特許第6233507号(P6233507)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士電機株式会社の特許一覧

特許6233507パワー半導体モジュールおよび複合モジュール
<>
  • 特許6233507-パワー半導体モジュールおよび複合モジュール 図000002
  • 特許6233507-パワー半導体モジュールおよび複合モジュール 図000003
  • 特許6233507-パワー半導体モジュールおよび複合モジュール 図000004
  • 特許6233507-パワー半導体モジュールおよび複合モジュール 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6233507
(24)【登録日】2017年11月2日
(45)【発行日】2017年11月22日
(54)【発明の名称】パワー半導体モジュールおよび複合モジュール
(51)【国際特許分類】
   H01L 25/07 20060101AFI20171113BHJP
   H01L 25/18 20060101ALI20171113BHJP
   H01L 23/28 20060101ALI20171113BHJP
【FI】
   H01L25/04 C
   H01L23/28 K
【請求項の数】14
【全頁数】11
(21)【出願番号】特願2016-519154(P2016-519154)
(86)(22)【出願日】2015年4月1日
(86)【国際出願番号】JP2015060340
(87)【国際公開番号】WO2015174158
(87)【国際公開日】20151119
【審査請求日】2016年4月28日
(31)【優先権主張番号】特願2014-101423(P2014-101423)
(32)【優先日】2014年5月15日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(74)【代理人】
【識別番号】100096714
【弁理士】
【氏名又は名称】本多 一郎
(72)【発明者】
【氏名】堀 元人
(72)【発明者】
【氏名】池田 良成
【審査官】 木下 直哉
(56)【参考文献】
【文献】 特開2003−068979(JP,A)
【文献】 特開平11−003995(JP,A)
【文献】 特開2012−119618(JP,A)
【文献】 米国特許出願公開第2009/0213553(US,A1)
【文献】 実開昭63−132448(JP,U)
【文献】 特開2012−238684(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 25/00−25/18
H01L 23/28−23/31
(57)【特許請求の範囲】
【請求項1】
開口部を有する筐体と、
前記筐体の内部に収容された回路板と、
おもて面に電極を有し、裏面が前記回路板に固定された半導体素子と、
前記半導体素子の電極と前記回路板との間を電気的に接続する配線部材と、
前記筐体の開口部に固定された第1の蓋と、
前記筐体の開口部に固定され、前記第1の蓋よりも外方に設けられた第2の蓋と、
前記第1の蓋と前記第2の蓋との間の隙間を埋めて充填された第1の樹脂と、
前記配線部材を覆い、露出面を有し、前記露出面が前記第1の蓋よりも前記配線部材に近い第2の樹脂と、
一端が前記回路板に電気的かつ機械的に接続され、他端が前記第2の蓋よりも外方に突出した外部端子と、
前記外部端子を覆い、前記第2の樹脂の露出面と前記第1の蓋との間に配置されたカバーと、
を備えるパワー半導体モジュール。
【請求項2】
前記第1の蓋と前記第2の蓋の間において、前記外部端子は前記第1の樹脂で封止されている請求項1記載のパワー半導体モジュール。
【請求項3】
前記配線部材が、前記半導体素子及び前記回路板に対向して設けられた導電板と、
一端が前記半導体素子の第2電極又は前記回路板に電気的かつ機械的に接続され、他端が前記導電板と電気的かつ機械的に接続される導電ポストとを有する請求項1記載のパワー半導体モジュール。
【請求項4】
前記筐体の外部の側面に凹凸を有する請求項1記載のパワー半導体モジュール。
【請求項5】
前記第2の蓋が、外部に突出する複数の前記外部端子の間に突起を有する請求項1記載のパワー半導体モジュール。
【請求項6】
前記第1の樹脂および前記第2の樹脂が、熱硬化性樹脂である請求項1記載のパワー半導体モジュール。
【請求項7】
前記カバーが、前記筐体の内部の側面と離れて設けられた請求項1記載のパワー半導体モジュール。
【請求項8】
前記半導体素子が裏面に他の電極を有する縦型半導体素子であり、前記他の電極と前記回路板が電気的かつ機械的に接続されている請求項1記載のパワー半導体モジュール。
【請求項9】
前記筐体が、枠体とベース板からなる請求項1記載のパワー半導体モジュール。
【請求項10】
前記回路板が絶縁基板の一部であり、前記絶縁基板は前記ベース板に固定されている請求項9記載のパワー半導体モジュール。
【請求項11】
前記配線部材と、前記露出面が約1mm離れている請求項1記載のパワー半導体モジュール。
【請求項12】
請求項1記載のパワー半導体モジュールを複数個備え、各パワー半導体モジュールの前記外部端子同士を電気的に接続するバスバーユニットを備える複合モジュール。
【請求項13】
前記バスバーユニットは、複数のバスバーを間隔を空けて部分的に重ね合わせてなる請求項12記載の複合モジュール。
【請求項14】
前記バスバーユニットにおける複数のバスバーの間隔が1mm以下である請求項13記載の複合モジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パワー半導体モジュールおよび、このパワー半導体モジュールを組み合わせた複合モジュールに関する。
【背景技術】
【0002】
パワー半導体モジュールは、一般に、半導体素子としての半導体チップが搭載された絶縁基板を備えている。半導体チップと絶縁基板の回路板とは、はんだ等の接合材により、またボンディングワイヤや導電板を通して、電気的に接続されている。絶縁基板及び半導体チップは、筐体に収容される。筐体内の絶縁基板と電気的に接続されている外部端子が筐体よりも外方に延びている。筐体内は、絶縁性を高めるために封止材により封止されている。
【0003】
従来のパワー半導体モジュールの一例を図4に断面図で示す。
図4に示すパワー半導体モジュール101は、金属製のベース板102を備えている。このベース板102上には、絶縁基板103が接合材104により接合されている。絶縁基板103は、絶縁板131と、絶縁板131の一方の面に設けられた金属板132と、絶縁板131のもう一方の面に設けられ、所定の回路を形成する回路板133とからなる。絶縁基板103は一例ではDCB(Direct Copper Bond)基板である。
【0004】
回路板133に、IGBT(絶縁ゲートバイポーラトランジスタ)などの半導体チップ105が、導電性の接合材106により電気的かつ機械的に接続されている。
ベース板102の周囲に枠体107が設けられ、接合材108により接合されている。これによりパワー半導体モジュール101の筐体が構成されている。枠体107には、枠体107内側から外側へと延びる外部端子109が一体となっている。外部端子109と半導体チップ105のおもて面の電極とが、ボンディングワイヤ110により電気的に接続されている。
【0005】
枠体107で取り囲まれた空間には半導体チップ105及び絶縁基板103が収容され、この空間内に封止材111が充填されている。これにより、半導体チップ105、絶縁基板103、ベース板102、外部端子109相互間の絶縁性が確保されている。
【0006】
枠体107には,ねじ孔107aが設けられている。このねじ孔107aにねじ121を通して冷却部材122にねじ結合することにより、パワー半導体モジュール101は冷却部材122に固定される。ベース板102と冷却部材122との間には放熱グリス123が塗布され、これにより半導体チップ105からの熱を、絶縁基板103を通して冷却部材122に良好に伝熱させている。放熱グリス123の代わりに熱伝導シートが用いられることもある。
【0007】
また、上記のようなパワー半導体モジュールを、バスバーにより複数個並列に接続することも提案されている(特許文献1)。
【0008】
上記のようなパワー半導体モジュール101の絶縁性能を向上させるため、筐体内に充填される封止材111として、エポキシ樹脂等の熱硬化性樹脂が用いられることがある。一方、封止材111として熱硬化性樹脂を筐体内に多量に用いると、パワー半導体モジュール101の組み立て時の熱履歴及び使用時の外部環境の温度変化等が生じた際に熱応力が生じる。なぜなら、熱硬化性樹脂の線膨張係数が他の部材の線膨張係数と大きく異なるからである。そして、その熱応力により、ボンディングワイヤ110の破断やベース板102や枠体107の変形等が生じるおそれがあった。
【0009】
ボンディングワイヤ110の破断は、直ちにパワー半導体モジュール101の故障となる。また、ベース板102や枠体107の変形により、冷却部材122との密着度が低下して熱抵抗が増大する。そして、熱抵抗の増大により半導体チップ105の温度の上昇を招き、パワー半導体モジュール101の長期信頼性を低下させるおそれがある。また、熱硬化性樹脂を多量に用いることは、パワー半導体モジュール101のコスト上昇や重量増加にもつながる。
【0010】
ゲル状の樹脂、例えばシリコーン樹脂を2層に分けて筐体内に注入し、その内1層目の樹脂を補助リード端子に接触しない位置まで注入して硬化させたパワー半導体装置がある(特許文献2)。また、容器内部に充填されたゲル剤の上面と、容器の上蓋に相当する封止板の下面との間に空間が形成され、さらに封止板に設けられた外部端子用の孔をハードレジンで塞いだパワー半導体装置がある(特許文献3)。
しかし、特許文献2や特許文献3に用いられたゲル状のシリコーン樹脂は、耐熱性が熱硬化性樹脂に劣る。また高耐圧用のパワー半導体モジュールにおいて、シリコーン樹脂は絶縁性が必ずしも十分ではなかった。また、特許文献3の封止板の孔をハードレジンで塞ぐ構造は、封止板の形状が複雑であるため、製造コストが上昇する。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2012−105382号公報
【特許文献2】特開平10−270608号公報
【特許文献3】特開平2003−68979号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明は、上記の問題を有利に解決するものであり、高耐圧用のパワー半導体モジュールにおいて、絶縁性が高く、さらにベース板や枠体の変形等を抑制し、長期信頼性の高いものとすることのできるパワー半導体モジュールと、それらを組み合わせた複合モジュールを提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明の一様態のパワー半導体モジュールは、開口部を有する筐体と、前記筐体の内部に収容された回路板と、おもて面に電極を有し、裏面が前記回路板に固定された半導体素子と、前記半導体素子の電極と前記回路板との間を電気的に接続する配線部材と、前記筐体の開口部に固定された第1の蓋と、前記筐体の開口部に固定され、前記第1の蓋よりも外方に設けられた第2の蓋と、前記第1の蓋と前記第2の蓋との間の隙間を埋めて充填された第1の樹脂と、前記配線部材を覆い、露出面を有し、前記露出面が前記第1の蓋よりも前記配線部材に近い第2の樹脂と、一端が前記回路板に電気的かつ機械的に接続され、他端が前記第2の蓋よりも外方に突出した外部端子と、前記外部端子を覆い、前記第2の樹脂の露出面と前記第1の蓋との間に配置されたカバーとを備えている。
【0014】
また本発明の別の様態の複合モジュールは、上記のパワー半導体モジュールを複数個備え、各パワー半導体モジュールの前記外部端子同士を電気的に接続するバスバーユニットを備えている。
【発明の効果】
【0015】
本発明のパワー半導体モジュール及び複合モジュールによれば、高耐圧用のパワー半導体モジュールにおいて、絶縁性が高く、さらにベース板やケースの変形等を抑制し、長期信頼性の高いものとすることができる。
【図面の簡単な説明】
【0016】
図1図1は、本発明の実施形態1のパワー半導体モジュールの断面図である。
図2図2は、実施形態2のパワー半導体モジュールの断面図である。
図3図3は、実施形態3の複合モジュールの断面図である。
図4図4は、従来のパワー半導体モジュールの一例の断面図である。
【発明を実施するための形態】
【0017】
以下、本発明のパワー半導体モジュールの実施形態について、図面を参照しつつ具体的に説明する。なお、本出願の記載に用いられている「電気的かつ機械的に接続されている」という用語は、対象物同士が直接接合により接続されている場合に限られず、ハンダや金属焼結材などの導電性の接合材を介して対象物同士が接続されている場合も含むものとする。
【0018】
(実施形態1)
図1は、本発明の実施形態1のパワー半導体モジュールの断面図である。本実施形態のパワー半導体モジュールは、いわゆる1in1モジュールと呼称されるものであり、スイッチング素子と還流ダイオードが逆並列に接続された回路を有している。
図1に示した本実施形態のパワー半導体モジュール1は、ベース板8と枠体7からなる筐体2と、絶縁基板3の一部である回路板33と、半導体素子としての半導体チップ5と、配線部材10と、第1の蓋12と、第2の蓋14と、第1の樹脂11と、第2の樹脂15と、外部端子9(9a、9b)と、カバー13を備えている。
放熱用の金属製のベース板8は、略四角形の平面形状を有している。このベース板8上には、絶縁基板3が接合されている。絶縁基板3は図1で示すとおり、絶縁板31と、絶縁板31の一方の面に設けられた金属板32と、絶縁板31のもう一方の面に設けられ、所定の回路が形成された回路板33とで構成されている。絶縁基板3の金属板32は、ベース板8の主面と、はんだなどの接合材4により接合されている。絶縁板31は例えば窒化アルミニウムや窒化珪素、酸化アルミニウム等の絶縁性セラミックスよりなり、金属板32、回路板33は、例えば銅よりなる。そして回路板33は、図示した例では所定の回路が形成された回路板33a、33bを有している。絶縁基板3は、これらの絶縁板31と金属板32、回路板33とを直接接合したDCB基板等を用いることができる。
【0019】
半導体チップ5は、おもて面および裏面にそれぞれ電極が設けられている。そして、裏面の電極がはんだなどの導電性の接合材6を介して、回路板33aに電気的かつ機械的に接続されている。半導体チップ5は、具体的には、例えばショットキーバリアダイオードやパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)である。半導体チップ5はシリコン半導体からなるものでもよいし、SiC半導体からなるものでもよい。半導体チップ5がIGBTの場合では、裏面の電極はコレクタ電極であり、おもて面の電極はエミッタ電極及びゲート電極である。半導体チップ5が炭化ケイ素(SiC)からなるパワーMOSFETである場合は、シリコンからなる半導体チップに比べて高耐圧で、かつ高周波でのスイッチングが可能であるために、本実施形態のパワー半導体モジュールの半導体チップ5として最適である。もっとも、半導体チップ5は、IGBTやパワーMOSFETに限定されず、スイッチングの動作が可能な半導体素子の一個又は複数個の組み合わせであればよい。
【0020】
ベース板8の周縁に枠体7が設けられている。枠体7は枠形状を有し、絶縁性、耐熱性、成形性のよい樹脂、例えばエポキシ樹脂やPPS(Polyphenylene Sulfide)、PBT(Polybutylene terephthalate)等からなる。また、枠体7はセラミックスでも構わない。枠体7の下端部は、ベース板8の主面の周縁に接着剤により接合され、枠体7とベース板8によりパワー半導体モジュール1の筐体2が構成されている。筐体2内には絶縁基板3や半導体チップ5が収容される。筐体2内の回路板33a、33bに、外部端子9a、9bの一端が電気的かつ機械的に接続されている。外部端子9a、9bの他端は、上方に延び、後述する第2の蓋14よりも外方に突出し、接続部9ac、9bcを構成している。
【0021】
パワー半導体モジュール1には、配線部材10が設けられている。配線部材10は、導電板10aと、導電ポスト10bにより構成されている。導電板10aは、半導体チップ5及び絶縁基板3の回路板33に対向して設けられている。そして、導電ポスト10bは、一端が半導体チップ5の第2電極又は絶縁基板3の回路板33に電気的かつ機械的に接続され、他端が導電板10aと電気的かつ機械的に接続されている。
配線部材10により、例えば半導体チップ5のおもて面電極と、回路板33bとが電気的に接続される。本実施形態において配線部材はボンディングワイヤよりも、導電板10aと導電ポスト10bで構成された配線部材10が好ましい。後述するように本実施形態においては、枠体7内に注入される第2の樹脂15が熱硬化性樹脂であるため、配線部材がボンディングワイヤである場合には、熱硬化性樹脂と他の部材との線膨張係数の相違によってボンディングワイヤが破断するおそれがあった。これに対し配線部材が導電板10aと導電ポスト10bで構成される場合には、熱硬化性の第2の樹脂15であっても破断等が生じず、またベース板8や枠体7の過度な変形も回避することができ、長期信頼性と高絶縁性能との両立が可能となる。配線部材10は、例えば半導体チップ5がIGBTである場合には、おもて面電極のうちのエミッタ電極と、絶縁基板3の回路板33bを電気的に接続している。また、配線部材10は、おもて面電極のうちのゲート電極と、絶縁基板3の回路板33c(図示せず)を電気的に接続している。
【0022】
導電板10aや導電ポスト10bは、例えば導電性のよい銅よりなる。また、導電板10aや導電ポスト10bは、必要に応じてめっきを表面に施すことができる。導電ポスト10bの外形は、円柱形状、直方体形状等の形状とすることができるが特に限定されない。導電ポスト10bの底面は、半導体チップ5のおもて面電極より小さい大きさである。更に、一つの半導体チップ5に対する導電ポスト10bの設置数は任意であり、一つのおもて面電極に複数個の導電ポスト10bを接合することも可能である。
【0023】
導電板10aと導電ポスト10bとは、はんだやロウ付けにより電気的かつ機械的に接続されている。パワー半導体モジュール1は、導電板10aと導電ポスト10bとをあらかじめ一体化した配線部材10を用いているので、その製造工程を簡素化することができる。
【0024】
また、導電板10aは銅板に限られず、絶縁板の少なくとも一方の表面に、銅やアルミニウム等の導電性金属により形成された金属層が形成された回路基板であってもよい。回路基板である場合は、少なくとも2層の金属層を有する構成が好ましい。一層は、半導体チップ5のおもて面電極のうちのエミッタ電極と、絶縁基板3の回路板33bを電気的に接続するための金属層である。もう一層は、半導体チップ5のおもて面電極のうちのゲート電極と、絶縁基板3の回路板33c(図示せず)を電気的に接続するための金属層である。
【0025】
筐体2内に第2の樹脂15が注入され、絶縁基板3、半導体チップ5、配線部材10が封止され、第2の樹脂15の露出面15aが形成される。第2の樹脂15は、絶縁性が高く、更に高温使用に耐えられるという観点から熱硬化性の樹脂とし、例えばエポキシ樹脂が好ましい。第2の樹脂15は、配線部材10を覆い、かつ配線部材10の上端の近傍の高さで注入される。具体的には、配線部材10の上端より1mm程度高い高さに、露出面15aが配置される。例えば、ベース板8の上面から配線部材10の上端までの高さを10mm程度にした場合、露出面15aはベース板8の上面から11mm程度の高さにすると良い。第2の樹脂15の注入量が多いほど、筐体2内で第2の樹脂15による熱応力が発生し易く、パワー半導体モジュールの長期信頼性が低下する。また、コストや軽量化の観点からも不利である。よって本実施形態では、第2の樹脂15の注入量を、上述した配線部材10を覆うだけの必要最小限とする。これにより、パワー半導体モジュール1の変形を抑制するとともに、パワー半導体モジュール1のコストアップ、重量アップを回避することが可能となる。また、前述のように配線部材を導電板10aと導電ポスト10bで構成することにより、従来例のボンディングワイヤによる配線に比べて、配線部材の上端の高さを正確に制御することができる。このため、第2の樹脂15の注入量を上記のように必要かつ最小限に制御することができるため、有効である。
【0026】
筐体2内における露出面15aよりも上側の領域は、空間とすればよい。この領域に空間を設け、ベース板8と外部端子の接続部9ac、9bcとの距離を確保することによって、パワー半導体モジュール1の高耐圧特性が確保できる。また別の例として,第2の樹脂15より上側の領域に、樹脂よりなる封止材とは別の封止材、例えばゲル状の封止材を注入して絶縁性を確保することも可能である。
【0027】
枠体7に設けられた段差部7aに係止され、筐体2の開口部を覆うように、第1の蓋12が設けられる。第1の蓋12は、絶縁性、耐熱性、成形性のよい樹脂、例えばエポキシ樹脂やPPS、PBTなどからなる。セラミックスでも構わない。また第1の蓋12には孔が設けられていて、その孔に外部端子9a、9bが通される。
【0028】
第1の蓋12と、第2の樹脂15の露出面15aとの間の空間において、外部端子9の周囲を覆って、カバー13が設けられている。カバー13は、一例では中空の円筒形状であって、内径が外部端子9a、9bを挿入可能な大きさになっている。カバー13は、絶縁性、耐熱性、成形性のよい樹脂、例えばエポキシ樹脂やPPS、PBTなどからなる。カバー13の上端は第1の蓋12に当接し、下端は第2の樹脂15内に達していれば特に位置を問わない。なお図1に示した例では、カバー13の下端は回路板33まで達している。また別の例として図3に示した例では、カバー13の下端が第2の樹脂15の露出面15aの近傍に配置されている。
【0029】
第1の蓋12と第2の樹脂15との間の空間で、外部端子9a、9bをカバー13で覆うことにより、外部端子9a、9bは空間に露出することがなくなって絶縁性が維持される。そのため、パワー半導体モジュール1の高耐圧特性を確保することができる。また、第1の蓋12とカバー13との組み合わせは、特許文献3に記載された封止板のような複雑形状ではないため製造が容易であり、製造コストが安価に済む。
【0030】
第1の蓋12よりも筐体2の外方に、第2の蓋14が設けられる。第2の蓋14は、第1の蓋12と同様に、絶縁性、耐熱性、成形性のよい樹脂、例えばエポキシ樹脂やPPS、PBTなどからなる。また、第2の蓋14はセラミックスでも構わない。第2の蓋14にも第1の蓋12と同様に孔が設けられていて、外部端子9a、9bが通される。
【0031】
第1の蓋12と第2の蓋14との間には、第1の樹脂11が充填される。第1の樹脂11は、第2の樹脂15と同様に、絶縁性が高い熱硬化性の絶縁性樹脂として、エポキシ樹脂が好ましい。
【0032】
第1の蓋12と第2の蓋14との間に第1の樹脂11が充填されたことにより、パワー半導体モジュール1の高耐圧特性を高めることができる。また、充填された第1の樹脂11は外部端子9a、9bに接するように配置される。そして、第1の樹脂11は、第1の蓋12及び第2の蓋14に設けられた外部端子9a、9bを挿通する孔と、外部端子9a、9bとの隙間を埋めるように配置される。これにより、筐体2の内部とパワー半導体モジュール1の外部との絶縁が確保でき、パワー半導体モジュール1の高耐圧特性を確保することができる。
さらに第1の樹脂11は、第1の蓋12とカバー13との当接箇所に生じ得る隙間を埋めることも可能であり、この点でも、高耐圧特性に有利である。第1の樹脂11は第2の蓋14と第1の蓋12との間で、1mm程度の厚さを有していれば十分であるため、第2の蓋14と第1の蓋12との間の間隙は、1mm程度とする。
またさらに第1の樹脂11は、第1の蓋12および第2の蓋14と、枠体7との間の隙間を埋め、同時に蓋12、14を枠体7に固定する接着材としても機能している。これにより、高耐圧特性を確保できるとともに、蓋と枠体を接着する接着材を別途準備する必要がなくなるため、製造コストも低減可能である。
【0033】
本実施形態のパワー半導体モジュール1は、長期信頼性は高い一方、線膨張係数が大きく、熱応力の大きい熱硬化性樹脂からなる第2の樹脂15を、配線部材10を覆う必要最小限の量とする。そして、筐体2内の第2の樹脂15と開口部との間に空間を設けることにより、沿面距離を確保している。また、この空間内で外部端子9a、9bをカバー13で覆うことにより外部端子9a、9b近傍の絶縁性を確保している。更に、第2の蓋14と第1の蓋12とを設け、これらの間に第1の樹脂11を充填することより、筐体2の開口部での絶縁性を高めている。したがって、本実施形態のパワー半導体モジュール1は、長期信頼性を維持しつつ高い絶縁性を得ることができる。
【0034】
パワー半導体モジュール1は、従来のパワー半導体モジュールと同様に、冷却部材(図示せず)にねじなどで固定される。そして接地されている冷却部材と外部端子と間の沿面距離を長くして絶縁性を高めるために、本実施形態では枠体7の外面7bには凹凸が設けられている。これらの凹凸が、上述した構成と相まって、パワー半導体モジュール1の高耐圧特性に寄与している。本実施形態により、例えば耐圧13kV以上という、極めて高い耐圧特性を具備するパワー半導体モジュールが得られる。なお、パワー半導体モジュール1の耐圧特性は、冷却部材から外部端子9a、9bの接続部9ac、9bcまでの高さ、で決まる。そのため、所望の耐圧特性に合わせて、第2の樹脂15と第1の蓋12との間隔を適宜調整し、必要な長さの外部端子9a、9bを設ければよい。
【0035】
(実施形態2)
図2に、本発明の実施形態2のパワー半導体モジュールの断面図を示す。図2においては、図1に示した実施形態1のパワー半導体モジュール1と同一の部材について同一の符号を付した。したがって、以下に述べる実施形態2のパワー半導体モジュールの説明では、図1に示した実施形態1のパワー半導体モジュール1と同一の部材についての重複する説明は省略する。
【0036】
図2に示した実施形態2のパワー半導体モジュール21の、図1に示した実施形態1のパワー半導体モジュール1との相違点は、第2の蓋14から外方に突出する複数の外部端子9a、9b(具体的には例えばP端子とN端子)の間に、第2の蓋14の突起14aを設けた点である。突起14aが設けられたことにより、外部端子9a、9b間の絶縁性を高めることができ、ひいてはパワー半導体モジュール21の絶縁性を、より高めることができる。
【0037】
(実施形態3)
図3に、本発明の実施形態3の複合モジュールの断面図を示す。図3においては、図2に示した実施形態2のパワー半導体モジュール21と同一の部材について同一の符号を付した。したがって、以下に述べる実施形態3の複合モジュールの説明では、実施形態2のパワー半導体モジュール21と同一の部材についての重複する説明は省略する。
【0038】
図3に示した複合モジュール41は、2個のパワー半導体モジュール21を備えている。そして、2個のパワー半導体モジュール21において対応する同一の外部端子9a、9b同士を電気的に接続する、バスバーユニット42を備えている。バスバーユニット42は、例えばP端子用の外部端子9a同士を接続するバスバー43と、N端子用の外部端子9b同士を接続するバスバー44とを有し、バスバー43、44を絶縁性のモールド樹脂45で一体的に成形してなるものである。この構成により、1in1モジュールであるパワー半導体モジュール21を複数並列に接続し、定格の電流容量を増加させた1in1モジュールが構成される。バスバー43と外部端子9aとの接続やバスバー44と外部端子9bとの接続は、ねじ止め、はんだ、レーザ溶接等によって行われる。またモールド樹脂45は、例えばエポキシ樹脂、PPS、PBT等である。バスバー43、44は、それぞれ外部装置(図示せず)と電気的に接続する端子部43a、44aを有している。またバスバー43、44は、1mm以下の間隔を空け、上下方向に部分的に重なり合うように配置されている。これにより、バスバー43、44に互いに逆向きの電流が流れるとき、その電流による磁力線を相殺させ、自己インダクタンスを低減させることができる。
【0039】
また、バスバーユニット42には、端子部43aと44aとの間に、モールド樹脂45と一体である凹凸部45aが設けられている。凹凸部45aにより端子部43aと44a間の絶縁性を高めることができ、ひいては複合モジュール41の絶縁性を、より高めることができる。
【0040】
本実施形態の複合モジュール41は、複数のパワー半導体モジュールを並列に接続しているが、用途に応じ、直列に接続するようにバスバーユニットのバスバー配置とすることができる。
【0041】
以上、本発明のパワー半導体モジュール及び複合モジュールを図面及び実施形態を用いて具体的に説明したが、本発明のパワー半導体モジュール及び複合モジュールは、実施形態及び図面の記載に限定されるものではなく、本発明の趣旨を逸脱しない範囲で幾多の変形が可能である。
【符号の説明】
【0042】
1、21 パワー半導体モジュール
2 筐体
3 絶縁基板
31 絶縁板
32 金属板
33 回路板
4、6 接合材
5 半導体チップ(半導体素子)
7 枠体
8 ベース板
9a、9b 外部端子
9ac、9bc 接続部
10 配線部材
10a 導電板
10b 導電ポスト
11 第1の樹脂
12 第1の蓋
13 カバー
14 第2の蓋
15 第2の樹脂
15a 露出面
41 複合モジュール
42 バスバーユニット
43、44 バスバー
45 モールド樹脂
図1
図2
図3
図4