特許第6233639号(P6233639)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ イマジニアリング株式会社の特許一覧

<>
  • 特許6233639-ガス濃度推定装置 図000002
  • 特許6233639-ガス濃度推定装置 図000003
  • 特許6233639-ガス濃度推定装置 図000004
  • 特許6233639-ガス濃度推定装置 図000005
  • 特許6233639-ガス濃度推定装置 図000006
  • 特許6233639-ガス濃度推定装置 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6233639
(24)【登録日】2017年11月2日
(45)【発行日】2017年11月22日
(54)【発明の名称】ガス濃度推定装置
(51)【国際特許分類】
   G01N 21/68 20060101AFI20171113BHJP
【FI】
   G01N21/68
【請求項の数】10
【全頁数】13
(21)【出願番号】特願2013-551726(P2013-551726)
(86)(22)【出願日】2012年12月26日
(86)【国際出願番号】JP2012083607
(87)【国際公開番号】WO2013099923
(87)【国際公開日】20130704
【審査請求日】2015年12月18日
(31)【優先権主張番号】特願2011-289568(P2011-289568)
(32)【優先日】2011年12月28日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】504293528
【氏名又は名称】イマジニアリング株式会社
(72)【発明者】
【氏名】池田 裕二
【審査官】 横尾 雅一
(56)【参考文献】
【文献】 特開2009−065169(JP,A)
【文献】 特開2010−071271(JP,A)
【文献】 国際公開第2008/059976(WO,A1)
【文献】 米国特許出願公開第2004/0237505(US,A1)
【文献】 米国特許出願公開第2003/0214651(US,A1)
【文献】 米国特許第5825485(US,A)
【文献】 Lago V , et.al.,Electron and vibrational temperatures in hypersonic CO2-N2 plasma jets,Plasma Sources Science and Technology,2007年 2月,Vol.16, No.1,pp.139-148
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/00−21/74
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
分析ガスをプラズマ状態にするプラズマ生成手段と、
前記プラズマ生成手段により生成されたプラズマから発せられるプラズマ光を分析して、前記分析ガス中の対象成分の濃度を推定する分析手段とを備えたガス濃度推定装置であって、
前記分析ガスは、燃焼後に排出される排気ガスとし、
前記プラズマ生成手段は、マイクロ波駆動信号の立ち上がりから立ち下がりまでの期間に亘り、所定のデューティ比でマイクロ波パルスを繰り返し出力し、マイクロ波パルス出力期間とマイクロ波パルス休止期間とを繰り返すことにより、生成プラズマにマイクロ波を吸収させたマイクロ波プラズマを非平衡プラズマとして維持するよう構成され、該マイクロ波パルスを生成する半導体発振器を有するマイクロ波発生器を備え、
前記分析手段は、前記プラズマ光のうち、前記対象成分とは異なる原子構成で、該対象成分から分離した原子又は分子を含む所定のラジカルの発光に対応する波長成分の発光強度に基づいて、前記対象成分の濃度を推定し、短い周期で繰り返されるプラズマ生成動作に同期して、分析動作を行うことを特徴とするガス濃度推定装置。
【請求項2】
請求項1に記載したガス濃度推定装置において、
前記分析手段は、前記プラズマ光のうち、CNラジカルの発光に対応する波長成分の発光強度に基づいて、前記対象成分としての二酸化炭素の濃度を推定することを特徴とするガス濃度推定装置。
【請求項3】
請求項2に記載したガス濃度推定装置において、
炭化水素の燃焼後に排出される排気ガスを前記分析ガスとして、該分析ガス中の二酸化炭素を前記対象成分とする一方、
前記分析手段は、前記排気ガス中の未燃の炭化水素の濃度を推定し、その推定結果を用いて、CNラジカルの発光に対応する波長成分の発光強度に基づき推定した二酸化炭素の濃度を補正することを特徴とするガス濃度推定装置。
【請求項4】
請求項3に記載したガス濃度推定装置において、
前記分析手段は、前記プラズマの発光のうち、CHラジカルの発光に対応する波長成分の発光強度に基づいて、未燃の炭化水素の濃度を推定することを特徴とするガス濃度推定装置。
【請求項5】
請求項2乃至4の何れか1つに記載したガス濃度推定装置において、
前記分析手段は、CNラジカルの発光に対応する波長成分の発光強度と二酸化炭素の濃度との関係を表す検量線を用いて、前記CNラジカルの発光に対応する波長成分の発光強度から二酸化炭素の濃度を推定することを特徴とするガス濃度推定装置。
【請求項6】
請求項1に記載したガス濃度推定装置において、
前記分析手段は、前記プラズマの発光のうち、OHラジカルの発光に対応する波長成分の発光強度に基づいて、前記対象成分としての水蒸気の濃度を推定することを特徴とするガス濃度推定装置。
【請求項7】
請求項1乃至6の何れか1つに記載したガス濃度推定装置において、
前記プラズマ生成手段によりプラズマが生成されるプラズマ領域に流入する分析ガスの流量を検出する流量検出手段を備え、
前記分析手段は、前記流量検出手段により検出された流量を用いて、前記所定のラジカルの発光に対応する波長成分の発光強度に基づき推定した前記対象成分の濃度を補正することを特徴とするガス濃度推定装置。
【請求項8】
請求項1乃至7の何れか1つに記載したガス濃度推定装置において、
前記分析ガスの流通方向において、前記プラズマ生成手段によりプラズマが生成されるプラズマ領域の上流に設けられ、該プラズマ領域の一部を遮蔽する遮蔽部材を備えていることを特徴とするガス濃度推定装置。
【請求項9】
請求項8に記載したガス濃度推定装置において、
前記分析手段は、前記プラズマ領域のうち、前記遮蔽部材により遮蔽されていない領域から抽出したプラズマ光を分析して、前記分析ガス中の対象成分の濃度を推定することを特徴とするガス濃度推定装置。
【請求項10】
分析ガスをプラズマ状態にするプラズマ生成ステップと、
前記プラズマ生成ステップにおいて生成されたプラズマから発せられるプラズマ光を分析して、前記分析ガス中の対象成分の濃度を推定する分析ステップとを備えたガス濃度推定方法であって、
前記分析ガスは、燃焼後に排出される排気ガスとし、
前記プラズマ生成ステップでは、マイクロ波駆動信号の立ち上がりから立ち下がりまでの期間に亘り、所定のデューティ比で、半導体発振器により生成されるマイクロ波パルスを繰り返し出力し、マイクロ波パルス出力期間とマイクロ波パルス休止期間とを繰り返すことにより、生成プラズマにマイクロ波を吸収させたマイクロ波プラズマを非平衡プラズマとして維持し、
前記分析ステップでは、前記マイクロ波プラズマから発せられるプラズマ光のうち、前記対象成分とは異なる原子構成で、該対象成分から分離した原子又は分子を含む所定のラジカルの発光に対応する波長成分の発光強度に基づいて、前記対象成分の濃度が推定し、短い周期で繰り返されるプラズマ生成動作に同期して、分析動作を行う
ことを特徴とするガス濃度推定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分析ガスのプラズマから発せられる光を分析することにより分析ガス中の対象成分の濃度を推定するガス濃度推定装置、及びガス濃度推定方法に関するものである。
【背景技術】
【0002】
従来から、分析ガスのプラズマから発せられる光を分析することにより分析ガス中の対象成分の濃度を推定するガス濃度推定装置が知られている。例えば特開平9−304280号公報には、この種のガス濃度推定装置が開示されている。
【0003】
具体的に、特開平9−304280号公報には、レーザー誘起蛍光法を利用した二酸化炭素の濃度測定方法が記載されている。この濃度測定方法は、1光子の吸収で二酸化炭素分子を目的のエネルギー準位に励起できるレーザーを入手することが困難であることに鑑みて、複数の光子を一度に二酸化炭素分子に吸収させている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平9−304280号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、従来のガス濃度推定装置では、対象成分である二酸化炭素の発光に対応する波長成分の発光強度を得るのに、特殊な受光器が必要となり、汎用性に欠けるという問題があった。
【0006】
本発明は、かかる点に鑑みてなされたものであり、その目的は、分析ガスのプラズマから発せられる光を分析することにより分析ガス中の対象成分の濃度を推定するガス濃度推定装置において、汎用性のあるガス濃度推定装置を実現することにある。
【課題を解決するための手段】
【0007】
第1の発明は、分析ガスをプラズマ状態にするプラズマ生成手段と、前記プラズマ生成手段により生成されたプラズマから発せられるプラズマ光を分析して、前記分析ガス中の対象成分の濃度を推定する分析手段とを備えたガス濃度推定装置である。このガス濃度推定装置の前記分析手段は、前記プラズマ光のうち、前記対象成分とは異なる原子構成で、該対象成分から分離した原子又は分子を含む所定のラジカルの発光に対応する波長成分の発光強度に基づいて、前記対象成分の濃度を推定する。
【0008】
第1の発明では、分析ガスのプラズマから発せられるプラズマ光を分析することにより、分析ガス中の対象成分の濃度が推定される。対象成分の濃度は、プラズマ中のうち、所定のラジカルの発光に対応する波長成分の発光強度に基づいて推定される。所定のラジカルとは、前記対象成分とは異なる原子構成で、該対象成分から分離した原子又は分子を含む所定のラジカルである。例えば、二酸化炭素を対象成分とする場合、二酸化炭素分子から分離した炭素原子を含むCNラジカルが所定のラジカルになる。
【0009】
第2の発明は、第1の発明において、前記分析手段が、前記プラズマ光のうち、CNラジカルの発光に対応する波長成分の発光強度に基づいて、前記対象成分としての二酸化炭素の濃度を推定する。
【0010】
第2の発明では、分析ガスに二酸化炭素が含まれている場合に、分析ガスのプラズマ光に含まれるCNラジカルの発光強度が二酸化炭素の濃度と相関するため、CNラジカルの発光に対応する波長成分の発光強度に基づいて、二酸化炭素の濃度を推定している。
【0011】
第3の発明は、第2の発明において、炭化水素の燃焼後に排出される排気ガスを前記分析ガスとして、該分析ガス中の二酸化炭素を前記対象成分とする一方、前記分析手段は、前記排気ガス中の未燃の炭化水素の濃度を推定し、その推定結果を用いて、CNラジカルの発光に対応する波長成分の発光強度に基づき推定した二酸化炭素の濃度を補正する。
【0012】
第3の発明では、排気ガス中の未燃の炭化水素の濃度の推定結果を用いて、CNラジカルの発光に対応する波長成分の発光強度に基づき推定した二酸化炭素の濃度が補正される。ここで、排気ガスに未燃の炭化水素が含まれている場合に、分析ガスをプラズマ状態にすると、炭化水素から分離した炭素原子からもCNラジカルが生成される。そのため、CNラジカルの発光に対応する波長成分の発光強度だけから推定した二酸化炭素の濃度は、実際の値に対して誤差が生じるおそれがある。第3の発明では、未燃の炭化水素に起因する誤差を低減するために、炭化水素の濃度の推定結果を用いて、二酸化炭素の濃度の補正が行われる。
【0013】
第4の発明は、第3の発明において、前記分析手段が、前記プラズマの発光のうち、CHラジカルの発光に対応する波長成分の発光強度に基づいて、未燃の炭化水素の濃度を推定する。
【0014】
第4の発明では、未燃の炭化水素の濃度が、CHラジカルの発光に対応する波長成分の発光強度に基づき推定される。
【0015】
第5の発明は、第2乃至第4の何れか1つの発明において、前記分析手段が、CNラジカルの発光に対応する波長成分の発光強度と二酸化炭素の濃度との関係を表す検量線を用いて、前記CNラジカルの発光に対応する波長成分の発光強度から二酸化炭素の濃度を推定する。
【0016】
第5の発明では、CNラジカルの発光に対応する波長成分の発光強度と二酸化炭素の濃度との関係を表す検量線を用いて、CNラジカルの発光に対応する波長成分の発光強度から、二酸化炭素の濃度が推定される。
【0017】
第6の発明は、第1の発明において、前記分析手段が、前記プラズマの発光のうち、OHラジカルの発光に対応する波長成分の発光強度に基づいて、前記対象成分としての水蒸気の濃度を推定する。
【0018】
第6の発明では、分析ガスに水蒸気が含まれている場合に、分析ガスのプラズマ光に含まれるOHラジカルの発光強度が水蒸気の濃度と相関するため、OHラジカルの発光に対応する波長成分の発光強度に基づき、水蒸気の濃度を推定している。
【0019】
第7の発明は、第1乃至第6の何れか1つの発明において、前記プラズマ生成手段によりプラズマが生成されるプラズマ領域に流入する分析ガスの流量を検出する流量検出手段を備え、前記分析手段は、前記流量検出手段により検出された流量を用いて、前記所定のラジカルの発光に対応する波長成分の発光強度に基づき推定した前記対象成分の濃度を補正する。
【0020】
第7の発明では、流量検出手段によって、プラズマ領域に流入する分析ガスの流量が検出される。ここで、流れが存在する場でプラズマが生成される場合は、流量により、プラズマの発光強度が変化する。従って、流量を考慮せずに、所定のラジカルの発光に対応する波長成分の発光強度に基づいて推定した対象成分の濃度は、誤差を含むおそれがある。第7の発明では、このような問題を解決するために、流量検出手段により検出された流量を用いて、所定のラジカルの発光に対応する波長成分の発光強度に基づき推定した対象成分の濃度を補正している。
【0021】
第8の発明は、第1乃至第7の何れか1つの発明において、前記分析ガスの流通方向において、前記前記プラズマ生成手段によりプラズマが生成されるプラズマ領域の上流に設けられ、該プラズマ領域の一部を遮蔽する遮蔽部材を備えている。
【0022】
第8の発明では、プラズマ領域の上流に、プラズマ領域の一部を遮蔽する遮蔽部材が設けられている。従って、流れの影響に対するプラズマの発光強度の変化が抑制される。
【0023】
第9の発明は、第8の発明において、前記分析手段が、前記プラズマ領域のうち、前記遮蔽部材により遮蔽されていない領域から抽出したプラズマ光を分析して、前記分析ガス中の対象成分の濃度を推定する。
【0024】
第9の発明では、プラズマ領域のうち、遮蔽部材により遮蔽されていない領域(以下、「非遮蔽領域」という。)から抽出したプラズマ光の分析により、分析ガス中の対象成分の濃度が推定される。ここで、流れが存在ずる場において対象成分の濃度変化を時系列で推定する場合は、流れのバルクの濃度変化に対して、遮蔽部材により遮蔽されている領域の濃度変化は、十分に追従しない。第9の発明では、遮蔽部材により流れの影響がある程度抑制され、且つ、流れのバルクの濃度変化に対して濃度変化がある程度追従する非遮蔽領域のプラズマ光が、対象成分の濃度を推定するために抽出される。
【0025】
第10の発明は、分析ガスをプラズマ状態にするプラズマ生成ステップと、前記プラズマ生成ステップにおいて生成されたプラズマから発せられるプラズマ光を分析して、前記分析ガス中の対象成分の濃度を推定する分析ステップとを備えたガス濃度推定方法である。このガス濃度推定方法の前記分析ステップでは、前記プラズマ光のうち、前記対象成分とは異なる原子構成で、該対象成分から分離した原子又は分子を含む所定のラジカルの発光に対応する波長成分の発光強度に基づいて、前記対象成分の濃度が推定される。
【0026】
第10の発明では、第1の発明と同様に、対象成分の濃度が、プラズマ光のうち、前記対象成分とは異なる原子構成で、該対象成分から分離した原子又は分子を含む所定のラジカルの発光に対応する波長成分の発光強度に基づいて推定される。
【発明の効果】
【0027】
本発明では、対象成分の発光に対応する波長成分ではなく、対象成分とは異なる原子構成で、該対象成分から分離した原子又は分子を含む所定のラジカルの発光に対応する波長成分の発光強度に基づいて、対象成分の濃度を推定している。従って、例えば二酸化炭素を対象成分とする場合に、CNラジカルの発光に対応する波長成分の発光強度を得るのに、汎用性のある受光器を用いることができるので、汎用性のあるガス濃度推定装置を実現する
【0028】
また、第3の発明では、未燃の炭化水素に起因する誤差を低減するために、炭化水素の濃度の推定結果を用いて、CNラジカルの発光に対応する波長成分の発光強度に基づき推定した二酸化炭素の濃度が補正される。従って、炭化水素が含まれている排気ガス中の二酸化炭素の濃度の推定精度を向上させることができる。
【0029】
また、第7の発明では、分析ガスの流量によりプラズマの発光強度が変化するので、検出した分析ガスの流量を用いて、所定のラジカルの発光に対応する波長成分の発光強度に基づき推定した対象成分の濃度を補正している。従って、流れが存在する場において、対象成分の濃度の推定精度を向上させることができる。
【0030】
また、第8の発明では、プラズマ領域の上流にプラズマ領域の一部を遮蔽する遮蔽部材を設けているので、流れの影響に対するプラズマの発光強度の変化が抑制される。従って、流れが存在する場において、対象成分の濃度の推定精度を向上させることができる。
【図面の簡単な説明】
【0031】
図1図1は、実施形態のガス濃度推定装置の概略構成図である。
図2図2は、実施形態のガス濃度推定装置の要部の概略構成図である。
図3図3は、実施形態における放電信号及びマイクロ波駆動信号のタイムチャートである。
図4図4は、CNラジカル発光に対応する波長成分の発光強度と二酸化炭素の濃度との関係を表す検量線の図表である。
図5図5は、実施形態の変形例1の光計測器(分光器)の概略構成図である。
図6図6は、実施形態の変形例3のガス濃度推定装置の要部の概略構成図である。
【発明を実施するための形態】
【0032】
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
【0033】
本実施形態は、エンジン11の排気ガスを分析ガスとして、分析ガス中の二酸化炭素を対象成分として、二酸化炭素の濃度を推定するガス濃度推定装置10である。図1及び図2に示すように、ガス濃度推定装置10は、エンジン11の排気管12に取り付けられている。ガス濃度推定装置10は、排気管12を流れる排気ガス中の二酸化炭素の濃度を計測する。
【0034】
ガス濃度推定装置10は、プラズマ生成装置15と分析装置16とを備えている。プラズマ生成装置15は、分析ガスをプラズマ状態にするプラズマ生成手段を構成している。分析装置16は、プラズマ生成装置15により生成されたプラズマから発せられるプラズマ光を分析して、分析ガス中の二酸化炭素の濃度を推定する分析手段を構成している。
−プラズマ生成装置−
【0035】
プラズマ生成装置15は、高圧パルス発生器21とマイクロ波発生器22と混合器23と放電器24と制御装置25とを備えている。制御装置25は、高圧パルス発生器21とマイクロ波発生器22を制御する。
【0036】
高圧パルス発生器21は、制御装置25から放電信号を受けると、直流電源(図示省略)から印加された電圧を昇圧し、昇圧後の高電圧パルスを発生させる。高圧パルス発生器21は、高電圧パルスを混合器23に出力する。高電圧パルスは、ピーク電圧が例えば6kV〜40kV程度のインパルス状の電圧信号である。
【0037】
マイクロ波発生器22は、制御装置25からマイクロ波駆動信号を受けると、直流電源(図示省略)から供給された電力を用いて、マイクロ波パルスを発生させる。マイクロ波発生器22は、図3に示すように、マイクロ波駆動信号の立ち上がりから立ち下がりまでの期間(マイクロ波駆動信号のパルス幅の期間)に亘って、所定のデューティー比でマイクロ波パルスを繰り返し出力する。マイクロ波発生器22は、マイクロ波パルスを混合器23に繰り返し出力する。
【0038】
なお、本実施形態のマイクロ波発生器22では、半導体発振器がマイクロ波パルスを生成しているが、半導体発振器の代わりに、マグネトロン等の他の発振器を使用してもよい。
【0039】
混合器23は、別々の入力端子で高電圧パルスとマイクロ波パルスとを受けて、同じ出力端子から高電圧パルスとマイクロ波パルスとを放電器24へ出力する。混合器23は、高電圧パルスとマイクロ波パルスとを混合可能に構成されている。
【0040】
放電器24は、例えば点火プラグ24である。点火プラグ24は、混合器23に一体化されている。点火プラグ24は、中心電極24aと接地電極24bとの間の放電ギャップが排気管12内に位置するように、排気管12に取り付けられている。点火プラグ24では、中心電極24aに電気的に接続された入力端子が、混合器23の出力端子に接続されている(図示省略)。
【0041】
プラズマ生成装置15は、マイクロ波プラズマを生成するプラズマ生成動作を行う。プラズマ生成動作は、制御装置25が放電信号及びマイクロ波駆動信号を出力することで開始される。上述したように、高圧パルス発生器21は、放電信号を受けると高電圧パルスを出力し、マイクロ波発生器22は、マイクロ波駆動信号を受けるとマイクロ波パルスを出力する。高電圧パルス及びマイクロ波パルスは、混合器23を経て、点火プラグ24の中心電極24aに供給される。
【0042】
点火プラグ24では、高電圧パルスにより放電ギャップでスパーク放電が生じる。さらに、スパーク放電により生成された放電プラズマに、中心電極24aからマイクロ波パルスが照射される。そうすると、放電プラズマがマイクロ波のエネルギーを吸収して拡大し、比較的大きなマイクロ波プラズマが生成される。マイクロ波プラズマが形成されているプラズマ領域では、排気管12を流れる排気ガスがプラズマ状態になっている。
【0043】
なお、本実施形態では、中心電極24aを放射アンテナとして機能させているが、放射アンテナを中心電極24aに隣接して設けてもよい。その場合、マイクロ波パルスは、高電圧パルスとは別の経路で放射アンテナへ供給される。
【0044】
マイクロ波駆動信号は、パルス幅が例えば数ミリ秒のパルス信号である。マイクロ波発生器22は、マイクロ波駆動信号のパルス幅の期間に亘って、所定のデューティー比でマイクロ波パルスを繰り返し出力する。図3に示すように、この期間中は、マイクロ波パルスの出力期間X(X=数マイクロ秒)と、マイクロ波パルスの休止期間Y(Y=数マイクロ秒)とが繰り返される。点火プラグ24の中心電極24aでは、マイクロ波パルスの放射と停止とが、前記デューティー比で繰り返される。このため、マイクロ波プラズマは、熱プラズマにならずに、非平衡プラズマの状態で維持される。
【0045】
なお、マイクロ波パルスの休止期間Yを長くしすぎると、マイクロ波プラズマが消滅してしまう。そのため、休止期間Yの長さは、次のマイクロ波パルスが放射される前に、マイクロ波プラズマが消滅しないように設定されている。プラズマ生成動作では、マイクロ波駆動信号のパルス幅の時間(マイクロ波パルスが繰り返し出力されている期間)に亘って、マイクロ波プラズマが維持される。この期間は、プラズマ形成期間になる。
【0046】
プラズマ生成装置15は、数ミリ秒のプラズマ生成休止期間を挟んで、プラズマ生成動作を繰り返し行う。放電ギャップでは、マイクロ波プラズマが形成されているプラズマ形成状態と、マイクロ波プラズマが消滅しているプラズマ消滅状態とが繰り返される。短い周期で、プラズマ形成期間とプラズマ形成休止期間とが繰り返される。
−分析装置−
【0047】
分析装置16は、プラズマ生成動作により生成されたマイクロ波プラズマのプラズマ光を分析する分析動作を行う。分析装置16は、短い周期で繰り返されるプラズマ生成動作に同期して、分析動作を行う。
【0048】
分析装置16は、図1及び図2示すように、光ファイバー32と光計測器33と信号処理器34とを備えている。分析装置16は、光ファイバー32を介してマイクロ波プラズマのプラズマ光を光計測器33に取り込む。光計測器33は、プラズマ光から、CNラジカルの発光に対応する波長成分(388nm)を抽出し、その抽出した波長成分を光電変換した電気信号を出力する。信号処理器34は、光計測器33から出力された電気信号を用いて、二酸化炭素の濃度を推定する。図2に示すように、信号処理器34には、信号処理器34において推定された二酸化炭素の濃度を表示するモニター35が設けられている。
【0049】
具体的に、光ファイバー32は、取付部材31を介して排気管12に取り付けられている。光ファイバー32は、一端面(以下、「入射面」という。)がプラズマ領域となる放電ギャップを向くように取り付けられている。光ファイバー32の他端は、光計測器33に接続されている。
【0050】
光計測器33は、光学フィルター37と受光器38とを備えている。光学フィルター37は、光ファイバー32の出射面から出射されたプラズマ光が通過する位置に配置されている。光学フィルター37は、通過するプラズマ光の中から、CNラジカルの発光に対応する波長成分を通過させる。受光器38は、例えば、光電子増倍管(PMT)である。受光器38は、光学フィルター37の通過光を受光する。受光器38は、CNラジカルの発光に対応する波長成分を受光する。受光器38は、受光した波長成分の強度、つまり、CNラジカルの発光に対応する波長成分の発光強度に応じた電圧値の電気信号を信号処理器34へ出力する。なお、受光器38は、時間応答性が高いものであれば、光電子増倍管以外のものを使用してもよい。
【0051】
信号処理器34は、CNラジカルの発光に対応する波長成分の発光強度と二酸化炭素の濃度との関係を示す検量線のデータ(図4)を記憶している。前記検量線のデータは、所定の実験装置において、二酸化炭素以外に炭素原子を有する気体成分を含まないガス中において、二酸化炭素の濃度を少しずつ変化させながら、CNラジカルの発光に対応する波長成分の発光強度を測定した結果(具体的には、CNラジカルの発光に対応する波長成分の発光強度を表す電気信号の電圧値)に基づいて作成されている。前記検量線のデータでは、CNラジカルの発光に対応する波長成分の発光強度を表す電気信号の電圧値に対して、二酸化炭素の濃度が1対1で対応づけられている。
【0052】
信号処理器34は、前記検量線のデータにおいて、受光器38から出力された電気信号の電圧値に対応する二酸化炭素の濃度を読み取る。信号処理器34は、二酸化炭素の濃度の読取値をモニター35へ出力する。
−ガス濃度推定装置の動作−
【0053】
ガス濃度推定装置10は、エンジン11の運転中に、プラズマ生成ステップと分析ステップとを繰り返し行う。
【0054】
プラズマ生成ステップでは、プラズマ生成装置15が、放電ギャップにおいてマイクロ波プラズマを生成して、数ミリ秒間維持する。分析ガスである排気ガスはプラズマ状態になる。
【0055】
分析ステップでは、分析装置16が、プラズマ生成ステップにおいて生成されたマイクロ波プラズマから発せられるプラズマ光を分析して、排気ガス中の二酸化炭素の濃度を推定する。分析ステップは、繰り返し行われるプラズマ生成ステップ毎に行われる。
【0056】
分析ステップでは、光学フィルター37において、光計測器33に取り込まれたマイクロ波プラズマのプラズマ光から、CNラジカルの発光に対応する波長成分が抽出され、受光器38において、CNラジカルの発光に対応する波長成分の発光強度を表す電気信号が生成される。信号処理器34には、CNラジカルの発光に対応する波長成分の発光強度を表す電気信号が入力される。そして、電気信号の電圧値に対応する二酸化炭素の濃度が、検量線のデータから読み取られる。信号処理器34では、プラズマ生成ステップ毎に分析ステップが行われて、二酸化炭素の濃度が短周期で推定される。その結果、二酸化炭素の濃度の高時間分解能の時系列データが作成される。
−実施形態の効果−
【0057】
実施形態では、二酸化炭素の発光に対応する波長成分ではなく、二酸化炭素とは異なる原子構成で、二酸化炭素から分離した原子又は分子を含むCNラジカルの発光に対応する波長成分の発光強度に基づいて、二酸化炭素の濃度を推定している。従って、CNラジカルの発光に対応する波長成分の発光強度を得るのに、汎用性のある受光器を用いることができるので、汎用性のあるガス濃度推定装置10を実現できる。
−実施形態の変形例1−
【0058】
変形例1では、分析装置16が、排気ガス中の未燃の炭化水素の濃度を推定し、その推定結果を用いて、CNラジカルの発光に対応する波長成分の発光強度に基づき推定した二酸化炭素の濃度(図4の検量線データから読み取った二酸化炭素の濃度)を補正する
【0059】
分析装置16では、光計測器33が、図5に示すように、光ファイバー32を介して取り込んだプラズマ光を分光する分光器33により構成されている。光計測器33は、プラズマ光のうち、CNラジカルの発光に対応する波長成分を光電変換した第1電気信号を出力する第1計測部33aと、CHラジカルの発光に対応する波長成分を光電変換した第2電気信号を出力する第2計測部33bとを備えている。
【0060】
各計測部33a,33bは、ダイクロイックミラー39a,39bと、光学フィルター37a,37b、受光器38a,38bとを備えている。ダイクロイックミラー39a,39bは、プラズマ光を分離する。光学フィルター37a,37bは、干渉フィルターとして機能する。各受光器38a,38bは、実施形態と同様に光電子増倍管である。
【0061】
信号処理器34には、図4の検量線のデータ(以下、「第1データ」という。)に加えて、炭素水素の濃度を推定するための検量線のデータ(以下、「第2データ」という。)を記憶している。第2データは、CHラジカルの発光に対応する波長成分の発光強度と炭素水素の濃度との関係を示す。第2データは、所定の実験装置において、炭素水素以外に炭素原子を有する気体分子を含まないガス中において、炭素水素の濃度を少しずつ変化させながら、CHラジカルの発光に対応する波長成分の発光強度を推定した結果に基づいて作成されている。第2データでは、CHラジカルの発光に対応する波長成分の発光強度を表す電気信号の電圧値に対して、炭化水素の濃度が1対1で対応づけられている。
【0062】
信号処理器34は、第1データから、第1電気信号の電圧値に対応する二酸化炭素の濃度(以下、「第1読取濃度」という。)を読み取る。さらに、信号処理器34は、第2データから、第2電気信号の電圧値に対応する炭化水素の濃度(以下、「第2読取濃度」という。)を読み取る。信号処理器34は、第1読取濃度を二酸化炭素の濃度の最終推定値とはせずに、例えば、第1読取濃度から第2読取濃度を差し引いた値を、二酸化炭素の濃度の最終推定値として出力する。
【0063】
なお、炭化水素の濃度の推定は、例えば、THC計(全有機質計)など他の方法を適用してもよい。
−実施形態の変形例2−
【0064】
変形例2では、ガス濃度推定装置10が、分析ガス中の水蒸気を対象成分として、水蒸気の濃度を推定する。
【0065】
光計測器33は、マイクロ波プラズマのプラズマ光から、OHラジカルの発光に対応する波長成分を抽出し、その抽出した波長成分を光電変換した電気信号を出力する。この電気信号の電圧値は、OHラジカルの発光に対応する波長成分の発光強度を表す。
【0066】
信号処理器34は、光計測器33から出力された前記電気信号を用いて、水蒸気の濃度を推定する。その際、水蒸気の濃度は、OHラジカルの発光に対応する波長成分の発光強度と水蒸気の濃度との関係を示す検量線のデータを用いて推定される。信号処理器34は、OHラジカルの発光に対応する波長成分の発光強度に基づいて、水蒸気の濃度を推定している。
−実施形態の変形例3−
【0067】
変形例3では、図6に示すように、プラズマ生成装置15によりマイクロ波プラズマ51が生成されるプラズマ領域51の上流に、プラズマ領域51の一部を遮蔽する遮蔽部材50が設けられている。遮蔽部材50は、排気管12の内面から突出した板状の導電性の部材である。遮蔽部材50は、点火プラグ24の先端部に隣接して設けられている。遮蔽部材50には、点火プラグ24の接地電極24bが設けられている。接地電極24bは、遮蔽部材50を介して接地されている。
【0068】
なお、点火プラグの下流にも、遮蔽部材50と同じ形状の板状部材52が設けられている。板状部材52を設けることにより、遮蔽部材50と板状部材52との間の流れが安定化する。
【0069】
マイクロ波プラズマ51は、中心電極24aの側方の中心電極24aと接地電極24bとの間の領域に生成される。マイクロ波プラズマ51は、その一部が遮蔽部材50の先端から排気管12の中心軸側へ突出している。
【0070】
変形例3では、分析装置16が、プラズマ領域51のうち、遮蔽部材50により遮蔽されていない非遮蔽領域から抽出したプラズマ光を分析して、分析ガス中の対象成分の濃度を推定する。具体的に、光ファイバー32の排気管12側に、非遮蔽領域に焦点が位置する集光光学系を設けて、非遮蔽領域のプラズマ光を抽出する。変形例3では、遮蔽部材50により流れの影響がある程度抑制され、且つ、流れのバルクの濃度変化に対して濃度変化がある程度追従する非遮蔽領域のプラズマ光が、対象成分の濃度を推定するために抽出される。
【0071】
なお、プラズマ領域における流れの乱れを小さくするために、遮蔽部材50を上流側の面を斜面にしてもよい。この場合、遮蔽部材50は、幅が排気管12に近づくに従って厚くなっている。
−実施形態の変形例4−
【0072】
変形例4では、分析装置16が、プラズマ生成装置15によりプラズマが生成されるプラズマ領域に流入する分析ガスの流量を用いて、CNラジカルの発光に対応する波長成分の発光強度に基づき推定した二酸化炭素の濃度を補正する。分析ガスの流量は、排気管12における点火プラグ24の上流に配置された流量検出装置(流量検出手段)により検出される。この場合に、プラズマ領域に流入する分析ガスの流量に応じて、複数の検量線のデータを作成し、流量検出装置の検出結果に応じて、使用する検量線のデータを選択するようにしてもよい。
《その他の実施形態》
【0073】
前記実施形態は、以下のように構成してもよい。
【0074】
前記実施形態において、プラズマ生成装置15が、レーザー光を集光してプラズマを生成してもよい。また、プラズマ生成装置15が、レーザー光を集光して生成したプラズマに、マイクロ波のエネルギーを供給することによりマイクロ波プラズマを生成してもよい。これらの場合は、レーザー誘起蛍光法により、二酸化炭素の濃度が、CNラジカルの発光に対応する波長成分の発光強度に基づいて推定されることになる。
【0075】
また、前記実施形態において、プラズマ生成装置15が、グロープラグのような熱電子放出器から放出された熱電子に、マイクロ波のエネルギーを供給することによりマイクロ波プラズマを生成してもよい。
【0076】
また、前記実施形態において、マイクロ波を使用しないプラズマにより、分析ガスをプラズマ状態にしてもよい。
【0077】
また、前記実施形態では、排気ガスを分析ガスとしていたが、それ以外のガス(例えば、人間の呼気)を分析ガスとしてもよい。
【産業上の利用可能性】
【0078】
以上説明したように、本発明は、分析ガスのプラズマから発せられる光を分析することにより分析ガス中の対象成分の濃度を推定するガス濃度推定装置、及びガス濃度推定方法について有用である。
【符号の説明】
【0079】
10 ガス濃度推定装置
11 エンジン
12 排気管
15 プラズマ生成装置(プラズマ生成手段)
16 分析装置(分析手段)
23 混合器
24 放電器
32 光ファイバー
図1
図2
図3
図4
図5
図6