(58)【調査した分野】(Int.Cl.,DB名)
前記第一又は第二のシャッタ部へ圧力をかけて前記第一の流路を圧接する際に、前記第一の流路が前記中間層を介し撓んで前記穴部に入り込み圧接・挟持されることにより前記第一の流路を閉鎖するように構成したことを特徴とする請求項4に記載のマイクロチップ。
前記移送元槽を複数設け、この複数の移送元槽から前記移送先槽へ流入する前記第一の流路を相互に影響を与える試料ごとに異なる複数の第一の流路に分けて設置すると共に、前記第一の流路ごとに前記第一のシャッタ部を設けたことを特徴とする請求項1乃至6のいずれか一つに記載のマイクロチップ。
前記複数の第一の流路の交差部において、前記第一のシャッタ部の一端を前記交差部内に突出させるように構成し、前記交差部で一つの前記第一のシャッタ部により一の第一の流路が開放され試料が移送されている際には、他の前記第一のシャッタ部により他の第一の流路が閉鎖されるように構成したことを特徴とする請求項7に記載のマイクロチップ。
【発明を実施するための形態】
【0019】
次に、本発明の実施の形態について図面を参照して説明する。
【0020】
図1は本発明におけるマイクロチップおよび移送方法を使用し、試料を移送・反応させ遺伝子解析など微細な成分を分析する装置の構成を示す斜視図である。
【0021】
機枠1にはテーブル3が支柱2を介し設けられ、さらにテーブル3にはOリング6に周囲をシールされた廃棄穴5が設けられている。また、廃棄穴5は、廃棄電磁弁7、チューブ7aを介し機枠1上に設けられた廃棄槽8に接続されている。また、テーブル3上面にはマイクロチップ50に設けられたピン穴50a、50bと合致し所定の位置に案内するための位置決め用のピン10a、10bが凸状に設置されている。さらに、テーブル3にはヒンジ9を介し、締結ネジ25と周囲をOリング26でシールされ貫通した加圧穴22a、22b、22c、22d、22eおよび周囲をOリング27でシールされたシャッタ加圧穴23a、23b、23c、23d、23e、23f、23gを有するカバー20が、A及びB方向に回動可能に設けられている。さらに、テーブル3上の一端には締結ネジ25と一致する位置にネジ穴4が設けられている。
【0022】
さらに、カバー20を貫通する状態で設けられた加圧穴22a、22b、22c、22d、22eはチューブ17により加圧電磁弁16a、16b、16c、16d、16eの二次側に接続されている。さらに、シャッタ加圧穴23a、23b、23c、23d、23e、23f、23gは、チューブ17によりシャッタ電磁弁18a、18b、18c、18d、18e、18f、18gの二次側に接続されている。また、加圧電磁弁16a、16b、16c、16d、16eおよびシャッタ電磁弁18a、18b、18c、18d、18e、18f、18gの一次側は蓄圧器11に接続され、蓄圧器11にはモータ13により駆動されるポンプ12と内部圧力を検出する圧力センサ14が接続されている。
【0023】
一方、あらかじめ設定されたプログラムを実行するコントローラ15には加圧電磁弁16a、16b、16c、16d、16eおよび廃棄電磁弁7、シャッタ電磁弁18a、18b、18c、18d、18e、18f、18gが動作制御可能に接続されている。さらに、蓄圧器11内の圧力を所定圧に制御可能なようにポンプ12を駆動するモータ13および該蓄圧器11内の圧力を検出しフィードバックを行う圧力センサ14が接続されている。以上の構成により、コントローラ15からの指令により蓄圧器11内の圧力は常に所定の圧力に保たれている。
【0024】
図2は本発明の形態を示すマイクロチップ50の詳細を示す斜視図である。
【0025】
マイクロチップ50は多層構造を成し、それぞれ伸縮性樹脂からなるメインプレート51a、第2プレート(シート)51b、第3プレート(シート)51c、第4プレート(シート)51dを貼り合わせた構成となっている。
【0026】
マイクロチップ50上には、メインプレート51a、第2プレート51bを貫通して凹状を成す試料槽52a、52b、52cおよび第二反応槽53a、53b、53cが設けられている。さらに、メインプレート51aおよび第4プレート51dを貫通し、第2プレート51bおよび第3プレート51cを貫通されない状態で挟持する反応槽52d、抽出槽52eが設けられている。また、反応槽52d内には微細な成分を吸着する磁気ビーズに代表される吸着部材101が乾燥固定されている。尚、乾燥固定の説明は
図4にて後述する。
【0027】
また、マイクロチップ50上には、メインプレート51a、第2プレート51b、第3プレート51cを貫通し凹状を成すシャッタ口63a、63b、63c、63d、63e、63f、63gが設けられている。さらに、廃棄穴90は第2プレート51b、第3プレート51c、第4プレート51dを下方向に貫通するように設けられている。
【0028】
また、
図1で示すテーブル3上に該マイクロチップ50を搭載し、カバー20をB方向へ回動し締結ネジ25とネジ穴4によりマイクロチップ50をテーブル3とカバー20で挟持した際には、試料槽52a、52b、52cは加圧穴22a、22b、22cと、反応槽52dは加圧穴22dと、抽出槽52eは加圧穴22eと、シャッタ口63a、63b、63c、63d、63e、63f、63gは、それぞれシャッタ加圧穴23a、23b、23c、23d、23e、23f、23gと合致した位置で搭載される構成となっている。
【0029】
さらに、試料槽52a、52b、52c、反応槽52d、抽出槽52e、第二反応槽53a、53b、53cは第2プレート51bと第3プレート51cの間で構成される流路72a、72b、72c、72d、72e、72f、72gで連接されている。また、シャッタ口63a、63b、63c、63d、63e、63f、63gは、第3プレート51cと第4プレート52dの間で構成されるシャッタ流路(加圧路)83a、83b、83c、83d、83e、83f、83gと連接されると共に、その先端は第3プレート51bを挟持状態で流路72a、72b、72c、72d、72e、72f、72gの下部に潜入され一部が交差するように設けられている。
【0030】
また、流路72a、72b、72c、72d、72e、72f、72gは構成される第2プレート51bと第3プレート51cを接着する際に、流路となるべき部分を未接着として剥離可能な状態で構成されている。同様に、シャッタ流路83a、83b、83c、83d、83e、83f、83gは、構成される第3プレート51cと第4プレート51dを接着する際に、流路となるべき部分を未接着として剥離可能な状態で構成されている。
【0031】
また、反応槽52d及び抽出槽52e内の第2プレート51bと第3プレート51c間も同様にメインプレート51aの貫通穴の径とほぼ同径部は未接着となっており、流路72d、72e、72gと連接される構成となっていると共に、内部に試料が注入された際には該同径部が膨らみ試料を蓄積せしめる構成となっている。
【0032】
さらに、試料槽52a、52b、52cには試料100a、100b、100cが充填された後、弾性部材からなるフィルム91が試料槽52a、52b、52c全体に被覆される。
【0033】
試料槽52a、52b、52cからの移送動作を
図3を参照して説明する。
図3Aおよび
図3Bは試料槽52a、52b、52cの断面図を示す。
【0034】
図3Aは初期状態を示し、マイクロチップ50のメインプレート51a、第2プレート51bを貫通した試料槽52a、52b、52cには試料100a、100b、100cが充填され上部をフィルム91で封鎖されている。さらに、マイクロチップ50はOリング26を介しカバー20とテーブル3に挟持されている。また、マイクロチップ50の構成をなす弾性部材からなる第2プレート51bと第3プレート51cの間には非接着部分からなる流路71a、71b、71cが該試料槽52a、52b、52cから連接された状態で設けられている。図中には破線で示し説明上容積のある実部位として示してあるが、実態は非接着部による閉鎖状態である。
【0035】
次に、移送の動作を
図3Bで説明する。
図3Bの状態から
図1で示すコントローラ15の予め設定されたプログラムにより、加圧電磁弁16a、16b、16cがONされると、圧縮空気に代表される加圧媒体が、カバー20の加圧口22a、22b、22cに印加される。その結果、
図3Bで示すカバー20上の加圧口22a、22b、22cから印加された加圧媒体は、周囲をOリング26でシールされているため、弾性部材からなるフィルム91をD方向、すなわち試料槽52a、52b、52cの内部に押し込み、充填されていた試料100a、100b、100cを加圧する。さらに、加圧された試料100a、100b、100cは、プログラム上開放されている第2プレート51bと第3プレート51cの間で構成される流路71a、71b、71cを押し広げながらE方向へ流出する。
【0036】
次に、反応槽52dおよび抽出槽52eへの移送および抽出動作を
図4を参照して説明する。
図4Aは反応槽52dおよび抽出槽52eへ注入される前の状態を示す断面図である。
【0037】
マイクロチップ50はカバー20のOリング26とテーブル3の間で挟持されている。反応槽52dおよび抽出槽52eはマイクロチップ50を構成するメインプレート51aおよび第4プレート51dが貫通穴の形態であり、中間部に挟持される第2プレート51bおよび第3プレート51cはほぼ反応槽52dおよび抽出槽52eと同径の非接着部分を有し、さらに非接着部の両端は流路72d、72e又は72e、72gと連接している。また、反応槽52d内部には吸着部材101が乾燥固定されている。
【0038】
次に、反応槽52dおよび抽出槽52eからの流出動作を
図4Bを参照して説明する。
【0039】
図3で説明したように、試料100a、100b、100cはE方向から流路72d、72e内を移送される。さらに、予め設定されたプログラムにより流出側の流路72e、72gが閉鎖されていると共に加圧口22d、22eには空気に代表される加圧媒体の圧力は開放されている。その結果、試料100a、100b、100cは、第2プレート51bおよび第3プレート51cからなる反応槽52dおよび抽出槽52eと同径の非接着部分に、第2プレート51bおよび第3プレート51cを風船状に膨張させながら移送される。
【0040】
次に、反応槽52dおよび抽出槽52eへの移送動作を
図4Cを参照して説明する。
【0041】
前述の
図4Bの状態から、カバー20上の加圧口22d、22eより空気に代表される加圧媒体を印加すると共に、流入流路72d、72eを閉鎖し、流出流路72e、72gを開放すると、風船状に膨張していた第2プレート51bおよび第3プレート51cの非接着部分に充填されていた試料100a、100b、100cは加圧され、流出流路72e、72gを介してF方向に吐き出される。
【0042】
以上の構成により、コントローラ15内部にあらかじめ設定されたプログラムに基づき、蓄圧器11内部の空気に代表される加圧媒体の圧力を、順次加圧電磁弁16a、16b、16c、16d、16eおよび廃棄電磁弁7、シャッタ電磁弁18a、18b、18c、18d、18e、18f、18gを介して、カバー20の加圧穴22a、22b、22c、22d、22eおよびシャッタ加圧穴23a、23b、23c、23d、23e、23f、23gへ印加する。
【0043】
その結果、マイクロチップ50において試料槽52a、52b、52c、反応槽52d、抽出槽52eの上部には、プログラム動作に基づき空気に代表される加圧媒体の圧力が順次印加される。さらに、シャッタ口63a、63b、63c、63d、63e、63f、63gにも同様にプログラム動作に基づき空気に代表される加圧媒体が順次印加される。すなわち、プログラムに基づき所望する流路の開閉および試料槽52a、52b、52c、反応槽52d、抽出槽52eの上部に加圧媒体を印加することで、試料100a、100b、100cを反応槽52dや抽出槽52e、第二反応槽53a、53b、53cへの移送および廃棄穴90から外部へ廃棄が可能な構成となっている。
【0044】
次に、本発明におけるマイクロチップの詳細な構成および詳細な動作を
図5から
図20を参照して説明する。ここで、
図5から
図20はマイクロチップの一部を示す平面図である。尚、説明上流路は実線、シャッタ流路は破線で示してある。
【0045】
図5はマイクロチップ50の初期状態を示す。マイクロチップ50上の試料槽52a、52b、52cには
図3Aで説明したように、試料100a、100b、100cが充填されると共に上部を弾性部材からなるフィルム91で被覆されている。反応槽52dおよび抽出槽52eは
図4で説明したように、風船状形態をなし、さらに反応槽52dには微細な成分を吸着する吸着部材101が固定化されている。
【0046】
さらに、試料槽52a、52b、52cは一部の広域を有する交差部Cを介し流路72a、72b、72c、72dにより反応槽52dと連接されている。また、反応槽52dは流路72eと72fが分岐する状態で抽出槽52eと廃棄口90と連接されている。
【0047】
さらに、シャッタ口63a、63b、63cからはシャッタ流路83a、83b、83cが連接され、その一端は、
図2で説明したように流路72a、72b、72cの下方に潜り込むと共に、交差部Cにおいて広域部の一部に重複する状態で設けられている。さらに、シャッタ口63dからコの字形状のシャッタ流路83dが連接され、その一端は流路72eおよび流路72fと重複する状態で下方に潜り込み流路72f途中で終了している。
【0048】
さらに、シャッタ口63eからはシャッタ流路83eが連接され、その一端は流路72fの下方に潜り込み、シャッタ流路83dの終端近傍と廃棄口90の間まで延伸している。また、シャッタ口63fからはシャッタ流路83fが連接され、その一端は流路72eと重複する状態で下方に潜り込み、抽出槽52eの近傍まで延伸している。また、抽出槽52eからは流路72gが連接され、
図2で示す第二反応槽53a、53b、53cに連接されている。
【0049】
図5で示す初期段階では、
図1で示すプログラムを実行するコントローラ15からの指令で、加圧穴22a、22b、22c、22d、22eおよびシャッタ加圧穴23a、23b、23c、23d、23e、23f、23gには加圧媒体が印加されていない状態である。すなわち、
図5で示すマイクロチップ50の試料槽52a、52b、52c、反応槽52d、抽出槽52eの上部およびシャッタ口63a、63b、63c、63d、63e、63f、63gには加圧媒体が印加されていない状態である。
【0050】
次に、第1段階の動作を
図6にて説明する。第1段階の動作は試料槽52aに充填された試料100aを反応槽52dに移送する工程である。
図5で説明した初期段階から、シャッタ口63b、63c、63d、63e、63fに加圧媒体を印加する。その結果、シャッタ流路83b、83c、83d、83e、83fに加圧媒体が導かれ弾性部材を撓ませ、流路72b、72c、72e、72fを閉鎖する。その後、試料槽52aの上部から加圧媒体を印加すると、
図3で説明したようにフィルム91を介し内部の試料100aを移送する。このとき試料100aは
図4で説明したように、G方向すなわち唯一開放されている流路72aを介し反応槽52dへ移送される。
【0051】
次に、第2段階の動作を
図7にて説明する。第2段階の動作は流路72aに移送され残存している試料100aを、反応槽52aへ移送する工程である。
図6の状態からシャッタ口63aへ加圧媒体を印加すると、加圧媒体はシャッタ流路83aに導かれ、流路72aの下部へ導かれると共に弾性部材を撓ませ、流路72aと重複する部分に残留していた試料100aをG方向へ搾り出す。その結果、反応槽52dには流路72aに残存していた試料100aがさらに充填されることとなる。一方、反応槽52dでは、試料100aに含まれていた微細な成分が、吸着部材101と接触し吸着される。
【0052】
次に、第3段階の動作を
図8で説明する。第3段階の動作は反応槽52dに充填されていた試料100aを廃棄する工程である。
図7で示した第2段階の状態からシャッタ口63d、63eに印加されていた加圧媒体の印加を解除した後、反応槽52dの上部から加圧媒体を印加する。その結果、流路72e、72fは開放される。また、抽出槽52eへの流入流路はすでにシャッタ流路83fで閉鎖されている。さらに、反応槽52a内に充填されていた試料100aは、
図4で説明したように唯一開放されている流路72e、72fすなわちH方向へ移送されるため、廃棄口90を介して廃棄される。
【0053】
次に、第4段階の動作を
図9で説明する。第4段階の動作は流路72eおよび72fの一部に移送され残存している試料100aを廃棄する工程である。
図8で示した第3段階の状態からシャッタ口63dへ加圧媒体を印加すると、シャッタ流路83dに加圧媒体が導かれ、流路72e、72fと重複部分に残留していた試料100aをH方向すなわち廃棄口90方向へ搾り出し廃棄する。
【0054】
次に、第5段階の動作を
図10で説明する。第5段階の動作は、試料槽52bに充填されていた試料100bを反応槽52dへ移送すると共に、反応槽52dの近傍の交差部Cおよび流路72d、72eに残存していた試料100aを廃棄口近辺に移送すると共に、試料100bにて所望する微細成分以外の成分を洗浄する工程である。
図9で示した第4段階の状態からシャッタ口63eに加圧媒体を印加すると共に反応槽52dおよびシャッタ口63dに印加していた加圧媒体の印加を解除する。その後、試料槽52bの上部から加圧媒体を印加する。その結果、試料槽52bに充填されていた試料100bはI方向に導かれ流路72b、交差部C、流路72dを介して反応槽52dに移送されると共に、流路72eおよびシャッタ流路83eで閉ざされた流路72f途上まで移送される。このとき、
図9で示した反応槽52d近傍に残存していた試料100aは流路72fのシャッタ流路83e近傍までH方向に移送される。
【0055】
次に、第6段階の動作を
図11で説明する。第6段階の動作は、流路72eおよび72f内に残存している試料100aおよび試料100bを廃棄する工程である。
図10で示した第5段階の状態からシャッタ口63eへの印加していた加圧媒体の印加を解除した後、シャッタ口63dに加圧媒体を印加する。その結果、シャッタ流路83dは順次膨張し、流路72eおよび72f内に残存していた試料100aおよび試料100bをH方向へ移送し、廃棄口90を介し廃棄する。その結果、反応槽52dおよび交差部C近傍には試料100bのみが残存することとなる。またこのとき、反応槽52d内の吸着部材101には所望する微細成分が吸着されており、所望以外の微細成分は廃棄、すなわち洗浄された状態となる。
【0056】
次に、第7段階の動作を
図12で説明する。第7段階の動作は、反応槽52d内に風船状態で充填されている試料100bを廃棄する工程である。
図11で示した第6段階の状態からシャッタ口63dに印加していた加圧媒体の印加を解除した後、反応槽52dの上部から加圧媒体を加圧印加する。その結果、反応槽52d内に充填されていた試料100bは唯一解放されている流路72e、72fをH方向へ移送され、一部は廃棄口90を介し廃棄される。すなわち、反応槽52d内の試料100bは廃棄される。
【0057】
次に、第8段階の動作を
図13で説明する。第8段階の動作は、流路72e、72fに残存する試料100bを廃棄する工程である。
図12で示した第7段階の状態からシャッタ口63dに加圧媒体を印加する。その結果、シャッタ流路83dは順次膨張し、流路72eおよび72f内に残存していた試料100bをH方向へ移送し、廃棄口90を介し廃棄する。また、交差部Cには一部試料100bが残存している。
【0058】
次に、第9段階の動作を
図14で説明する。第9段階の動作は試料槽52c内の試料100cを反応槽52dへ移送する工程である。
図13で示した第8段階の状態から、シャッタ口63cに印加していた加圧媒体の印加を解除しシャッタ流路83cを開放した後、試料槽52cの上部に加圧媒体を印加すると試料100cはJ方向に移送され反応槽52dを風船状に膨張させながら内部に充填される。その際、交差部Cに残存していた試料100bの一部を反応槽52dに連接される流路72eの一端に押出す。
【0059】
次に、第10段階の動作を
図15で説明する。第10段階の動作は流路72c内に残存する試料100cを反応槽52dへ押出し移送する工程である。
図14で示した第9段階の状態からシャッタ口63cへ加圧媒体を印加するとシャッタ流路83cは膨張し、流路72cと重なる部分の試料100cをJ方向に搾り出す。その結果、試料100cは反応槽52dへ移送される。
【0060】
次に、第11段階の動作を
図16で説明する。第11段階の動作は第10段階で流路72eの一端に移送され残存していた試料100bの一部と試料100cを流路72fに移送する工程である。
図15で示した第10段階の状態からシャッタ口63dに印加していた加圧媒体の印加を解除すると、シャッタ流路83dが流路72eを開放する。そのとき、反応槽52d内は風船状に膨張し内圧を有していることから、内部の試料100cを流路72e、72f内をH方向に導く。このとき、第10段階で反応槽52d近傍に残存していた試料100bを流路72fがシャッタ流路83eの閉鎖された近傍まで移送する。
【0061】
次に、第12段階の動作を
図17で説明する。第12段階の動作は流路72e、および72f内に残存していた試料100b、100cを廃棄する工程である。
図16で示した第11段階の状態からシャッタ口63dに加圧媒体を印加すると、シャッタ流路83dは膨張し流路72eおよび72fの内の試料100cをH方向に搾り出す。その結果、試料100b、100cは一部を流路72f内に残し廃棄口90から廃棄される。すなわち、反応槽52d内には試料100cのみが蓄積され、吸着部材101に吸着されていた所望する微細成分を溶解する。
【0062】
次に、第13段階の動作を
図18で説明する。第13段階の動作は反応槽52dに蓄積され微細成分が溶解された試料100cを、抽出槽52eに移送する工程である。
図17で示した第12段階の状態からシャッタ口63d、63fに印加していた加圧媒体の印加を解除しシャッタ流路83d、83fが流路72eを開放する。その後、反応槽52dの上部から加圧媒体を印加する。その結果、反応槽槽52d内部の試料100cは唯一開放されている流路72eをK方向に移送される。また、流路72gは
図2で示すシャッタ口63gに加圧媒体が印加されシャッタ流路83gが膨張し閉鎖されており、K方向に移送された試料100cは抽出槽52eを風船状に膨張させ充填される。
【0063】
次に、第14段階の動作を
図19で説明する。第14段階の動作は流路72eに残存している試料100cをシャッタ流路83dにより抽出槽52eに移送する工程である。
図18で示した第13段階の状態からシャッタ口63dに加圧媒体を印加すると、シャッタ流路83dが膨張し、流路72eと重複する部分の試料100cをK方向に搾り出し、唯一開放されている流路72eを介し抽出槽52eに移送する。
【0064】
次に、第15段階の動作を
図20で説明する。第15段階の動作は抽出槽52e近傍の流路72eに残存している試料100cを、さらに抽出槽52eに移送すると共に抽出槽52eを閉鎖する工程である。
図19で説明した第14段階の動作からシャッタ口63fに加圧媒体を印加すると、シャッタ流路83fは膨張し、抽出槽52e近傍の流路72eに残存していた試料100cをK方向に搾り出し抽出槽52eへ移送する。また、抽出槽52eから連接された流路72gは前工程で閉鎖されているため、抽出槽52e内に充填された試料100cは封止された状態となる。さらに、抽出槽52eに充填された所望の微細成分が溶解された試料100cは各工程で説明した通りに分析に悪影響を及ぼす試料100a、100bを含まない。すなわち、抽出槽52eに充填された試料100cは信頼性の高い分析が可能となる。また、抽出槽52eに充填された試料100cは、
図2で示すように同様の構成を駆動させることにより、さらに第二反応槽53a、53b、53cに移送され、例えばDNAの増幅などの次の処理がおこなわれる。
【0065】
以上本実施例の説明において、試料槽数を3槽、反応槽数を1槽、抽出槽数を1槽、第二反応槽数を3槽としたが、同様の流路およびシャッタ流路の機能を有する移送機構であれば同様の効果を奏する。すなわち、槽数には限定されない。
【0066】
また、
図6で示す流路72a、72b、72cの交差部Cにおいて円形状をなす広域部を設けると共に、シャッタ流路72a、72b、72cの先端部の一部が広域部に進出して設けられることにより、交差部Cでの試料が残存しにくい形状となる。すなわち、流路の交差する間際までシャッタ機能を作用させることが可能であり、交差部Cの近傍への試料残存を防止できると共に、移送される試料による洗浄効率が飛躍的に拡大する。
【0067】
また、実施例の広域部Cの説明において円形状にて説明を行ったが、楕円形状、菱形状等の広域部を有する交差部にても同様の効果を奏する。すなわち、広域部の形状に限定されない。
【0068】
次に、本発明に係る他の実施例について
図21Aを参照して説明する。
図21Aはマイクロチップ250の一部を示す平面図である。
【0069】
マイクロチップ250には上記実施例と同様に試料槽252、反応槽252dが設けられ、流路272が他の流路との交差部Cを経て連接されている。上記実施例と同様に、シャッタ口263bには流路283bが流路272の設けられた層とは異なる層に連接され、その他端は該流路272と長さ方向の一部が重複すると共に下部へ潜入する状態で設けられ、交差部Cの内部まで導かれている。さらに、シャッタ口263cには流路283cが流路272と流路283bの設けられた層とは異なる層に連接され、その他端は流路272と長さ方向の一部が重複すると共に下部へ潜入する状態で設けられ、交差部Cの内部まで導かれている。流路283cと流路283bによって、これにより流路272を進展圧接することにより、流路272を閉鎖すると共に、流路272内に残存した試料を搾り出すことができる。
【0070】
次に、本発明に係る他の実施例について
図21Bを参照して説明する。
図21Bはマイクロチップ250の一部を示す平面図である。
【0071】
マイクロチップ250には上記実施例と同様に試料槽252、反応槽252dが設けられ、流路272が他の流路との交差部Cを経て連接されている。また、上記実施例とは異なり、シャッタ口263cには流路283cが流路272の設けられた層とは異なる層に連接され、その他端は交差部Cから反応槽252dとの間の流路に重複する状態で設ける。流路283cを進展圧接することにより、流路272の交差部Cから反応槽252d間の流路を閉鎖すると共に、流路272内に残存した試料を搾り出すことができる。また、シャッタ口に接続された流路のための層を増すこと等により、シャッタ口に接続された流路を増すことによって、試料の通過する流路内に残存した試料の全てを搾り出すことができる。
【0072】
また、マイクロチップ250にはシャッタ口263cが設けられ、シャッタ流路283cが連接されている。さらに、シャッタ流路283cは流路272が設けられた層とは異なる上層に設けられ、その一端は流路272と長さ方向の一部が重複する状態上部へ乗上する状態で設けられ、交差部Cの内部まで導かれている。すなわち、上記実施例とは異なり流路272をシャッタ流路283b、283cが挟持する状態で構成されている。
【0073】
以上の構成により、シャッタ口263b、263cへ加圧媒体が同時に印加されると、シャッタ流路283b、283cは流路272を上層および下層から圧迫する状態となり、
図5で示した構成に比較して、流路の閉鎖および搾り出し機能が格段に飛躍する。すなわち、弾性部材からなる積層構成を有するマイクロチップにおいて、シャッタ流路は被制御体である流路に対し単一である必要はなく、複数で行っても同等もしくはより高い機能を発する。
【0074】
次に、本発明に係る他の実施例について
図22を参照して説明する。
図22Aおよび
図22Bは、マイクロチップ350における断面図を示したものである。
【0075】
マイクロチップ350は弾性部材からなるメインプレート351a、第2プレート351b、第3プレート351c、第4プレート351dの積層構造をなす。流路372は微細線状をなし第3プレート351cと第4プレート351dの間に流路部を非接着された状態で構成される。また、シャッタ流路383は微細な線状をなし、第2プレート351bと第3プレート351cとの間流路部を非接着された状態で構成される。
図22では説明上容積が存在するような表示をしているが、事実上の容積は限りなく0に近い状態である。また、マイクロチップ350が搭載されたテーブル303には流路372とシャッタ流路383の交差部と一致する位置に、凹部形状の窪み部303aが設けられている。
【0076】
次に、
図22Bを参照してその動作を説明する。
図22Aに示したで装置構成の下、シャッタ流路383に加圧媒体が印加されると、シャッタ流路383は弾性部材から構成されるメインプレート351a、第2プレート351b、第3プレート351c、第4プレート351dを撓ませる。そのとき、第3プレート351cと第4プレート351dは内部に構成された流路372と共に下方に撓み、窪み部303aの内部に凸状に膨らむ。その結果、流路372は窪み部303aの周囲に圧接され、堅固に閉鎖される。すなわち、テーブル303に窪み部を設けることにより、流路の閉鎖機能が向上する。
【0077】
図22Aおよび
図22Bの説明において窪み部303aとして説明したが、マイクロチップに穴状部位を設けたり、別途に穴状部位を有するマイクロチップと重ね合わせたりすることによっても同様の効果を奏する。すなわち形状には限定されない。
【0078】
次に、本発明に係る他の実施例について
図23を参照して説明する。
図23はマイクロチップ450の一部を示す平面図である。
【0079】
マイクロチップ450上の試料槽452a、452b、452cには
図3(a)で説明したように、試料100a、100b、100cが充填されると共に上部をフィルム491で被覆されている。また、反応槽452dは
図4で説明したように、風船状形態を構成している。さらに、試料槽452a、452bには流路472a、472bが連接され、一端は交差部Nを介し反応槽452dに連接されている。また、試料槽452cには流路472cの一端が連接され、他端は反応槽452dに直接に連接されている。
【0080】
さらに、マイクロチップ450には
図2および
図5で説明したシャッタ口63a、63b、63cと同様な構成を有するシャッタ口463a、463b、463cが設けられている。シャッタ口463a、463b、463cからはシャッタ流路483a、483b、483cが連接され、その一端は、
図2で説明したように流路472a、472b、472cの下方に潜り込む状態で設けられている。
【0081】
以上の構成により、
図5で示すマイクロチップ50と同様に、順次試料槽452a、452b、452cに充填された試料100a、100b、100cを
図5で説明した実施例と同様に反応槽452dへ移送する。その際には、流路472aおよび472bの流路群と流路472cは独立して反応槽452dに連接しているため、試料100cの分析に悪影響を及ぼす試料100aは試料100cの流路472cに混入することはない。さらに、反応槽452dに注入された試料100cは、後に移送される洗浄機能を有する試料100bにより反応槽452d内を洗浄される。すなわち、試料100cと試料100aは反応槽452dに導入される前に混合することがなく、相互汚染を起こすことがない。さらに、少なくとも試料槽452a、452b、452c内の一つに、流路を初期時に安定させる試料を充填し、初期の段階や所望する工程時に送液してマイクロチップの流路の非接着部を剥離するなど安定化させることも可能である。
【0082】
また、少なくとも試料槽452a、452b、452c内の一つに、流路を安定させたり他の試料に悪影響を及ぼさない試料を充填し、初期の段階や所望する工程時に移送してマイクロチップの試料槽や反応槽の間際や流路と流路の狭窄部位に、試料を毛細管現象により充填する。このようにして、各工程で使用する試料がマイクロチップの狭窄部位に入り込むことを防ぐことにより、各試料が反応槽452dに導入される前に混合することがなく、相互汚染をなくすことも可能である。
【0083】
その結果、互いに汚染を引き起こす試料の混濁が防止され、微細な成分の分析精度が向上する。本実施例の説明において試料槽数を3槽として説明したが、相互汚染が発生する試料の流路を独立して設けることにより、複数の試料槽数でも同様の効果を奏する。すなわち試料槽数には限定されない。
【0084】
以上説明したように、本発明の実施の形態に係るマイクロチップの流路制御機構では、流路の開閉機構として、マイクロチップ内に弾性部材で封成された試料の流路と一部が交差した形態であり、また流路が構成された層と異なる層に加圧路を設け、加圧路に加圧媒体が印加された際には、交差部において該流路を圧接し閉鎖する構成とする。
【0085】
このような構成の下、弾性部材中に封成された流路の近傍層から加圧路が該流路を押潰せしめる閉鎖機構となり、確実に流路を遮断することが出来る。
【0086】
また、複数の移送元の試料槽から順次集中して移送される移送先の反応槽への移送流路を、混合されると分析に悪影響を及ぼす試料群ごとに独立した流路とし、順次移送される際に、流路内に残留した悪影響を及ぼす試料の混入を防止し分析への影響を回避する流路の構成とする。
【0087】
このような構成の下、相互に悪影響を及ぼす試料の反応槽への流入流路を分離することにより、試料は重複した流路を介して移送されることがなく分析の信頼性が向上する。
【0088】
また、流路に残存した試料を絞出する機構として、互いに異なる層に設けられた加圧路と該流路が、弾性部材被膜を介して流路の長さ方向に重複部を有する加圧路とし、加圧路に加圧媒体が印加された際には流路を閉鎖すると共に、重複部が進展膨張するに伴い流路内の試料を順次搾り出す機構とする。
【0089】
このような構成の下、弾性部材中に封成された流路と加圧路が流路長方向に重複部を有すると共に、流路内の試料を押出する機能を動作させることにより、流路に残留している試料を移送先や移送元の試料槽へ移送させるため流路内には試料が残らず、次工程で同じ流路を介し移送される試料との間での汚染を防止でき、分析の信頼性が向上する。さらに、流路内の試料を搾り出し活用することが可能で高価な試料の節減、すなわち分析コストの低減が可能となる。
【0090】
また、複数の流路の交差部において、それぞれの流路を閉鎖・開放せしめる加圧路の一端を交差部内に突出した形態とすることにより、交差部で他の流路が開放され試料が移送されている際に、加圧路により閉鎖されている流路内には試料の混入を防止すると共に、交差部に試料の残存を防止する構成とする。
【0091】
このような構成の下、複数の流路が交差する位置で、各々の流路を閉鎖する加圧路が該交差部の一部まで重複し突出しており、交差部内で閉鎖された流路以外に移送されている試料が閉鎖されている流路の交差部近傍に流入することはなく、交差部に洗浄試料を移送した際には確実に洗浄され、試料の混合による汚染(コンタミ)は回避され、分析の信頼性が向上する。
【0092】
また、流路の開閉機構として、マイクロチップ内に弾性部材で封成された試料の流路と一部が交差した形態であり、さらに流路が構成された層と異なる層に加圧路を設けると共に、マイクロチップまたはマイクロチップの挟持部材の該流路の交差部と一致する位置に穴部又は凹部形状を設け、加圧路に加圧媒体が印加された際には、交差部において弾性部材からなる該流路が撓みさらに穴部または凹部へ撓入すると共に、穴部または凹部の端縁部にて流路を挟持し閉鎖する構成とする。
【0093】
このような構成の下、加圧路に加圧媒体を印加させ弾性部材を撓ませ流路を圧接閉鎖する構成において、流路が撓み穴部や凹部に入り込み閉鎖機能を増大させることにより加圧媒体の圧力が低減され、省エネ化されると共に、他の試料の進入を防止し分析の信頼性が向上する。
【0094】
また、試料の注入方法として、複数の移送元の試料槽の少なくとも一つに、移送先の試料槽や流路の状態を整える試料または洗浄試料が充填され、移送工程の最初または所望する工程に試料が移送される構成とする。
【0095】
このような構成の下、少なくとも一つの試料槽に充填された洗浄または流路安定試料を、分析の初期または必要時にマイクロチップ内の流路へ移送することにより、移送機構によって流路内に残留してしまう試料を後工程では悪影響を及ぼさない試料とすることや、残留した悪影響を及ぼす試料の除去や、流路状態を安定化させることにより分析の信頼性が向上する。
【0096】
以上説明したように、本発明の実施の形態に係るマイクロチップの流路制御機構によれば、流路内に残存した試料を搾り出し分析可能となるため、高価な試料の節減となる。
【0097】
さらに、このようなマイクロチップの流路開閉機構によれば、試料の移送に係わる流路の閉鎖を確実に行うことが可能となり、試料が相互に混合することがなく、相互汚染による分析精度の低下を回避することが可能となり、分析の信頼性を飛躍的に向上できる。
【0098】
さらに、このようなマイクロチップの流路開閉機構によれば、制御が簡便で装置の小型軽量化、省エネ化、安価な装置の供給が可能となる。
【0099】
次に、本発明の他の実施例を
図24を参照して説明する。
図24は、
図2により説明したマイクロチップ50をチップ体501とシャッタユニット601に分離した構成を示す。
【0100】
チップ体501は多層構造を成し、メインプレート551a及び伸縮性樹脂からなる第2プレート551bを張り合わせた構成となっている。チップ体501にはメインプレート551a及び第2プレート551bを貫通したシャッタ口563a、563b、563c、563d、563e、563f、563gが設けられている。さらに第2プレート551bを下方に貫通したチップ廃棄穴590が設けられている。他の構成は
図2で説明したマイクロチップ50と同等である。
【0101】
一方、シャッタユニット601は伸縮性樹脂からなる第1シャッタ板651cと第2シャッタ板651dを張り合わせた構成となっている。さらに第1シャッタ板651cを貫通したシャッタ口663a、663b、663c、663d、663e、663f、663gが設けられている。また該シャッタ口663a、663b、663c、663d、663e、663f、663gには、それぞれ一端が開放されたシャッタ流路683a、683b、683c、683d、683e、683f、683gが接続されている。また第1シャッタ板651cと第2シャッタ板651dを貫通したチップ廃棄穴690が設けられ、チップ体501とシャッタユニット601を重ねた際には、シャッタ口563a、563b、563c、563d、563e、563f、563gとシャッタ口663a、663b、663c、663d、663e、663f、663gおよびチップ廃棄穴590とチップ廃棄穴690が合致した位置になる構成を成す。
【0102】
シャッタ流路683a、683b、683c、683d、683e、683f、683gは第1シャッタ板651cと第2シャッタ板651d間に設けられ、非接着部により構成される。さらにシャッタ口663a、663b、663c、663d、663e、663f、663gから加圧媒体が印加された際に、媒体が流入し第1シャッタ板651cと第2シャッタ板651d間で風船状に膨張する構成となっている。
【0103】
以上の構成から、該チップ体501およびシャッタユニット601を重ねて、
図1で示す装置へ搭載し、テーブル3とカバー20で挟持した際には、
図2で説明したマイクロチップ50と同等の機能を奏する。すなわち、マイクロチップ50のシャッタ部を、シャッタユニット601で示す様に分離設置しても可能であり、チップ本体の構成が簡便となる。
【0104】
さらに、本発明の他の実施例を
図25を参照して説明する。
図25は
図2により説明したマイクロチップ50をチップ体750とシャッタユニット801に分離した構成を示す。
【0105】
チップ体750は多層構造を成し、メインプレート751a及び伸縮性樹脂からなる第2プレート751b、第3プレート751cを張り合わせた構成となっている。チップ体750にはメインプレート751a及び第2プレート751b、第3プレート751cを貫通したシャッタ口763a、763b、763cが設けられている。さらに第2プレート751b及び第3プレート751cを下方に貫通したチップ廃棄穴790が設けられている。
【0106】
さらに、チップ体750にはメインプレート751a及び第2プレート751bを貫通したシャッタ口763d、763e、763f、763gが設けられ、またメインプレート751aと第2プレート751bの間に非接着部からなるシャッタ流路783d、783e、783f、783gが設けられており、それぞれの一端はシャッタ口763d、763e、763f、763gに連接開放されている。
【0107】
また、
図2で示した流路72a、72b、72c、73d、73d、73e、73f、73gは、
図25で示す第2プレート751bと第3プレート751cの間に非接着の状態で設けられている。すなわち、シャッタ流路783d、783e、783f、783gは、第2プレート751bを介して、流路72a、72b、72c、73d、73d、73e、73f、73gと交差している。
【0108】
さらに、シャッタユニット801は、弾性部材からなる第1シャッタ板851c及び第2シャッタ板851dの張り合わせ構成を成し、第1シャッタ板851cと第2シャッタ板851dの間には一部を非接着状態としたシャッタ流路883a、883b、883c、883d、883e、883f、883gが設けられている。また第1シャッタ板851cを貫通したシャッタ口863a、863b、863c及び第2シャッタ板851dを下方向に貫通したシャッタ口863d、863e、863f、863gが設けられている。さらに該シャッタ流路883a、883b、883c、883d、883e、883f、883gの一端はシャッタ口863a、863b、863c、863d、863e、863f、863gは連接開放されている。すなわちシャッタ口863a、863b、863c、863d、863e、863f、863gへ加圧媒体が印加されると該シャッタ流路883a、883b、883c、883d、883e、883f、883gは風船状に膨張しチップ体750を下方から圧接する構成となっている。またシャッタユニット801には第1シャッタ板851c及び第2シャッタ板851dを貫通した廃棄穴890が設けられている。
【0109】
また、チップ体750とシャッタユニット801を重ねて搭載するテーブル903には、シャッタ加圧口963d、963e、963f、963gが貫通する状態で設けられ、さらにチューブ917に接続されている。チューブ917は
図1で示すシャッタ電磁弁18a〜18bと同様な電磁弁に接続され、加圧媒体の印加が制御されている。さらに、テーブル903には廃棄穴906が設けられ、
図1で示した廃棄穴6と同様に廃棄電磁弁7を介し廃棄槽8に接続されている。
【0110】
さらに、チップ体750とシャッタユニット801を重ねてテーブル903上に搭載し、
図1で示すカバー20で挟持した際には、シャッタ口763a、763b、763cとシャッタ口863a、863b、863cが一致した位置で、またシャッタ口863d、863e、863f、863gとシャッタ口963d、963e、963f、963gが一致した位置で、さらには廃棄口790、890、906が一致した位置で重ねて搭載される。
【0111】
すなわち、シャッタ口763d、763e、763f、763gへ印加された加圧媒体はチップ体750内でシャッタ流路783d、783e、783f、783gを風船状に膨張させ流路を閉鎖する。またシャッタ口763a、763b、763cへ印加された加圧媒体は863a、863b、863cを介し、シャッタユニット801内のシャッタ流路883a、883b、883cを風船状に膨張させ、チップ体750内の流路を下方向から閉鎖せしめる。また963d、963e、963f、963gへ印加された加圧媒体はシャッタ口863d、863e、863f、863gを介し、シャッタユニット801内のシャッタ流路883d、883e、883f、883gを風船状に膨張させ、チップ体750内の流路を下方向から閉鎖せしめる。
【0112】
以上の結果、シャッタ流路763d、763e、763f、763gとシャッタ流路883d、883e、883f、883gは上下方向からチップ体750の流路を閉鎖せしめることとなり、堅固な閉鎖機構となる。以上の構成を設けることにより、
図2で説明したチップ50と同等もしくはより堅固な遮断手段となる。
【0113】
さらに、本発明の他の実施例を
図26を参照して説明する。チップ体1050は
図2でしめすマイクロチップ50と同様の構成を示すが、シャッタ口63d、63e、63f、63g及びシャッタ流路83d、83e、83f、83gが設けられていない構成である。
【0114】
また、シャッタユニット1050は伸縮性部材からなる第1シャッタ板1051c及び第2シャッタ板1051dの張り合わせ構成を成し、第1シャッタ板1051cと第2シャッタ板1051dの間には一部を非接着状態としたシャッタ流路1083d、1083e、1083f、1083gが設けられている。
【0115】
さらに、第1シャッタ板1051cを貫通したシャッタ口1063d、1063e、1063f、1063gが設けられている。さらに該シャッタ流路1083d、1083e、1083f、1083gの一端はシャッタ口1063d、1063e、1063f、1063gに連接開放されている。すなわち、シャッタ口1063d、1063e、1063f、1063gへ加圧媒体が印加されると該シャッタ流路1083d、1083e、1083f、1083gは風船状に膨張しチップ体1050を上方から圧接する構成となっている。
【0116】
また、シャッタユニット1050aには第1シャッタ板1051c及び第2シャッタ板1051dを貫通し、チップ体1050に重ねた際に該チップ体1050のシャッタ口63a、63b、63cと一致する位置にシャッタ口1063a、1063b、1063cが設けられている。さらにチップ体1050aの操作を行うための貫通穴が設けられている。
【0117】
次に、該チップ体1050とシャッタユニット1050aを重ねて
図1で示した装置に搭載しカバー20とテーブル3で挟持し、予めプログラムされた動作を行うとシャッタ口1063d、1063e、1063f、1063gへ加圧媒体が印加され、シャッタ流路1083d、1083e、1083f、1083gを膨張させる。その結果
図2で示す流路72e、72f、72gを圧接し閉鎖せしめる。以上の説明によりシャッタユニット1050aをチップ体1050の上方に設置しても同様の効果が得られる。
【0118】
すなわち、前述したように、シャッタユニットはチップ体の上方、または下方、または上方と下方の双方に設置しても同様の効果が得られ、設置場所に制約されるものではない。
【0119】
以上、本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。