸とが交差し、前記第1基板のz軸と前記第2基板のz軸とが交差しており、
前記圧電素子は、前記第1取付面または前記第2取付面の法線方向と前記積層方向とが直交となるように設置されていることを特徴とする。
これにより、電子部品搬送装置は、温度の変動による影響を受けにくい装置となり、よって、外力が正確に検出され、電子部品の搬送を適正に行なうことができる。
【0013】
(適用例11)
本発明に係わる力検出装置は、第1基部と、
第2基部と、
前記第1基部と前記第2基部とによって挟持され、前記第1基部と前記第2基部とに加わる外力の成分を検出する圧電素子と、
を備える力検出装置であって、
前記第1基部は測定対象に固定される第1取付面を含み、前記第2基部は測定対象に固定される第2取付面を含み、
前記圧電素子は、前記第1取付面または前記第2取付面の法線方向と直交する積層方向を有する第1基板と、第2基板とを有し、
前記第1基板による、前記法線方向と同じ第1検出方向のせん断力の検出と、
前記第2基板による、前記第1検出方向と交差する第2検出方向のせん断力の検出と、から前記第1基部と前記第2基部に加わる外力を検出することを特徴とする。
これにより、力検出装置は、温度の変動による影響を受けにくい装置となり、よって、外力を正確に検出することができる。
【0014】
(適用例12)
本発明に係わる力検出装置では、前記第1基板、前記第2基板は、Yカット水晶板であり、
前記第1基板の水晶結晶のx軸と前記第2基板の水晶結晶のx軸は、直交しているのが好ましい。
これにより、水晶板を用いるという簡単な構成で、外力を確実に検出することができる。
【0015】
(適用例13)
本発明に係わる力検出装置では、前記第1の挟持方向に直交する第1平面と、
前記第2の挟持方向に直交する第2平面との交線に平行な方向をC軸とした直交座標軸A軸、B軸、C軸を座標軸とし、
前記第1基部と前記第2基部とに加わる外力を、3軸方向の外力の成分として検出するのが好ましい。
これにより、3次元での外力を確実に検出することができる。
【0016】
(適用例14)
本発明に係わる力検出装置では、前記A軸と前記第1平面とのなす角度を+εとし、
前記A軸と前記第2平面とのなす角度を−εとし、
前記第1圧電素子の第1検出方向と、前記A軸と前記B軸を含む平面とのなす角度をηとし、
前記第2圧電素子の第3検出方向と、前記A軸と前記B軸を含む平面とのなす角度を−ηとし、
前記第1の出力をfx
1−1、前記第2の出力をfx
1−2、前記第3の出力をfx
2−1、前記第4の出力をfx
2−2、としたとき、
前記A軸方向の力成分F
A、前記B軸方向の力成分F
Bおよび前記C軸方向の力成分F
Cは、それぞれ、下記式(1)、(2)および(3)で表されるのが好ましい。
F
A=fx
1−1・cosη・cosε−fx
1−2・sinη・cosε
−fx
2−1・cosη・cosε+fx
2−2・sinη・cosε・・・(1)
F
B=−fx
1−1・cosη・sinε+fx
1−2・sinη・sinε
−fx
2−1・cosη・sinε+fx
2−2・sinη・sinε・・・(2)
F
C=−fx
1−1・sinη−fx
1−2・cosη−fx
2−1・sinη
−fx
2−2・cosη・・・(3)
これにより、温度の変動による影響を受けにくい状態で、3次元での外力を確実に検出することができる。
【0017】
(適用例15)
本発明に係わる力検出装置では、前記圧電素子の周りに設けられて前記圧電素子に与圧を加える与圧ネジを複数備え、
前
記与圧ネジの与圧方向が、前記第1基板および前記第2基板の積層方向に平行な方向であるのが好ましい。
これにより、圧電素子に剪断力が作用したとき、圧電素子を構成する基板同士の間での摩擦力が確実に生じ、よって、電荷を確実に検出することができる。
【0018】
(適用例16)
本発明に係わる力検出装置は、第1基部と、
第2基部と、
前記第1基部と前記第2基部とによって挟持され、前記第1基部と前記第2基部とに加わる外力を検出する複数の圧電素子と、を備える力検出装置であって、
前記第1基部は測定対象に固定される第1取付面を含み、前記第2基部は測定対象に固定される第2取付面を含み、
前記圧電素子は、前記第1取付面または前記第2取付面の法線と
、前記圧電素子の第1基板と第2基板との積層方向と、が直交となるように設置され、
総重量が1kgよりも軽いことを特徴とする。
これにより、力検出装置の重量を、1kgよりも軽くすることにより、力検出装置の重量を取り付けた手首にかかる負荷を低減させることができ、手首を駆動するアクチュエータの容量を小さくできる為、手首を小型に設計することができる。
【0019】
(適用例17)
本発明に係わる力検出装置は、第1基部と、
第2基部と、
前記第1基部と前記第2基部とによって挟持され、前記第1基部と前記第2基部とに加わる外力を検出する複数の圧電素子と、を備える力検出装置であって、
前記第1基部は測定対象に固定される第1取付面を含み、前記第2基部は測定対象に固定される第2取付面を含み、
前記圧電素子は、前記第1取付面または前記第2取付面の法線と
、前記圧電素子の第1基板と第2基板との積層方向と、が直交となるように設置され、
前記各圧電素子が出力する電荷を電圧に変換する変換回路と、前記電圧から外力を演算する演算回路を前記第1基部と前記第2基部との間の空間に収納していることを特徴とする。
これにより、演算回路を別置きではなく、内蔵化することによって、配線ケーブル等の引き回しが不要となる。
【0020】
(適用例18)
本発明に係わる力検出装置では、前記変換回路または前記演算回路には、半導体スイッチまたはMEMSスイッチの少なくともいずれかが含まれるのが好ましい。
これにより、スイッチ素子を従来のメカスイッチから半導体スイッチ、MEMSスイッチにすると軽量化できる。
【0021】
(適用例19)
本発明に係わる力検出装置では、前記第1基部と前記第2基部とが円形または角丸正方形の断面形状を有する収納空間を形成し、前記圧電素子のそれぞれと前記取付面の中心との距離が等しいのが好ましい。
これにより、基部の断面形状を円形、または角丸正方形にして、圧電素子を円周状に配置すると、応力が均一に分散できるので、基部の厚みを薄くすることができる。
【0022】
(適用例20)
本発明に係わる
ロボットは、外力を検出する複数の圧電素子を有する力検出装置とロボットアームを備えたロボットであって、前記力検出装置の重量は、前記ロボットアームが搬送できる最大
重量の20%よりも軽いことを特徴とする。
これにより、力検出装置の重量は、前記ロボットアームが搬送できる最大能力の20%よりも軽くすることにより、力検出装
置を取り付けたロボットアームの制御を容易にすることができる。
【発明を実施するための形態】
【0024】
以下、本発明の力検出装置、ロボットおよび電子部品搬送装置を添付図面に示す好適な実施形態に基づいて詳細に説明する。
<第1実施形態>
図1は、本発明に係る力検出装置の第1実施形態を示す断面図である。
図2は、
図1に示す力検出装置の平面図である。
図3は、
図1に示す力検出装置を概略的に示す回路図である。
図4は、
図1に示す力検出装置の電荷出力素子を概略的に示す断面図である。
図5は、
図1に示す力検出装置の電荷出力素子で検出される力の作用状態を示す概略図である。
図6は、
図5中の矢印A方向から見た図である。
【0025】
なお、以下では、説明の都合上、
図1中の上側を「上」または「上方」、下側を「下」または「下方」と言う。
図1、
図2に示す力検出装置1は、外力(モーメントを含む)を検出する機能、すなわち、互いに直交する3軸(α(A)軸、β(B)軸、γ(C)軸)に沿って加えられた外力を検出する機能を有する。この直交座標軸であるα軸、β軸、γ軸は、後述する積層方向LDと平行な平面内にα軸とβ軸が含まれる直交座標軸である。
【0026】
力検出装置1は、ベースプレートとして機能する第1基部2と、第1基部2から所定の間隔を隔てて配置され、第1基部2に対向するカバープレートして機能する第2基部3と、第1基部2と第2基部3との間に収納された(設けられた)4枚のアナログ回路基板4と、第1基部2と第2基部3との間に収納され(設けられ)、アナログ回路基板4と電気的に接続された1枚のデジタル回路基板5と、アナログ回路基板4に搭載され、加えられた外力に応じて信号を出力するセンサ素子(圧電素子)としての電荷出力素子10および電荷出力素子10を収納するパッケージ60を有する2つのセンサーデバイス6と、固定部材としての8本の与圧ボルト(与圧ネジ)71とを備えている。本実施形態では、2つのセンサーデバイス6のうち、図中の右側に位置する一方のセンサーデバイス6を「センサーデバイス6A」と言い、他方のセンサーデバイス6を「センサーデバイス6B」と言うことがある。
第1基部2は、外形が板状をなし、その平面形状は、角部が丸みを帯びた四角形をなす。この第1基部2は、底板23と、底板23から上方に向かって立設した壁部24とを有している。壁部24は、「L」字状をなし、外方に臨む2つの面にそれぞれ凸部26が突出形成されている。各凸部26の頂面261は、底板23に対して垂直な平面ある。
【0027】
本実施形態では、底板23の下面は、力検出装置1が例えばロボットに固定されて使用されるときに、当該ロボット(測定対象)に対する取付面(第1取付面)231となる。
第2基部3も、外形が板状をなし、その平面形状は、第1基部2の平面形状が好ましい。この第2基部3は、天板32と、天板32の縁部に形成され、当該縁部から下方に向かって突出した4枚の側壁33とを有している。
【0028】
本実施形態では、天板32の上面は、力検出装置1が例えばロボットに固定されて使用されるときに、当該ロボットに装着されるエンドエフェクター(測定対象)に対する取付面(第2取付面)321となる。なお、この取付面321と第1基部2の取付面231とは、外力が付与していない自然状態では平行となっている。
そして、第1基部2の2つの凸部26のうちの一方の凸部26の頂面261と第2基部3の1枚の側壁33との間で、センサーデバイス6Aが挟持されている。すなわち、センサーデバイス6Aの電荷出力素子10は、パッケージ60を介して、第1基部2の一方の凸部26の頂面261と第2基部3の1枚の側壁33とで挟持され、与圧されている。以下、この挟持されている方向を「挟持方向SD」と言う。
【0029】
なお、第1基部2と第2基部3とは、前述したようにアナログ回路基板4やデジタル回路基板5を収納しており、収納空間が形成されている。この収納空間は、円形または角丸正方形の断面形状を有する。そして、各センサーデバイス6のそれぞれと前記取付面321(または取付面231)の中心との距離が等しい。このような構成により、
センサーデバイス6を円周状に配置すると、応力が均一に分散できるので、第1基部2や第2基部3の厚みを薄くすることができる。
【0030】
図1、
図4に示すように、このセンサーデバイス6Aの電荷出力素子10の姿勢は、当該電荷出力素子10を構成する各層が第1基部2に対して垂直である、すなわち、当該電荷出力素子10を構成する各層が積層された積層方向LDと、挟持方向SDとが第1基部2に対して平行となっている。
図5に示すように、この電荷出力素子10は、第1のセンサー12のx軸および第3のセンサー14のz軸がα軸に対して傾斜角度εで傾斜している。なお、第1のセンサー12および第3のセンサー14については後述する。
【0031】
また、第1基部2の他方の凸部26の頂面261と1枚の第2基部3の側壁33との間で、センサーデバイス6Bが挟持されている。すなわち、センサーデバイス6Bの電荷出力素子10は、パッケージ60を介して、第1基部2の他方の凸部26の頂面261と第2基部3の1枚の側壁33とで挟持され、与圧されている。このセンサーデバイス6Bの電荷出力素子10の姿勢も、当該電荷出力素子10を構成する各層が第1基部2に対して垂直である、すなわち、積層方向LDと挟持方向SDとが平行となっている。
図5に示すように、この電荷出力素子10も、第1のセンサー12のx軸および第3のセンサー14のz軸がα軸に対して傾斜角度εで傾斜している。
以上のように、本実施形態では、α軸は、センサーデバイス6Aの電荷出力素子10とセンサーデバイス6Bの電荷出力素子10とのなす角を二等分する二等分線となっている。従って、センサーデバイス6Aとセンサーデバイス6Bとは、互いに同一平面上に配置されておらず、互いに平行に配置されていない。
【0032】
なお、
図6に示すように、各電荷出力素子10は、第1のセンサー12のx軸と第1基部2の底板23とのなす角度をηとしたとき、角度ηが0°≦η<90°を満足する程度まで傾くのが許容される。
また、第1基部2と第2基部3とのいずれを力が加わる側の基板としてもよいが、本実施形態では、第2基部3を力が加わる側の基板として説明する。
【0033】
図3に示すように、センサーデバイス6Aに接続されたアナログ回路基板4は、センサーデバイス6Aの電荷出力素子10から出力された電荷Qy1を電圧Vy1に変換する変換出力回路90aと、電荷出力素子10から出力された電荷Qz1を電圧Vz1に変換する変換出力回路90bと、電荷出力素子10から出力された電荷Qx1を電圧Vx1に変換する変換出力回路90cとを備えている。センサーデバイス6Bに接続されたアナログ回路基板4は、センサーデバイス6Aの電荷出力素子10から出力された電荷Qy2を電圧Vy2に変換する変換出力回路90aと、電荷出力素子10から出力された電荷Qz2を電圧Vz2に変換する変換出力回路90bと、電荷出力素子10から出力された電荷Qx3を電圧Vx3に変換する変換出力回路90cとを備えている。
また、デジタル回路基板5は、加えられた外力を検出する外力検出回路40を備えている。
各アナログ回路基板4およびデジタル回路基板5は、それぞれ、第1基部2の壁部24の異なる位置に支持されており、第1基部2と第2基部3との間で保護されている。
【0034】
なお、第1基部2、第2基部3、アナログ回路基板4の各素子および各配線以外の部位、デジタル回路基板5の各素子および各配線以外の部位の構成材料としては、それぞれ、特に限定されず、例えば、各種の樹脂材料、各種の金属材料等を用いることができる。
また、第1基部2、第2基部3は、それぞれ、外形が板状をなす部材で構成されているが、これに限定されず、例えば、一方の基部が板状をなす部材で構成され、他方の基部がブロック状をなす部材で構成されていてもよい。
【0035】
<電荷出力素子>
前述したように、力検出装置1は、互いに直交するα軸、β軸、γ軸に沿って加えられた外力を検出する機能を有する。α軸とβ軸とは、第1基部2および第2基部3の平面内の直交する2方向に沿った軸であり、γ軸は、α軸とβ軸と直交する1方向に沿った軸、すなわち、第1基部2および第2基部3の厚さ方向に沿った軸である。そして、力検出装置1には、この外力を検出するものとして、電荷出力素子10を有するセンサーデバイス6A、6Bが内蔵されている。各電荷出力素子10は、同じ構成であるため、1つの電荷出力素子10について代表的説明する。
【0036】
図4に示すように、電荷出力素子10は、電荷Qx1またはQx2(代表的に「電荷Qx」と言う)と、電荷Qy1またはQy2(代表的に「電荷Qy」と言う)と、電荷Qz1またはQz2(代表的に「電荷Qz」と言う)とを出力することができる。そして、出力された電荷に基づいて、α軸、β軸、γ軸に沿って加えられた(受けた)外力が検出される。
【0037】
なお、電荷出力素子10は、電荷Qzを出力することができるが、後述するように、力検出装置1では、各外力を求める際、電荷Qzを用いない。出力された電荷Qzは、例えば、与圧ボルト(与圧ネジ)71による与圧の調整に用いられる。
ここで、外力検出時に電荷Qzを用いない理由として、力検出装置1を、エンドエフェクターが装着されたアームを有する産業用ロボットに用いた場合を例に挙げて説明する。この場合、アームやエンドエフェクターに設けられたモーター等の発熱源からの熱伝達により、第1基部2または第2基部3が加熱されて熱膨張し、変形する。この変形により、電荷出力素子10に対する与圧が所定の値から変化してしまう。この電荷出力素子10に対する与圧変化が、力検出装置1の温度変化に起因するノイズ成分として、電荷Qzに著しい影響を及ぼす程度に含まれてしまうからである。
電荷出力素子10の形状は、特に限定されないが、本実施形態では、積層方向LDから見て、四角形をなしている。なお、電荷出力素子10の他の外形形状としては、例えば、五角形等の他の多角形、円形、楕円形等が挙げられる。
【0038】
図4に示すように、電荷出力素子10は、グランド(基準電位点)に接地された4つのグランド電極層11と、外力(せん断力)に応じて電荷Qxを出力する第1のセンサー12と、外力(圧縮/引張力)に応じて電荷Qzを出力する第2のセンサー13と、外力(せん断力)に応じて電荷Qyを出力する第3のセンサー14とを有し、グランド電極層11と各センサー12、13、14は交互に平行に積層されている。この積層方向LDは、取付面321の法線NL
2(または取付面231の法線NL
1)と直交する方向となっている。
【0039】
図示の構成では、
図4中の左側から、第1のセンサー12、第2のセンサー13、第3のセンサー14の順で積層されているが、本発明はこれに限られない。センサー12、13、14の積層順は任意である。
グランド電極層11は、グランド(基準電位点)に接地された電極である。グランド電極層11を構成する材料は、特に限定されないが、例えば、金、チタニウム、アルミニウム、銅、鉄またはこれらを含む合金が好ましい。これらの中でも特に、鉄合金であるステンレスを用いるのが好ましい。ステンレスにより構成されたグランド電極層11は、優れた耐久性および耐食性を有する。
【0040】
第1のセンサー12は、積層方向LD(第1の挟持方向)と直交する、すなわち、法線NL
2(法線NL
1)の方向と同じ方向の第1検出方向の外力(せん断力)に応じて電荷Qxを出力する機能を有する。すなわち、第1のセンサー12は、外力に応じて正電荷または負電荷を出力するよう構成されている。
第1のセンサー12は、第1の圧電体層(第1検出板(第1基板))121と、第1の圧電体層121と対向して設けられた第2の圧電体層(第1検出板(第1基板))123と、第1の圧電体層121と第2の圧電体層123との間に設けられた出力電極層122を有する。
【0041】
第1の圧電体層121は、Yカット水晶板で構成され、互いに直交する結晶軸であるx軸、y軸、z軸を有する。y軸は、第1の圧電体層121の厚さ方向に沿った軸であり、x軸は、
図4中の紙面奥行き方向に沿った軸であり、z軸は、
図4中の上下方向に沿った軸である。
図4に示す構成では、x軸については、
図4中の紙面奥側を正方向とし、その反対側を負方向として説明する。y軸については、
図4中の左側を正方向とし、その反対側を負方向として説明する。z軸については、
図4中の上側を正方向とし、その反対側を負方向として説明する。
【0042】
水晶により構成された第1の圧電体層121は、広いダイナミックレンジ、高い剛性、高い固有振動数、高い対荷重性等の優れた特性を有する。また、Yカット水晶板は、その面方向に沿った外力(せん断力)に対して電荷を生ずる。
そして、第1の圧電体層121の表面に対し、x軸の正方向に沿った外(せん断力)力が加えられた場合、圧電効果により、第1の圧電体層121内に電荷が誘起される。その結果、第1の圧電体層121の出力電極層122側表面近傍には正電荷が集まり、第1の圧電体層121のグランド電極層11側表面近傍には負電荷が集まる。同様に、第1の圧電体層121の表面に対し、x軸の負方向に沿った外力が加えられた場合、第1の圧電体層121の出力電極層122側表面近傍には負電荷が集まり、第1の圧電体層121のグランド電極層11側表面近傍には正電荷が集まる。
【0043】
第2の圧電体層123も、Yカット水晶板で構成され、互いに直交する結晶軸であるx軸、y軸、z軸を有する。y軸は、第2の圧電体層123の厚さ方向に沿った軸であり、x軸は、
図4中の紙面奥行き方向に沿った軸であり、z軸は、
図4中の上下方向に沿った軸である。
図4に示す構成では、x軸については、
図4中の紙面手前側を正方向とし、その反対側を負方向として説明する。y軸については、
図4中の右側を正方向とし、その反対側を負方向とする。z軸については、
図4中の上側を正方向とし、その反対側を負方向とする。
【0044】
水晶により構成された第2の圧電体層123も第1の圧電体層121と同様に、広いダイナミックレンジ、高い剛性、高い固有振動数、高い対荷重性等の優れた特性を有し、Yカット水晶板であることにより、その面方向に沿った外力(せん断力)に対して電荷を生ずる。
そして、第2の圧電体層123の表面に対し、x軸の正方向に沿った外(せん断力)力が加えられた場合、圧電効果により、第2の圧電体層123内に電荷が誘起される。その結果、第2の圧電体層123の出力電極層122側表面近傍には正電荷が集まり、第2の圧電体層123のグランド電極層11側表面近傍には負電荷が集まる。同様に、第2の圧電体層123の表面に対し、x軸の負方向に沿った外力が加えられた場合、第2の圧電体層123の出力電極層122側表面近傍には負電荷が集まり、第2の圧電体層123のグランド電極層11側表面近傍には正電荷が集まる。
【0045】
また、第1のセンサー12が第1の圧電体層121と第2の圧電体層123とを有する構成となっていることは、第1の圧電体層121および第2の圧電体層123のうちの一方のみと出力電極層122とで構成されている場合と比較して、出力電極層122近傍に集まる正電荷または負電荷を増加させることができる。その結果、出力電極層122から出力される電荷Qxを増加させることができる。
【0046】
出力電極層122は、第1の圧電体層121内および第2の圧電体層123内に生じた正電荷または負電荷を電荷Qxとして出力する機能を有する。前述のように、第1の圧電体層121の表面または第2の圧電体層123の表面にx軸の正方向に沿った外力が加えられた場合、出力電極層122近傍には、正電荷が集まる。その結果、出力電極層122からは、正の電荷Qxが出力される。一方、第1の圧電体層121の表面または第2の圧電体層123の表面にx軸の負方向に沿った外力が加えられた場合、出力電極層122近傍には、負電荷が集まる。その結果、出力電極層122からは、負の電荷Qxが出力される。
【0047】
また、出力電極層122の大きさは、第1の圧電体層121および第2の圧電体層123の大きさ以上であることが好ましい。出力電極層122が、第1の圧電体層121または第2の圧電体層123よりも小さい場合、第1の圧電体層121または第2の圧電体層123の一部は出力電極層122と接しない。そのため、第1の圧電体層121または第2の圧電体層123に生じた電荷の一部を出力電極層122から出力できない場合がある。その結果、出力電極層122から出力される電荷Qxが減少してしまう。なお、後述する出力電極層132、142についても同様である。
【0048】
第2のセンサー13は、外力(圧縮/引張力)に応じて電荷Qzを出力する機能を有する。すなわち、第2のセンサー13は、圧縮力に応じて正電荷を出力し、引張力に応じて負電荷を出力するよう構成されている。
第2のセンサー13は、第3の圧電体層(第3基板)131と、第3の圧電体層131と対向して設けられた第4の圧電体層(第3基板)133と、第3の圧電体層131と第4の圧電体層133との間に設けられた出力電極層132を有する。
【0049】
第3の圧電体層131は、Xカット水晶板で構成され、互いに直交するx軸、y軸、z軸を有する。x軸は、第3の圧電体層131の厚さ方向に沿った軸であり、y軸は、
図4中の上下方向に沿った軸であり、z軸は、
図4中の紙面奥行き方向に沿った軸である。
そして、第3の圧電体層131の表面に対し、x軸に平行な圧縮力が加えられた場合、圧電効果により、第3の圧電体層131内に電荷が誘起される。その結果、第3の圧電体層131の出力電極層132側表面近傍には正電荷が集まり、第3の圧電体層131のグランド電極層11側表面近傍には負電荷が集まる。同様に、第3の圧電体層131の表面に対し、x軸に平行な引張力が加えられた場合、第3の圧電体層131の出力電極層132側表面近傍には負電荷が集まり、第3の圧電体層131のグランド電極層11側表面近傍には正電荷が集まる。
【0050】
第4の圧電体層133も、Xカット水晶板で構成され、互いに直交するx軸、y軸、z軸を有する。x軸は、第4の圧電体層133の厚さ方向に沿った軸であり、y軸は、
図4中の上下方向に沿った軸であり、z軸は、
図4中の紙面奥行き方向に沿った軸である。
そして、第4の圧電体層133の表面に対し、x軸に平行な圧縮力が加えられた場合、圧電効果により、第4の圧電体層133内に電荷が誘起される。その結果、第4の圧電体層133の出力電極層132側表面近傍には正電荷が集まり、第4の圧電体層133のグランド電極層11側表面近傍には負電荷が集まる。同様に、第4の圧電体層133の表面に対し、x軸に平行な引張力が加えられた場合、第4の圧電体層133の出力電極層132側表面近傍には負電荷が集まり、第4の圧電体層133のグランド電極層11側表面近傍には正電荷が集まる。
【0051】
出力電極層132は、第3の圧電体層131内および第4の圧電体層133内に生じた正電荷または負電荷を電荷Qzとして出力する機能を有する。前述のように、第3の圧電体層131の表面または第4の圧電体層133の表面にx軸に平行な圧縮力が加えられた場合、出力電極層132近傍には、正電荷が集まる。その結果、出力電極層132からは、正の電荷Qzが出力される。一方、第3の圧電体層131の表面または第4の圧電体層133の表面にx軸に平行な引張力が加えられた場合、出力電極層132近傍には、負電荷が集まる。その結果、出力電極層132からは、負の電荷Qzが出力される。
【0052】
第3のセンサー14は、積層方向LD(第2の挟持方向)と直交し、第1のセンサー12が電荷Qxを出力する際に作用する外力の第1検出方向と交差する第2検出方向の外力(せん断力)に応じて電荷Qxを出力する機能を有する。すなわち、第3のセンサー14は、外力に応じて正電荷または負電荷を出力するよう構成されている。
なお、直交座標軸α軸、β軸、γ軸では、前記第1の挟持方向に直交する第1平面と、前記第2の挟持方向に直交する第2平面との交線に平行な方向をγ軸としている。
【0053】
第3のセンサー14は、第5の圧電体層(第2検出板(第2基板))141と、第5の圧電体層141と対向して設けられた第6の圧電体層(第2検出板(第2基板))143と、第5の圧電体層141と第6の圧電体層143との間に設けられた出力電極層142を有する。
第5の圧電体層141は、Yカット水晶板で構成され、互いに直交する結晶軸であるx軸、y軸、z軸を有する。y軸は、第5の圧電体層141の厚さ方向に沿った軸であり、x軸は、
図4中の上下方向に沿った軸であり、z軸は、
図4中の紙面奥行き方向に沿った軸である。
図4に示す構成では、x軸については、
図4中の上側を正方向とし、その反対側を負方向として説明する。y軸については、
図4中の左側を正方向とし、その反対側を負方向として説明する。z軸については、
図4中の紙面手前側を正方向とし、その反対側を負方向として説明する。
【0054】
水晶により構成された第5の圧電体層141は、広いダイナミックレンジ、高い剛性、高い固有振動数、高い対荷重性等の優れた特性を有する。また、Yカット水晶板は、その面方向に沿った外力(せん断力)に対して電荷を生ずる。
そして、第5の圧電体層141の表面に対し、x軸の正方向に沿った外力が加えられた場合、圧電効果により、第5の圧電体層141内に電荷が誘起される。その結果、第5の圧電体層141の出力電極層142側表面近傍には正電荷が集まり、第5の圧電体層141のグランド電極層11側表面近傍には負電荷が集まる。同様に、第5の圧電体層141の表面に対し、x軸の負方向に沿った外力が加えられた場合、第5の圧電体層141の出力電極層142側表面近傍には負電荷が集まり、第5の圧電体層141のグランド電極層11側表面近傍には正電荷が集まる。
【0055】
第6の圧電体層143も、Yカット水晶板で構成され、互いに直交する結晶軸であるx軸、y軸、z軸を有する。y軸は、第
6の圧電体層
143の厚さ方向に沿った軸であり、x軸は、
図4中の上下方向に沿った軸であり、z軸は、
図4中の紙面奥行き方向に沿った軸である。
図4に示す構成では、x軸については、
図4中の下側を正方向とし、その反対側を負方向として説明する。y軸については、
図4中の右側を正方向とし、その反対側を負方向として説明する。z軸については、
図4中の紙面手前側を正方向とし、その反対側を負方向として説明する。
【0056】
水晶により構成された第6の圧電体層143も第5の圧電体層141と同様に、広いダイナミックレンジ、高い剛性、高い固有振動数、高い対荷重性等の優れた特性を有し、Yカット水晶板であることにより、その面方向に沿った外力(せん断力)に対して電荷を生ずる。
そして、第6の圧電体層143の表面に対し、x軸の正方向に沿った外力が加えられた場合、圧電効果により、第6の圧電体層143内に電荷が誘起される。その結果、第6の圧電体層143の出力電極層142側表面近傍には正電荷が集まり、第6の圧電体層143のグランド電極層11側表面近傍には負電荷が集まる。同様に、第6の圧電体層143の表面に対し、x軸の負方向に沿った外力が加えられた場合、第6の圧電体層143の出力電極層142側表面近傍には負電荷が集まり、第6の圧電体層143のグランド電極層11側表面近傍には正電荷が集まる。
【0057】
電荷出力素子10では、積層方向LDから見たとき、第1の圧電体層121および第2の圧電体層123の各x軸と、第5の圧電体層141および第6の圧電体層143の各x軸とが交差している。また、積層方向LDから見たとき、第1の圧電体層121および第2の圧電体層123の各z軸と、第5の圧電体層141および第6の圧電体層143の各z軸とが交差している。
【0058】
出力電極層142は、第5の圧電体層141内および第6の圧電体層143内に生じた正電荷または負電荷を電荷Qyとして出力する機能を有する。前述のように、第5の圧電体層141の表面または第6の圧電体層143の表面にx軸の正方向に沿った外力が加えられた場合、出力電極層142近傍には、正電荷が集まる。その結果、出力電極層142からは、正の電荷Qyが出力される。一方、第5の圧電体層141の表面または第6の圧電体層143の表面にx軸の負方向に沿った外力が加えられた場合、出力電極層142近傍には、負電荷が集まる。その結果、出力電極層142からは、負の電荷Qyが出力される。
【0059】
このように、電荷出力素子10では、第1のセンサー12、第2のセンサー13、および第3のセンサー14は、各センサーの力検出方向が互いに直交するように積層されている。これにより、各センサーは、それぞれ、互いに直交する力成分に応じて電荷を誘起することができる。そのため、電荷出力素子10は、x軸、y軸およびz軸に沿った各外力のそれぞれに応じて3つの電荷Qx、Qy、Qzを出力することができる。
【0060】
また、
図2に示すように、第1基部2と第2基部3とは、与圧ボルト71により、接続、固定されている。なお、与圧ボルト71による「固定」は、2つの固定対象物の互いの所定量の移動を許容しつつ行われる。具体的には、第1基部2と第2基部3とは、与圧ボルト71により、互いの所定量の第2基部3の面方向の移動が許容されつつ固定される。なお、これは、他の実施形態においても同様である。
【0061】
また、与圧ボルト71は、4本(複数)あり、そのうちの2本がセンサーデバイス6Aを介してその両側に配置され、すなわち、センサーデバイス6Aの周りに設けられて、当該センサーデバイス6Aに対して与圧を付与している。残りの2本は、センサーデバイス6Bを介してその両側に配置され、すなわち、センサーデバイス6Bの周りに設けられて、当該センサーデバイス6Bに対して与圧を付与している。なお、各与圧ボルト71による与圧方向は、積層方向LDに平行な方向となっている。
【0062】
各与圧ボルト71と螺合する雌ネジ241は、第1基部2の壁部24に設けられている。そして、第1基部2と第2基部3との間に各センサーデバイス6を挟持した状態で、与圧ボルト71を第2基部3側から第1基部2の
雌ネジ241に差し込むことができる。
これにより、各電荷出力素子10は、当該電荷出力素子10を収納するパッケージ60ごと、第1基部2と直交する方向に所定の大きさの圧力、すなわち、与圧が加えられる。そして、電荷出力素子10に剪断力が作用したとき、電荷出力素子10を構成する層同士の間での摩擦力が確実に生じ、よって、電荷を確実に検出することができる。
【0063】
また、
図2に示すように、各与圧ボルト71は、アナログ回路基板4を貫通している。アナログ回路基板4の与圧ボルト71が貫通する部分には、樹脂材料等の絶縁材料で構成されたパイプ43が例えば嵌合により固定されている。
なお、与圧ボルト71の構成材料としては、特に限定されず、例えば、各種の樹脂材料、各種の金属材料等を用いることができる。
【0064】
<センサーデバイス>
センサーデバイス6は、前記電荷出力素子10と、電荷出力素子10を収納するパッケージ60とを有している。
図1に示すように、パッケージ60は、凹部611を有する基部(第1の部材)61と、その基部61に接合された蓋体(第2の部材)62とを有している。電荷出力素子10は、基部61の凹部611に設置されており、その基部61の凹部611は、蓋体62により封止されている。これにより、電荷出力素子10を保護することができ、信頼性の高い力検出装置1を提供することができる。なお、電荷出力素子10の頂面は、蓋体62に接触している。また、パッケージ60の蓋体62は、第2基部3の側壁33側に配置され、基部61は、第1基部2の壁部24側に配置され、その基部61がアナログ回路基板4に固定されている。この構成により、基部61と蓋体62とが、第1基部2の頂面261と第2基部3の側壁33とで挟持方向SDに挟持されて与圧され、さらに、その基部61と蓋体62とにより、電荷出力素子10も挟持方向SDに挟持されて与圧される。
【0065】
また、基部61の構成材料としては、特に限定されず、例えば、セラミックス等の絶縁性材料等を用いることができる。また、蓋体62の構成材料としては、特に限定されず、例えば、ステンレス鋼等の各種の金属材料等を用いることができる。なお、基部61の構成材料と蓋体62の構成材料は、同一でもよく、また、異なっていてもよい。
また、パッケージ60の平面形状は、特に限定されないが、本実施形態では、四角形をなしている。なお、パッケージ60の他の形状としては、例えば、五角形等の他の多角形、円形、楕円形等が挙げられる。また、パッケージ60が多角形の場合、例えば、その角部が、丸みを帯びていてもよく、また、斜めに切り欠かれていてもよい。
【0066】
また、蓋体62は、本実施形態では、板状をなし、その中央部625と外周部626との間の部位が屈曲することで、中央部625が第2基部3の側壁33に向って突出している。中央部625の形状は、特に限定されないが、本実施形態では、第1基部2の平面視で、電荷出力素子10と同じ形状、すなわち、四角形をなしている。なお、蓋体62の中央部625の上面および下面は、いずれも平面である。
【0067】
また、パッケージ60の基部61の下面の端部には、電荷出力素子10と電気的に接続された複数の端子(図示せず)が設けられている。当該各端子は、それぞれ、アナログ回路基板4と電気的に接続されており、これにより、電荷出力素子10とアナログ回路基板4とが電気的に接続される。
なお、また、アナログ回路基板4の電荷出力素子10が配置されている部位には、凸部22が挿入される孔41が形成されている。この孔41は、アナログ回路基板4を貫通する貫通孔である。
【0068】
<変換出力回路>
図3に示すように、各電荷出力素子10には、変換出力回路90a、90b、90cが接続されている。変換出力回路90aは、電荷出力素子10から出力された電荷Qyを電圧Vyに変換する機能を有する。変換出力回路90bは、電荷出力素子10から出力された電荷Qzを電圧Vzに変換する機能を有する。変換出力回路90cは、電荷出力素子10から出力された電荷Qxを電圧Vxに変換する機能を有する。変換出力回路90a、90b、90cは、同様であるので、以下では、代表的に、変換出力回路90cについて説明する。
【0069】
変換出力回路90cは、電荷出力素子10から出力された電荷Qxを電圧Vxに変換して電圧Vxを出力する機能を有する。変換出力回路90cは、オペアンプ91と、コンデンサー92と、スイッチング素子93とを有する。オペアンプ91の第1の入力端子(マイナス入力)は、電荷出力素子10の出力電極層122に接続され、オペアンプ91の第2の入力端子(プラス入力)は、グランド(基準電位点)に接地されている。また、オペアンプ91の出力端子は、外力検出回路40に接続されている。コンデンサー92は、オペアンプ91の第1の入力端子と出力端子との間に接続されている。スイッチング素子93は、オペアンプ91の第1の入力端子と出力端子との間に接続され、コンデンサー92と並列接続されている。また、スイッチング素子93は、駆動回路(図示せず)に接続されており、駆動回路からのオン/オフ信号に従い、スイッチング素子93はスイッチング動作を実行する。
【0070】
スイッチング素子93がオフの場合、電荷出力素子10から出力された電荷Qxは、静電容量C1を有するコンデンサー92に蓄えられ、電圧Vxとして外力検出回路40に出力される。次に、スイッチング素子93がオンになった場合、コンデンサー92の両端子間が短絡される。その結果、コンデンサー92に蓄えられた電荷Qxは、放電されて0クーロンとなり、外力検出回路40に出力される電圧Vは、0ボルトとなる。スイッチング素子93がオンとなることを、変換出力回路90cをリセットするという。なお、理想的な変換出力回路90cから出力される電圧Vxは、電荷出力素子10から出力される電荷Qxの蓄積量に比例する。
【0071】
スイッチング素子93は、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、その他、半導体スイッチまたはMEMSスイッチ等である。このようなスイッチは、機械式スイッチ(メカスイッチ)と比べて小型および軽量であるので、力検出装置1の小型化および軽量化に有利である。以下、代表例として、スイッチング素子93としてMOSFETを用いた場合を説明する。なお、
図3に示すように、このようなスイッチは、変換出力回路90cや、変換出力回路90a、90bに実装されているが、その他、ADコンバーター401にも実装することができる。
【0072】
スイッチング素子93は、ドレイン電極、ソース電極、およびゲート電極を有している。スイッチング素子93のドレイン電極またはソース電極の一方がオペアンプ91の第1の入力端子に接続され、ドレイン電極またはソース電極の他方がオペアンプ91の出力端子に接続されている。また、スイッチング素子93のゲート電極は、駆動回路(図示せず)に接続されている。
【0073】
各変換出力回路90a、90b、90cのスイッチング素子93には、同一の駆動回路が接続されていてもよいし、それぞれ異なる駆動回路が接続されていてもよい。各スイッチング素子93には、駆動回路から、全て同期したオン/オフ信号が入力される。これにより、各変換出力回路90a、90b、90cのスイッチング素子93の動作が同期する。すなわち、各変換出力回路90a、90b、90cのスイッチング素子93のオン/オフタイミングは一致する。
【0074】
<外力検出回路>
外力検出回路40は、各変換出力回路90aから出力される電圧Vy1、Vy2と、各変換出力回路90bから出力される電圧Vz1、Vz2と、各変換出力回路90cから出力される電圧Vx1、Vx2とに基づき、加えられた外力を検出する機能を有する。外力検出回路40は、変換出力回路(変換回路)90a、90b、90cに接続されたADコンバーター401と、ADコンバーター401に接続された演算部(演算回路)402とを有する。
【0075】
ADコンバーター401は、電圧Vx1、Vy1、Vz1、Vx2、Vy2、Vz2、をアナログ信号からデジタル信号へ変換する機能を有する。ADコンバーター401によってデジタル変換された電圧Vx1、Vy1、Vz1、Vx2、Vy2、Vz2は、演算部402に入力される。
演算部402は、デジタル変換された電圧Vx1、Vy1、Vz1、Vx2、Vy2、Vz2に対して、例えば、各変換出力回路90a、90b、90c間の感度の差をなくす補正等の各処理を行う。そして、演算部402は、電荷出力素子10から出力される電荷Qx1、Qy1、Qz1、Qx2、Qy2、Qz2、の蓄積量に比例する3つの信号を出力する。
【0076】
<α軸、β軸およびγ軸方向の力検出(力検出方法)>
前述したように、各電荷出力素子10は、積層方向LDと挟持方向SDとが第1基部2に対して平行であり、かつ、取付面321の法線NL
2と直交するように設置された状態となっている(
図1参照)。
そして、本発明者らは、α軸方向の力F
A、β軸方向の力F
Bおよびγ軸方向の力F
Cを、それぞれ、下記式(1)、(2)および(3)で表すことができることを見出した。式(1)〜(3)中の「fx
1−1」は、センサーデバイス6Aの第1のセンサー12(第1検出板)のx軸方向に加わる力、すなわち、電荷Qx1(第1の出力)から求められた力であり、「fx
1−2」は、第3のセンサー14(第2検出板)のx軸方向に加わる力、すなわち、電荷Qy1(第2の出力)から求められた力である。また、「fx
2−1」は、センサーデバイス6Bの第1のセンサー12(第1検出板)のx軸方向に加わる力(第3の出力)、すなわち、電荷Qx2から求められた力であり、「fx
2−2」は、第3のセンサー14(第2検出板)のx軸方向に加わる力、すなわち、電荷Qy2(第4の出力)から求められた力である。
【0077】
F
A=fx
1−1・cosη・cosε−fx
1−2・sinη・cosε
−fx
2−1・cosη・cosε+fx
2−2・sinη・cosε・・・(1)
F
B=−fx
1−1・cosη・sinε+fx
1−2・sinη・sinε
−fx
2−1・cosη・sinε+fx
2−2・sinη・sinε・・・(2)
F
C=−fx
1−1・sinη−fx
1−2・cosη−fx
2−1・sinη
−fx
2−2・cosη・・・(3)
【0078】
例えば、
図1、
図2に示す構成の力検出装置1の場合、εは45°、ηは0°となる。式(1)〜(3)のεに45°を代入し、ηに0°を代入すると、力F
A〜F
Cは、それぞれ、
F
A=fx
1−1/√2−fx
2−1/√2
F
B=−fx
1−1/√2−fx
2−1/√2
F
C=−fx
1−2−fx
2−2
となる。
【0079】
このように力検出装置1では、力F
A〜F
Cを検出する際、温度の変動による影響を受け易い、すなわち、ノイズが乗り易い第2のセンサー13(電荷Qz)を用いずに、その検出を行なうことができる。従って、力検出装置1は、温度の変動による影響を受けにくく、例えば従来の力検出装置の1/20以下に低減された装置となる。これにより、力検出装置1は、温度変化の激しい環境下でも、力F
A〜F
Cを正確に安定して検出することができる。
【0080】
また、このような構成の力検出装置1は、総重量が1kgよりも軽いものとなる。これにより、力検出装置
1を取り付けた手首にかかる負荷を低減させることができ、手首を駆動するアクチュエータの容量を小さくできる為、手首を小型に設計することができる。さらに、この力検出装置1の重量は、ロボットアームが搬送できる最大
重量の20%よりも軽い。これにより、力検出装置
1を取り付けたロボットアームの制御を容易にすることができる。
【0081】
<第2実施形態>
図7は、本発明に係る力検出装置の第2実施形態を示す断面図である。
図8は、
図7に示す力検出装置の平面図である。
図9は、
図7に示す力検出装置を概略的に示す回路図である。
以下、これらの図を参照して本発明の力検出装置、ロボットおよび電子部品搬送装置の第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
【0082】
本実施形態は、センサーデバイスの配置数が異なること以外は第1実施形態と同様である。
図7、
図8に示すように、本実施形態では、センサーデバイス6(電荷出力素子10)は、4つ設置されている。以下、各センサーデバイス6を
図8中の反時計回りに順に「センサーデバイス(第1のセンサ素子)6A」、「センサーデバイス(第2のセンサ素子)6B」、「センサーデバイス(第3のセンサ素子)6C」、「センサーデバイス(第4のセンサ素子)6D」と言う。
【0083】
そして、
図8に示すように、センサーデバイス6Aおよびセンサーデバイス6Bと、センサーデバイス6Cおよびセンサーデバイス6Dとは、第1基部2(一方の基部)のβ軸に沿った中心軸27に関して対称的に配置されている。すなわち、センサーデバイス6A〜6Dは、第1基部2の中心272回りに等角度間隔に配置されている。このような配置により、外力を偏りなく検出することができる。
センサーデバイス6A〜6Dは、取付面321からみて、第1基部2の中心部(中心272)からできる限り離間した位置に配置されているのが好ましい。これにより、外力を安定して検出することができる。
【0084】
<外力検出回路>
外力検出回路40は、各変換出力回路90aから出力される電圧Vy1、Vy2、Vy3、Vy4と、各変換出力回路90bから出力される電圧Vz1、Vz2、Vz3、Vz4と、各変換出力回路90cから出力される電圧Vx1、Vx2、Vx3、Vx4とに基づき、加えられた外力を検出する機能を有する。外力検出回路40は、変換出力回路90a、90b、90cに接続されたADコンバーター401と、ADコンバーター401に接続された演算部402とを有する。
【0085】
ADコンバーター401は、電圧Vx1、Vy1、Vz1、Vx2、Vy2、Vz2、Vx3、Vy3、Vz3、Vx4、Vy4、Vz4をアナログ信号からデジタル信号へ変換する機能を有する。ADコンバーター401によってデジタル変換された電圧Vx1、Vy1、Vz1、Vx2、Vy2、Vz2、Vx3、Vy3、Vz3、Vx4、Vy4、Vz4は、演算部402に入力される。
そして、本実施形態での力検出装置1全体としての力F
A〜F
Cは、それぞれ、センサーデバイス6A〜6Dの各電荷出力素子10で出力された電荷に基づいて検出された力F
A〜F
C合力(ΣF
A、ΣF
B、ΣF
C)となる。
【0086】
<単腕ロボットの実施形態>
次に、
図10に基づき、本発明に係るロボットの実施形態である単腕ロボットを説明する。以下、本実施形態について、前述した第1および第2実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
図10は、本発明に係る力検出装置を用いた単腕ロボットの1例を示す図である。
図10の単腕ロボット500は、基台510と、アーム520と、アーム520の先端側に設けられたエンドエフェクター530と、アーム520とエンドエフェクター530との間に設けられた力検出装置1とを有する。なお、力検出装置1としては、前述した各実施形態と同様のものを用いる。
【0087】
基台510は、アーム520を回動させるための動力を発生させるアクチュエーター(図示せず)およびアクチュエーターを制御する制御部(図示せず)等を収納する機能を有する。また、基台510は、例えば、床、壁、天井、移動可能な台車上などに固定される。
アーム520は、第1のアーム要素521、第2のアーム要素522、第3のアーム要素523、第4のアーム要素524および第5のアーム要素525を有しており、隣り合うアーム同士を回動自在に連結することにより構成されている。アーム520は、制御部の制御によって、各アーム要素の連結部を中心に複合的に回転または屈曲することにより駆動する。
【0088】
エンドエフェクター530は、対象物を把持する機能を有する。エンドエフェクター530は、第1の指531および第2の指532を有している。アーム520の駆動によりエンドエフェクター530が所定の動作位置まで到達した後、第1の指531および第2の指532の離間距離を調整することにより、対象物を把持することができる。
なお、エンドエフェクター530は、ここでは、ハンドであるが、本発明では、これに限定されるものではない。エンドエフェクターの他の例としては、例えば、部品検査用器具、部品搬送用器具、部品加工用器具、部品組立用器具、測定器等が挙げられる。これは、他の実施形態におけるエンドエフェクターについても同様である。
【0089】
力検出装置1は、エンドエフェクター530に加えられる外力を検出する機能を有する。力検出装置1が検出する力を基台510の制御部にフィードバックすることにより、単腕ロボット500は、より精密な作業を実行することができる。また、力検出装置1が検出する力によって、単腕ロボット500は、エンドエフェクター530の障害物への接触等を検知することができる。そのため、従来の位置制御では困難だった障害物回避動作、対象物損傷回避動作等を容易に行うことができ、単腕ロボット500は、より安全に作業を実行することができる。
なお、図示の構成では、アーム520は、合計5本のアーム要素によって構成されているが、本発明はこれに限られない。アーム520が、1本のアーム要素に構成されている場合、2〜4本のアーム要素によって構成されている場合、6本以上のアーム要素によって構成されている場合も本発明の範囲内である。
【0090】
<複腕ロボットの実施形態>
次に、
図11に基づき、本発明に係るロボットの実施形態である複腕ロボットを説明する。以下、本実施形態について、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
図11は、本発明に係る力検出装置を用いた複腕ロボットの1例を示す図である。
図11の複腕ロボット600は、基台610と、第1のアーム620と、第2のアーム630と、第1のアーム620の先端側に設けられた第1のエンドエフェクター640aと、第2のアーム630の先端側に設けられた第2のエンドエフェクター640bと、第1のアーム620と第1のエンドエフェクター640a間および第2のアーム630と第2のエンドエフェクター640bとの間に設けられた力検出装置1を有する。なお、力検出装置1としては、前述した各実施形態と同様のものを用いる。
【0091】
基台610は、第1のアーム620および第2のアーム630を回動させるための動力を発生させるアクチュエーター(図示せず)およびアクチュエーターを制御する制御部(図示せず)等を収納する機能を有する。また、基台610は、例えば、床、壁、天井、移動可能な台車上などに固定される。
第1のアーム620は、第1のアーム要素621および第2のアーム要素622を回動自在に連結することにより構成されている。第2のアーム630は、第1のアーム要素631および第2のアーム要素632を回動自在に連結することにより構成されている。第1のアーム620および第2のアーム630は、制御部の制御によって、各アーム要素の連結部を中心に複合的に回転または屈曲することにより駆動する。
【0092】
第1、第2のエンドエフェクター640a、640bは、対象物を把持する機能を有する。第1のエンドエフェクター640aは、第1の指641aおよび第2の指642aを有している。第2のエンドエフェクター640bは、第1の指641bおよび第2の指642bを有している。第1のアーム620の駆動により第1のエンドエフェクター640aが所定の動作位置まで到達した後、第1の指641aおよび第2の指642aの離間距離を調整することにより、対象物を把持することができる。同様に、第2のアーム630の駆動により第2のエンドエフェクター640bが所定の動作位置まで到達した後、第1の指641bおよび第2の指642bの離間距離を調整することにより、対象物を把持することができる。
【0093】
力検出装置1は第1、第2のエンドエフェクター640a、640bに加えられる外力を検出する機能を有する。力検出装置1が検出する力を基台610の制御部にフィードバックすることにより、複腕ロボット600は、より精密に作業を実行することができる。また、力検出装置1が検出する力によって、複腕ロボット600は、第1、第2のエンドエフェクター640a、640bの障害物への接触等を検知することができる。そのため、従来の位置制御では困難だった障害物回避動作、対象物損傷回避動作等を容易に行うことができ、複腕ロボット600は、より安全に作業を実行することができる。
なお、図示の構成では、アームは合計2本であるが、本発明はこれに限られない。複腕ロボット600が3本以上のアームを有している場合も、本発明の範囲内である。
【0094】
<電子部品検査装置および電子部品搬送装置の実施形態>
次に、
図12、
図13に基づき、本発明の実施形態である電子部品検査装置および電子部品搬送装置を説明する。以下、本実施形態について、前述した第1および第2実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
図12は、本発明に係る力検出装置を用いた電子部品検査装置および部品搬送装置の1例を示す図である。
図13は、本発明に係る力検出装置を用いた電子部品搬送装置の1例を示す図である。
【0095】
図12の電子部品検査装置700は、基台710と、基台710の側面に立設された支持台720とを有する。基台710の上面には、検査対象の電子部品711が載置されて搬送される上流側ステージ712uと、検査済みの電子部品711が載置されて搬送される下流側ステージ712dとが設けられている。また、上流側ステージ712uと下流側ステージ712dとの間には、電子部品711の姿勢を確認するための撮像装置713と、電気的特性を検査するために電子部品711がセットされる検査台714とが設けられている。なお、電子部品711の例として、半導体、半導体ウェハー、CLDやOLED等の表示デバイス、水晶デバイス、各種センサー、インクジェットヘッド、各種MEMSデバイス等などが挙げられる。
【0096】
また、支持台720には、基台710の上流側ステージ712uおよび下流側ステージ712dと平行な方向(Y方向)に移動可能にYステージ731が設けられており、Yステージ731からは、基台710に向かう方向(X方向)に腕部732が延設されている。また、腕部732の側面には、X方向に移動可能にXステージ733が設けられている。また、Xステージ733には、撮像カメラ734と、上下方向(Z方向)に移動可能なZステージを内蔵した電子部品搬送装置740が設けられている。また、電子部品搬送装置740の先端側には、電子部品711を把持する把持部741が設けられている。また、電子部品搬送装置740の先端と、把持部741との間には、力検出装置1が設けられている。更に、基台710の前面側には、電子部品検査装置700の全体の動作を制御する制御装置750が設けられている。なお、力検出装置1としては、前述した各実施形態と同様のものを用いる。
【0097】
電子部品検査装置700は、以下のようにして電子部品711の検査を行う。最初に、検査対象の電子部品711は、上流側ステージ712uに載せられて、検査台714の近くまで移動する。次に、Yステージ731およびXステージ733を動かして、上流側ステージ712uに載置された電子部品711の真上の位置まで電子部品搬送装置740を移動させる。このとき、撮像カメラ734を用いて電子部品711の位置を確認することができる。そして、電子部品搬送装置740内に内蔵されたZステージを用いて電子部品搬送装置740を降下させ、把持部741で電子部品711を把持すると、そのまま電子部品搬送装置740を撮像装置713の上に移動させて、撮像装置713を用いて電子部品711の姿勢を確認する。次に、電子部品搬送装置740に内蔵されている微調整機構を用いて電子部品711の姿勢を調整する。そして、電子部品搬送装置740を検査台714の上まで移動させた後、電子部品搬送装置740に内蔵されたZステージを動かして電子部品711を検査台714の上にセットする。電子部品搬送装置740内の微調整機構を用いて電子部品711の姿勢が調整されているので、検査台714の正しい位置に電子部品711をセットすることができる。次に、検査台714を用いて電子部品711の電気的特性検査が終了した後、今度は検査台714から電子部品711を取り上げ、Yステージ731およびXステージ733を動かして、下流側ステージ712d上まで電子部品搬送装置740を移動させ、下流側ステージ712dに電子部品711を置く。最後に、下流側ステージ712dを動かして、検査が終了した電子部品711を所定位置まで搬送する。
【0098】
図13は、力検出装置1を含む電子部品搬送装置740を示す図である。電子部品搬送装置740は、把持部741と、把持部741に接続された6軸の力検出装置1と、6軸の力検出装置1を介して把持部741に接続された回転軸742と、回転軸742に回転可能に取り付けられた微調整プレート743を有する。また、微調整プレート743は、ガイド機構(図示せず)によってガイドされながら、X方向およびY方向に移動可能である。
【0099】
また、回転軸742の端面に向けて、回転方向用の圧電モーター744θが搭載されており、圧電モーター744θの駆動凸部(図示せず)が回転軸742の端面に押しつけられている。このため、圧電モーター744θを動作させることによって、回転軸742(および把持部741)をθ方向に任意の角度だけ回転させることが可能である。また、微調整プレート743に向けて、X方向用の圧電モーター744xと、Y方向用の圧電モーター744yとが設けられており、それぞれの駆動凸部(図示せず)が微調整プレート743の表面に押しつけられている。このため、圧電モーター744xを動作させることによって、微調整プレート743(および把持部741)をX方向に任意の距離だけ移動させることができ、同様に、圧電モーター744yを動作させることによって、微調整プレート743(および把持部741)をY方向に任意の距離だけ移動させることが可能である。
【0100】
また、力検出装置1は、把持部741に加えられる外力を検出する機能を有する。力検出装置1が検出する力を制御装置750にフィードバックすることにより、電子部品搬送装置740および電子部品検査装置700は、より精密に作業を実行することができる。また、力検出装置1が検出する力によって、把持部741の障害物への接触等を検知することができる。そのため、従来の位置制御では困難だった障害物回避動作、対象物損傷回避動作等を容易に行うことができ、電子部品搬送装置740および電子部品検査装置700は、より安全な作業を実行可能である。
【0101】
<部品加工装置の実施形態>
次に、
図14に基づき、本発明に係る部品加工装置の実施形態を説明する。以下、本実施形態について、前述した第1および第2実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
図14は、本発明に係る力検出装置を用いた部品加工装置の1例を示す図である。
図14の部品加工装置800は、基台810と、基台810の上面に起立形成された支柱820と、支柱820の側面に設けられた送り機構830と、送り機構830に昇降可能に取り付けられた工具変位部840と、工具変位部840に接続された力検出装置1と、力検出装置1を介して工具変位部840に装着された工具850を有する。なお、力検出装置1としては、前述した各実施形態と同様のものを用いる。
【0102】
基台810は、被加工部品860を載置し、固定するための台である。支柱820は、送り機構830を固定するための柱である。送り機構830は、工具変位部840を昇降させる機能を有する。送り機構830は、送り用モーター831と、送り用モーター831からの出力に基づいて工具変位部840を昇降させるガイド832を有する。工具変位部840は、工具850に回転、振動等の変位を与える機能を有する。工具変位部840は、変位用モーター841と、変位用モーター841に連結された主軸(図示せず)の先端に設けられた工具取付け部843と、工具変位部840に取り付けられ主軸を保持する保持部842とを有する。工具850は、工具変位部840の工具取付け部843に、力検出装置1を介して取り付けられ、工具変位部840から与えられる変位に応じて被加工部品860を加工するために用いられる。工具850は、特に限定されないが、例えば、レンチ、プラスドライバー、マイナスドライバー、カッター、丸のこ、ニッパー、錐、ドリル、フライス等である。
【0103】
力検出装置1は、工具850に加えられる外力を検出する機能を有する。力検出装置1が検出する外力を送り用モーター831や変位用モーター841にフィードバックすることにより、部品加工装置800は、より精密に部品加工作業を実行することができる。また、力検出装置1が検出する外力によって、工具850の障害物への接触等を検知することができる。そのため、工具850に障害物等が接触した場合に緊急停止することができ、部品加工装置800は、より安全な部品加工作業を実行可能である。
【0104】
<移動体の実施形態>
次に、
図15に基づき、本発明に係る移動体の実施形態を説明する。以下、本実施形態について、前述した第1および第2実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。
図15は、本発明に係る力検出装置を用いた移動体の1例を示す図である。
図15の移動体900は、与えられた動力により移動することができる。移動体900は、特に限定されないが、例えば、自動車、バイク、飛行機、船、電車等の乗り物、2足歩行ロボット、車輪移動ロボット等のロボット等である。
【0105】
移動体900は、本体910(例えば、乗り物の筐体、ロボットのメインボデー等)と、本体910を移動させるための動力を供給する動力部920と、本体910の移動により発生する外力を検出する本発明の力検出装置1と、制御部930を有する。なお、力検出装置1としては、前述した各実施形態と同様のものを用いる。
動力部920から供給された動力によって本体910が移動すると、移動に伴い振動や加速度等が生じる。力検出装置1は、移動に伴い生じた振動や加速度等による外力を検出する。力検出装置1によって検出された外力は、制御部930に伝達される。制御部930は、力検出装置1から伝達された外力に応じて動力部920等を制御することにより、姿勢制御、振動制御および加速制御等の制御を実行することができる。
【0106】
本発明に係わる力検出装置では、当該装置の重量が330gという軽量ながら、最小検出荷重(動的分解能)が0.005を実現している。ロボットの手首等に設置する場合は軽量であることが求められるが、通常、装置の重量を軽量化すると、部材の歪の影響が大きくなり、最小検出荷重を小さくすることができない。本発明に係わる力検出装置では、装置荷重(g)を分母として分子に最小検出荷重(N)として算出した装置重量あたりの最小検出荷重は15.1×10
−6を実現している。
【0107】
以上、本発明の力検出装置、ロボットおよび電子部品搬送装置を図示の実施形態について説明したが、本発明は、これに限定されるものではなく、力検出装置、ロボットおよび電子部品搬送装置を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
また、本発明の力検出装置、ロボットおよび電子部品搬送装置は、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
【0108】
また、本発明では、パッケージ、すなわち、基部および蓋体が省略されていてもよい。
また、本発明では、与圧ボルトに替えて、例えば、素子に与圧を加える機能を有してないものを用いてもよく、また、ボルト以外の固定方法を採用してもよい。
また、本発明のロボットは、アームを有していれば、アーム型ロボット(ロボットアーム)に限定されず、他の形式のロボット、例えば、スカラーロボット、脚式歩行(走行)ロボット等であってもよい。
【0109】
また、本発明の力検出装置は、ロボット、電子部品搬送装置、電子部品検査装置、部品加工装置および移動体に限らず、他の装置、例えば、他の搬送装置、他の検査装置、振動計、加速度計、重力計、動力計、地震計、傾斜計等の測定装置、入力装置等にも適用することができる。
また、力検出装置でのセンサーデバイスの設置数は、第1実施形態では2つ、第2実施形態では4つであったが、これに限定されず、例えば、3つまたは5つ以上であってもよい。