特許第6235918号(P6235918)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ インターナショナル レクティフィアー コーポレイションの特許一覧

特許6235918シングルシャントインバータ回路に含まれるパワー・カッド・フラット・ノーリード(PQFN)パッケージ
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6235918
(24)【登録日】2017年11月2日
(45)【発行日】2017年11月22日
(54)【発明の名称】シングルシャントインバータ回路に含まれるパワー・カッド・フラット・ノーリード(PQFN)パッケージ
(51)【国際特許分類】
   H01L 25/07 20060101AFI20171113BHJP
   H01L 25/18 20060101ALI20171113BHJP
【FI】
   H01L25/04 C
【請求項の数】14
【外国語出願】
【全頁数】16
(21)【出願番号】特願2014-11594(P2014-11594)
(22)【出願日】2014年1月24日
(65)【公開番号】特開2014-195045(P2014-195045A)
(43)【公開日】2014年10月9日
【審査請求日】2014年3月27日
【審判番号】不服2016-8623(P2016-8623/J1)
【審判請求日】2016年6月9日
(31)【優先権主張番号】14/102,275
(32)【優先日】2013年12月10日
(33)【優先権主張国】US
(31)【優先権主張番号】61/774,484
(32)【優先日】2013年3月7日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】597161115
【氏名又は名称】インターナショナル レクティフィアー コーポレイション
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(72)【発明者】
【氏名】ディーン フェルナンド
(72)【発明者】
【氏名】ロエル バルボーザ
(72)【発明者】
【氏名】トシオ タカハシ
【合議体】
【審判長】 森川 幸俊
【審判官】 國分 直樹
【審判官】 酒井 朋広
(56)【参考文献】
【文献】 特開2012−129489(JP,A)
【文献】 米国特許出願公開第2008/2445(US,A1)
【文献】 特開2005−183463(JP,A)
【文献】 特開2003−18862(JP,A)
【文献】 特開平9−191659(JP,A)
【文献】 特開2000−91499(JP,A)
【文献】 特開2008−17620(JP,A)
【文献】 特開2006−49341(JP,A)
【文献】 国際公開第2006/003751(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L25/07
H01L25/18
(57)【特許請求の範囲】
【請求項1】
リードフレームの上に置かれたドライバ集積回路(IC)と、
前記リードフレームの上に置かれたU相、V相及びW相パワースイッチと、
前記ドライバICのサポート論理回路に結合された前記リードフレームの論理接地と、
前記U相,V相及びW相パワースイッチのソースに結合された前記リードフレームの電力段接地と、
低電圧レベルシフタと、
を備え、
前記リードフレームの前記論理接地は、前記リードフレームの前記電力段接地から離れており、
前記リードフレームの前記電力段接地は更に、前記論理接地と前記電力段接地との電圧差を補償するように構成される前記低電圧レベルシフタに結合されている、前記ドライバICのゲートドライに結合されている、パワー・カッド・フラット・ノーリード(PQFN)パッケージ。
【請求項2】
前記リードフレームの前記電力段接地を前記W相パワースイッチの前記ソースに接続する少なくとも1つのワイヤボンドを備える、請求項1記載のPQFNパッケージ。
【請求項3】
前記W相パワースイッチの前記ソースを前記V相パワースイッチの前記ソースに接続する少なくとも1つのワイヤボンドを備える、請求項1記載のPQFNパッケージ。
【請求項4】
前記V相パワースイッチの前記ソースを前記U相パワースイッチの前記ソースに接続する少なくとも1つのワイヤボンドを備える、請隶項1記載のPQFNパッケージ。
【請求項5】
前記PQFNパッケージの電力段接地端子を前記W相パワースイッチの前記ソースに接続する少なくとも1つのワイヤボンドを備える、請求項1記載のPQFNパッケージ。
【請求項6】
前記PQFNパッケージの論理接地端子を前記ドライバICの前記サポート論理回路に接続する少なくとも1つのワイヤボンドを備える、請求項1記載のPQFNパッケージ。
【請求項7】
前記U相パワースイッチの前記ソースを前記リードフレームを経て前記ドライバICのゲートドライに接続する少なくとも1つのワイヤボンドを備える、請求項1記載のPQFNパッケージ。
【請求項8】
前記U相、V相及びW相パワースイッチは前記リードフレームのそれぞれのダイパッドの上に置かれる、請求項1記載のPQFNパッケージ。
【請求項9】
前記U相、V相及びW相パワースイッチは前記リードフレームを経てそれぞれ別のU相、別のV相及び別のW相パワースイッチに結合されている、請求項1記載のPQFNパッケージ。
【請求項10】
前記U相、V相及びW相パワースイッチはファストリバースエピタキシャルダイオード電界効果トランジスタ(FREDFET)を備える、請求項1記載のPQFNパッケージ
【請求項11】
前記U相、V相及びW相パワースイッチは絶縁ゲートバイポーラトランジスタ(IGBT)を備える、請求項1記載のPQFNパッケージ。
【請求項12】
前記U相、V相及びW相パワースイッチはIII−V族トランジスタを備える、請求項1記載のPQFNパッケージ。
【請求項13】
前記PQFNパッケージは12mm×12mmより大きいフットプリントを有する、請求項1記載のPQFNパッケージ。
【請求項14】
前記PQFNパッケージは12mm×12mmより小さいフットプリントを有する、請求項1記載のPQFNパッケージ。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2013年3月7日に出願された「Power Quad Flat No-Lead (PQFN) Package in a Single Shunt Inverter Circuit」という名称の米国特許仮出願第61/774,484号の優先権の利益を主張する。本出願は、2012年10月26日に出願された「Compact Wirebonded Power Quad Flat No-Lead (PQFN) Package」という名称の特許出願第13/662,224号の一部継続出願でもある。そして、この一部継続出願は2011年2月24日に出願された「Multi-Chip Module (MCM) Power Quad Flat No-Lead (PQFN) Package a Leadframe for Electrical Interconnections」という名称の特許出願第13/034,519号の優先権の利益を主張し、この特許出願は更に2010年12月13日に出願された「Low Cost Leadframe Based High Power Density Full Bridge Power Device」という名称の米国特許仮出願第61/459,527号の優先権の利益を主張している。本出願は上記の出願のすべてに対して優先権の利益を主張する。更に、上記のすべての出願の開示内容は参照することにより本出願に全て組み込まれるものとする。
【0002】
定義
本明細書で使用される、用語「III−V族」は少なくとも1つのIII族元素と少なくとも1つのV族元素を含む化合物半導体を意味する。例えば、III−V族半導体は、III族窒化物半導体の形を取り得る。「III族窒化物」又は「III−N」は窒素とアルミニウム(Al)、ガリウム(Ga)、インジウム(In)及びボロン(B)などの少なくとも1つのIII族元素を含む化合物半導体を意味し、例えば窒化アルミニウムガリウム(AlGa(1-x)N、窒化インジウムガリウムInGa(1-y)N、窒化アルミニウムインジウムガリウムAlxInGa(1-x-y)N、砒化リン化窒化ガリウム(GaAs(1-a-b))、砒化リン化窒化アルミニウムインジウムガリウム(AlInGa(1-x-y)As(1-a-b))などの合金を含むが、これらに限定されない。また、III族窒化物は一般に、Ga極性、N極性、半極性又は非極性結晶方位などの任意の極性を有するが、これらに限定されない。また、III族窒化物材料は、ウルツ鉱型、閃亜鉛鉱型、あるいは混合ポリタイプ(結晶多形)のいずれかを含むことができ、単結晶又はモノクリスタル、多結晶、または非結晶の結晶構造を含むことができる。本明細書で使用される、「窒化ガリウム」、「GaN」はIII族窒化物化合物半導体を意味し、III族元素は若干量又は相当量のガリウムを含むが、ガリウムに加えて他のIII族元素も含むことができる。また、III−V族又はGaNトランジスタはIII−V族又はGaNトランジスタを低電圧IV族トランジスタとカスコード接続することによって形成される複合高電圧エンハンスメントモードトランジスタを指す。
【0003】
さらに、本明細書で使用される、用語「IV族」はシリコン(Si)、ゲルマニウム(Ge)及び炭素(C)などの少なくとも1つのIV族の元素を意味し、例えばシリコンゲルマニウム(SiGe)及び炭化シリコン(SiC)などの化合物半導体も含む。また、IV族は歪化されたIV族材料を生成するためにIV族元素の2つ以上の層又はIV族元素のドーピングを含む半導体材料も意味し、例えばシリコン・オン・インシュレータ(SOI)、酸素注入分離基板(SIMOX)及びシリコンオンサファイヤ(SOS)などのIV族ベースの複合基板又はシリコン複合基板も含み得る。
【背景技術】
【0004】
幾つかの半導体装置を組み合わせ収容するパッケージは、関連及び依存する回路コンポーネントを近接近に保つことによって、回路設計を簡単化し、コストを低減し、より高い効率及び向上した性能をもたらすことができる。更に、これらのパッケージはコンポーネントの個別パッケージを使用する場合に比べて、アプリケーションの統合を容易にするとともに電気的及び熱的性能を高めることができる。
【0005】
カッド・フラット・ノーリード(QFN)パッケージは、パワー半導体装置等の電気コンポーネントのためのリードレスパッケージである。QFNパッケージはパッケージ内に収容する電気コンポーネントへの接続にリードフレーム及びワイヤボンドを使用することができる。QFNは多くの場合複雑さが制限され、特により複雑な構成に対して電気配線のルーティングが難問になり得る。従って、QFNパッケージは多くの場合簡単な構成を取り、少数の電気コンポーネントを収容するものとなる。
【発明の概要】
【0006】
シングルシャントインバータ回路に含まれるパワー・カッド・フラット・ノーリード(PQFN)パッケージが概して図面の少なくとも一つに示され且つ又関連して明細書で説明され、請求の範囲に完全に特定される。
【図面の簡単な説明】
【0007】
図1A】パワー・カッド・フラット・ノーリード(PQFN)パッケージの模範的な回路の回路図を示す。
図1B】模範的なシングルシャントインバータ回路に含まれるPQFNパッケージの回路図を示す。
図2A】模範的なPQFNパッケージのリードフレームの上面図を示す。
図2B】ワイヤボンドを備える模範的なPQFNパッケージの上面図を示す。
図2C】模範的なPQFNパッケージの底面図を示す。
図2D】模範的なPQFNパッケージの一部分の断面図を示す。
【発明を実施するための形態】
【0008】
以下の説明には本発明の実施形態に関連する具体的な情報が含まれる。当業者に明らかなように、本発明は本明細書に具体的に記載される態様と異なる態様で実施することができる。本願の添付図面及びそれらの詳細説明は模範的な実施形態を対象にしているにすぎない。特に断らない限り、図中の同等もしくは対応する構成要素は同等もしくは対応する参照番号で示されている。更に、本願の図面及び説明図は一般に正しい寸法比で示されておらず、実際の相対寸法に対応するものではない。
【0009】
図1Aはパワー・カッド・フラット・ノーリード(PQFN)100の模範的な回路の回路図を示す。図1Bはシングルシャントインバータ回路150に含まれるPQFNパッケージの回路図を示す。
【0010】
図1A及び図1Bにつき説明すると、PQFNパッケージ100は、ドライバ集積回路(IC)102、U相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bを含む。ドライバIC102は、入力論理部162、レベルシフタ164、不足電圧保護回路168、比較器170、ラッチ172、ゲートドライバ174a、ゲートドライバ174b、キャパシタCR、及びブートストラップダイオードD1,D2及びD3を含む。
【0011】
図1Bのシングルシャントインバータ回路150内において、PQFNパッケージ100は、バス電圧源114、供給電圧源116、マイクロコントローラ124、モータ126、抵抗R1、キャパシタC1、ブートストラップキャパシタCB1,CB2,CB3、及びシャントRSに接続される。PQFNパッケージ100、マイクロコントローラ124、モータ126、抵抗R1、キャパシタC1、ブートストラップキャパシタCB1,CB2,CB3、及びシャントRSのどれもプリント回路板(PCB)に装着することができる。更に、PQFNパッケージ100は、PCB上の導電リードを介してバス電圧源114、供給電圧源116、マイクロコントローラ124、モータ126、キャパシタC1、ブートストラップキャパシタCB1,CB2,CB3、及びシャントRSのいずれにも接続することができる。
【0012】
PQFNパッケージ100は、VBUS端子112a、VCC端子112b、HIN1端子112c、HIN2端子112d、HIN3端子112e、LIN1端子112f、LIN2端子112g、LIN3端子112h、EN端子112i、FAULT端子112j、RCIN端子112k、IM端子112l、VSS端子112m、VCOM端子112n、SW1端子112o、SW2端子112p、SW3端子112q、VB1端子112r、VB2端子112s、及びVB3端子112tも含み、これらの端子は総称してI/O端子という。
【0013】
PQFNパッケージにおいて、VBUS端子112aはバス電圧源114から入力としてVBUSを受ける。VCC端子112bは供給電圧源116からドライバIC102への入力としてVCCを受ける。HIN1端子112c、HIN2端子112d及びHIN3端子112eはマイクロコントローラ124からドライバIC102への入力としてHIN1,HIN2及びHIN3をそれぞれ受信する。LIN1端子112f、LIN2端子112g及びLIN3端子112hはマイクロコントローラ124からドライバIC102への入力としてLIN1,LIN2及びLIN3をそれぞれ受信する。EN端子112iはマイクロコントローラ124からドライバIC102への入力としてENを受信する。FAULT端子112jはマイクロコントローラ124から入力としてFAULTを受信する。RCIN端子112kは抵抗R1及びキャパシタC1からドライバIC102への入力としてRCINを受ける。IM端子121lはU相パワースイッチ104b、V相パワースイッチ106b及びW相パワースイッチ108bからドライバIC102及びマイクロコントローラ124への入力としてITRIPを受ける。VSS端子112mは論理接地GVSSからドライバIC102への入力としてVSSを受ける。VCOM端子112nは電力段接地GCOMからドライバIC102、U相パワースイッチ104b、V相パワースイッチ106b及びW相パワースイッチ108bへの入力としてVCOMを受ける。SWI端子112oはU相出力ノード110aからモータ126への出力としてSWIを受ける。ドライバIC102もU相出力ノード110aから入力としてSW1を受ける。SW2端子112pはV相出力ノード110bからモータ126への出力としてSW2を受ける。ドライバIC102もV相出力ノード110bから入力としてSW2を受ける。SW3端子112qはW相出力ノード110cからモータ126への出力としてSW3を受ける。ドライバIC102もW相出力ノード110cから入力としてSW3を受ける。VB1端子112rはブートストラップキャパシタCB1からドライバIC102への入力としてVB1を受ける。VB2端子112sはブートストラップキャパシタCB2からドライバIC102への入力としてVB2を受ける。VB3端子112tはブートストラップキャパシタCB3からドライバIC102への入力としてVB3を受ける。
【0014】
様々な実施形態において、I/O端子112の数、量及び位置を図に示すものと相違させることができることは理解されよう。例えば、様々な実施形態において、ドライバIC102と異なる機能及び/又はI/O要件を有する異なるドライバICを使用することができる。この変更はPQFNパッケージ100のI/O端子112にも、他の接続にも反映させることができる。一つの特定の例として、一実施形態においては、ドライバIC102をその代わりにドライバIC102とマイクロコントローラ124の機能を組み込んだ機能統合ICとすることができる。この場合にはマイクロコントローラ124の機能用に追加のI/O端子112が必要とされるが、FAULT端子112j等の所定のI/O端子112が不要になる。
【0015】
PQFNパッケージ100は多相パワーインバータ用であり、ドライバIC102はフルブリッジ構成のU相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bを駆動する高電圧IC(HVIC)とすることができる。ドライバIC102の例として、インターナショナル・レクティフィアー社から市販されている「第5世代」HVIC(登録商標)がある。本実施形態においては、U相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bは、縦導通型パワーデバイス、例えばファスト・リバース・エピタキシャル・ダイオード・電界効果トランジスタ(FREDFET)のようなIV族半導体パワー金属−酸化物−半導体電界トランジスタ(パワーMOSFET)又はIV族半導体絶縁ゲートバイポーラトランジスタ(IGBT)である。他の実施形態においては、III−V族半導体FET、HEMT(高電子移動度トランジスタ)、特にGaNFET及び/又はHEMTをU相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bのパワーデバイスとして使用することができる。上で定義したように、本明細書で使用する「窒化ガリウム」又は「GaN」はIII族窒化物化合物半導体を意味し、III族元素は若干量又は相当量のガリウムを含むが、ガリウムに加えて他のIII族元素も含むことができる。前述したように、III−V族又はGaNトランジスタは、III−V族又はGaNトランジスタを低電圧IV族トランジスタとカスコード接続することによって形成される複合高電圧エンハンスメントモードトランジスタも指す。PQFNパッケージ100はフルブリッジパワーデバイスを提供するが、代替実施形態は特定の用途により要求される他のパッケージ構成を提供することができる。
【0016】
PQFNパッケージ100において、HIN1,HIN2及びHIN3は高圧側トランジスタであるU相パワースイッチ104a、V相パワースイッチ106a及びW相パワースイッチ108a用の制御信号である。入力論理部162はHIN1,HIN2及びHIN3を受信し、それらをレベルシフタ164にそれぞれ供給する。本実施形態においては、レベルシフタ164は、例えば約600ボルトを維持することができる成端を有する高電圧レベルシフタである。レベルシフトされたバージョンのHIN1,HIN2及びHIN3は図1Aに示すようにゲートドライバ174aにより受信され、U相パワースイッチ104a、V相パワースイッチ106a及びW相パワースイッチ108aにハ高圧側ゲート信号を供給する。ゲートドライバ174aは更にU相出力ノード110a、V相出力ノード110b及びW相出力ノード110cからSW1、SW2及びSW3をそれぞれ受信する。それによって、ドライバIC102はHIN1,HIN2及びHIN3から高圧側ゲート信号H1,H2及びH3をそれぞれ発生する。
【0017】
同様に、LIN1,LIN2及びLIN3は低圧側トランジスタであるU相パワースイッチ104b、V相パワースイッチ106b及びW相パワースイッチ108b用の制御信号である。入力論理部162はLIN1,LIN2及びLIN3を受信し、それらをレベルシフタ166にそれぞれ供給する。本実施形態においては、レベルシフタ166は低電圧レベルシフタであり、論理接地GVSSと電力段接地GCOMとの差を補償する。これは、例えば約1〜約2ボルトとすることができる。レベルシフトされたバージョンのLIN1,LIN2及びLIN3は図1Aに示すようにゲートドライバ174bにより受信され、U相パワースイッチ104b、V相パワースイッチ106b及びW相パワースイッチ108bに低圧側ゲート信号を供給する。それによって、ドライバIC102はLIN1,LIN2及びLIN3から低圧側ゲート信号L1,L2及びL3をそれぞれ発生する。
【0018】
よって、ドライバIC102はゲートドライバ174a及び174bを使ってU相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bのスイッチングを駆動してモータ126を給電し、これによりモータ電流Iが発生する。本実施形態においては、ゲートドライバ174a及び174bはU相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bのそれぞれに対してインピーダンス整合される。よって、ゲートドライバ174a及び174bはゲート抵抗なしでU相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bを駆動することができ、それによりPQFNパッケージ100をより小型にすることが可能になる。
【0019】
VBUSはバス電圧源114からのバス電圧であり、この電圧はU相パワースイッチ104a、V相パワースイッチ106a及びW相パワースイッチ108aのそれぞれのドレインに結合される。一例として、バス電圧源114はAC−DC整流器とすることができる。ACは一例として、例えば230ボルトの出力電圧とすることができる。DC電圧は、例えばVBUS用に約300ボルトから約400ボルトにすることができる。
【0020】
VCCは供給電圧源116からのドライバIC102用の供給電圧であり、この電圧は例えば約15ボルトとすることができる。図1Aに示すように、ゲートドライバ174bはVCCで給電される。一部の実施形態においては、供給電圧源116はVBUSからVCCを発生する。VB1,VB2及びVB3はドライバIC102のためのブートストラップ電圧であり、それぞれブートストラップキャパシタCB1,CB2及びCB3により供給される。ブートストラップキャパシタCB1,CB2及びCB3は、例えばそれぞれブートストラップダイオードD1,D2及びD3により充電される。ブートストラップキャパシタCB1はVB1端子112rとSW3端子112qとの間に結合される。ブートストラップキャパシタCB2はVB1端子112sとSW3端子112pとの間に結合される。ブートストラップキャパシタCB3はVB1端子112tとSW3端子112oとの間に結合される。
【0021】
図示の実施形態においては、VCCは不足電圧保護回路168に結合される。不足電圧保護回路168は、VCCが例えば約9ボルトの閾値電圧以下に下がるとき不足電圧状態を検出する。VCCは入力論理部162に不足電圧状態を知らせ、ドライバIC102のスイッチングをディセーブルする。ドライバIC102のスイッチングはENを用いて変更することもできる。ENはマイクロコントローラ124がドライバIC102のスイッチングをエネーブルするのに使用できる。特に、ドライバIC102はENに応答してH1,H2,H3,L1,L2及びL3のスイッチングをエネーブルするように構成される。
【0022】
図1Aは、ドライバIC102に供給されるモータ電流IをITRIPとして示している。ドライバIC102はITRIPを過電流保護のために使用している。例えば、図1AはITRIPをキャパシタCRにより発生される基準電圧と比較する比較器170を示している。ITRIPが基準電圧を超過すると、比較器170はラッチ172をトリガし、ラッチ172はFAULTをFAULT端子112jに供給して過電流状態をマイクロコントローラ124に知らせる。入力論理部162もFAULTを受信し、ドライバIC102のスイッチングを無効にする。ドライバIC102はRCINを用いてラッチを自動的に過電流保護からリセットする。図1Bに示すように、キャパシタC1を充電するために抵抗R1がVCC端子112bとRCIN端子112kとの間に結合される。キャパシタC1はRCIN端子112kとVSS端子112mとの間に結合される。抵抗R1及びキャパシタC1は過電流保護に対する自動リセットのタイミングを変更するために変えることができる。
【0023】
VSSは、論理接地GVSSからの、ドライバIC102のサポート論理回路の論理接地である。一例として、図1AはVSSをキャパシタCRの論理接地として示している。VSSはサポート論理回路の他のコンポーネントのための論理接地でもある。サポート論理回路は入力論理部162、レベルシフタ164、不足電圧保護回路168、比較器170、ラッチ172及びキャパシタCRを含むが異なるコンポーネントを含むこともできる。VCOMは、電力段接地GCOMからの、U相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bの電力段接地である。図1Aは、パッケージ100内のU相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bのソースに接続されたVCOMを示している。図1Aに示すように、VCOMはドライバIC102のゲートドライバ174bに結合される。
【0024】
電力段接地と別個の論理接地はシングルシャントインバータ回路150にシャントRSを用いることで与えられる。シャントRSはVCOM端子112nを経てU相パワースイッチ104b、V相パワースイッチ106b、及びW相パワースイッチ108bの各々のソースにも結合される。従って、図1Aに示すモータ126からのモータ電流IはU相パワースイッチ104b、V相パワースイッチ106b、及びW相パワースイッチ108bからの合成相電流である。モータ電流IはIM端子112lを介してマイクロコントローラ124に供給される。マイクロコントローラ124は、それぞれの相電流(U,V及びW)を再構成するために、モータ電流Iを用いてHIN1,HIN2,HIN3,LIN1,LIN2及びLIN3を制御することによってパルス幅変調(PWM)を制御する。
【0025】
このように、本実施形態においては、PQFNパッケージ100は電力段接地と別個の論理接地を備える。U相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bのスイッチング中に、シャントRSの両端間に電圧が発生し得る。論理接地を電力段接地と別個にすることによって、サポート論理回路のためのVCCをシャントRS間の電圧ではなく接地に対するものとすることができる。従って、別々の接地を使用することによって、パッケージ100は、さもなければU相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bからの過度のスイッチング電圧により生じ得るラッチアップ及びノイズ誤作動から保護される。
【0026】
一般的なQFNパッケージは簡単な構成で少数の電気コンポーネントを備えた制限された複雑さを有する。もっと複雑な構成に対しては、接続ワイヤを配線交差及び配線短絡を避けてルーティングすることが困難になる。更に、長い配線は電機的及び熱的性能に悪影響を及ぼす。しかしながら、本開示の様々な実施形態によるPQFNは、配線交差及び配線短絡の回避及び高い電気的及び熱的性能を達成しながら、一般的なQFNパッケージよりも大幅に複雑にすることができる。更に、PQFNパッケージはシングルシャント回路において電力段から分離した論理接地を達成することができる。
【0027】
次に図2A,2B及び2Cにつき説明すると、図2A図2B及び2CのPQFNパッケージ200のリードフレームの上面図を示す。図2BはPQFNパッケージ200の上面図を示す。図2CはPQFNパッケージ200の底面図を示す。本実施形態においては、PQFNパッケージ200はマルチチップモジュール(MCM)PQFNパッケージであり、このパッケージは12mm×12mmのフットプリント(設置面積)を有するものとし得る。他の実施形態においては、PQFNパッケージ200は12mm×12mmより大きいフットプリントを有するものとし得る。更に他の実施形態においては、PQFNパッケージ200は12mm×12mmより小さいフットプリントを有するものとし得る。
【0028】
PQFNパッケージ200は図1A及び1BのPQFNパッケージ100に対応する。例えば、PQFNパッケージ200は、図1AのドライバIC102、U相パワースイッチ104a及び104b、V相パワースイッチ106a及び106b、及びW相パワースイッチ108a及び108bにそれぞれ対応する、ドライバIC202、U相パワースイッチ204a及び204b、V相パワースイッチ206a及び206b、及びW相パワースイッチ208a及び208bを含む。更に、PQFNパッケージ200は、PQFNパッケージ100内のVBUS端子112a、VCC端子112b、HIN1端子112c、HIN2端子112d、HIN3端子112e、LIN1端子112f、LIN2端子112g、LIN3端子112h、EN端子112i、FAULT端子112j、RCIN端子112k、IM端子112l、VSS端子112m、VCOM端子112n、SW1端子112o、SW2端子112p、SW3端子112q、VB1端子112r、VB2端子112s、及びVB3端子112tにそれぞれ対応する、VBUS端子212a、VCC端子212b、HIN1端子212c、HIN2端子212d、HIN3端子212e、LIN1端子212f、LIN2端子212g、LIN3端子212h、EN端子212i、FAULT端子212j、RCIN端子212k、IM端子212l、VSS端子212m(「論理接地端子212m」とも称される)、VCOM端子212n(「電力段接地端子212n」とも称される)、SW1端子212o(「U相出力端子212o」とも称される)、SW2端子212p(「V相出力端子212p」とも称される)、SW3端子212q(「W相出力端子212q」とも称される)、VB1端子212r、VB2端子212s、及びVB3端子212t(「I/O端子212」との称される)を含む。
【0029】
図2Aは、ドライバICダイパッド220、W相ダイパッド222a、V相ダイパッド222b、U相ダイパッド222c、共通ダイパッド228を含むリードフレーム260を示す。リードフレームアイランド233はドライバICダイパッド220に電気的に且つ機械的に(例えば一体的に)接続される。リードフレーム260は更にリードフレームストリップ230及び232、及びI/0端子212を含む。リードフレームアイランド234はリードフレーム260のリードフレームストリップ230の上にあり、リードフレームストリップ230はリードフレーム260のV相ダイパッド222bに電気的に且つ機械的に(例えば一体的に)接続される。リードフレームアイランド236はリードフレーム260のリードフレームストリップ232の上にあり、リードフレームストリップ232はリードフレーム260のU相ダイパッド222cに電気的に且つ機械的に(例えば一体的に)接続される。図2Bに示すように、リードフレームストリップ230及び232は必要に応じPQFNパッケージ200のエッジ242cまで延在させることができる。そうすれば、リードフレームストリップ230及び232のどちらもPQFNパッケージ200の追加のI/O端子を供与することができる。例えば、リードフレームストリップ232はPQFNパッケージ200のエッジ242cにおいて追加のSW1端子212oを供与するものとして示されている。
【0030】
リードフレーム260はオリン・ブラス(登録商標)から入手し得る銅(Cu)合金C194のような高い熱及び電気伝動率を有する材料で構成することができる。リードフレーム260の上面240aはデバイスダイ及びワイヤへの付着性を高める材料で選択的にめっきすることもできる。このめっきはリードフレーム260に選択的に被着された銀(Ag)めっきとすることができ、この銀めっきはQPLリミテッドなどの会社から入手できる。
【0031】
図2A及び2Bは、リードフレーム260はエッチングされたリードフレーム、例えばハーフエッチングされたリードフレームであることを示す。図2A及び2Bにおいてリードフレーム260のエッチング(例えばハーフエッチング)されてない部分が破線で示されている。リードフレームアイランド233,234及び236はこのようなエッチングされてない部分の例である。例えば、図2Cはリードフレーム260の底面240bを示す(PQFNパッケージ200の底面にも相当する)。図2Cは更に、リードフレーム260のエッチングされた部分を覆うPQFNパッケージ200のモールドコンパウンド265も示している。モールドコンパウンド265は日立ケミカルから入手しうるCEL9220ZHF(v79)等の低い曲げ弾性率を有するプラスチックとすることができる。パッケージのクラッキングに耐える弾性を与えるために、モールドコンパウンド265で決まるPQFNパッケージ200の高さ(又は厚さ)を薄く保つことができ、例えば0.9mm以下にすることができる。
【0032】
I/O端子212、リードフレームアイランド233、リードフレームアイランド234及びリードフレームアイランド236はエッチングされず、モールドコンパウンド265を経てリードフレーム260の底面240b(PQFNパッケージ200の底面にも対応する)に露出される。従って、I/O端子212、リードフレームアイランド233、リードフレームアイランド234及びリードフレームアイランド236は高い導電性及び/又は熱放散のためにリードフレーム260の底面240bに露出される。この特徴は、必要に応じPCBに接合ランドを設けることによって活用することができる。リードフレーム260の露出部分は例えば錫(Sn)でめっきすることができる。
【0033】
ドライバIC202、U相パワースイッチ204a及び204b、V相パワースイッチ206a及び206b、及びW相パワースイッチ208a及び208bはワイヤボンドとリードフレーム260を使って相互接続される。
【0034】
図2Bは、U相パワースイッチ204a及び204b、V相パワースイッチ206a及び206b、W相パワースイッチ208a及び208b、及びドライバIC202はリードフレーム260に電気的に且つ機械的に接続されることを示している。この接続は、ヘンケルコーポレーションから入手し得る銀充填QMI529HT等の半田又は導電性接着剤を使用して達成できる。
【0035】
図2Bに示すように、U相パワースイッチ204b、V相パワースイッチ206b、及びW相パワースイッチ208bはPQFNパッケージ200のエッジ242aに沿ってリードフレーム260上に置かれる。W相パワースイッチ208bはW相ダイパッド222aの上に置かれる。具体的には、W相パワースイッチ208bのドレイン236aがW相ダイパッド222aの上に置かれる。同様に、V相パワースイッチ206bはV相ダイパッド222bの上に置かれる。具体的には、V相パワースイッチ206bのドレイン236bがV相ダイパッド222bの上に置かれる。同様に、U相パワースイッチ204bはU相ダイパッド222cの上に置かれる。具体的には、U相パワースイッチ204bのドレイン236cがU相ダイパッド222cの上に置かれる。従って、U相パワースイッチ204b、V相パワースイッチ206b、及びW相パワースイッチ208bはリードフレーム260のそれぞれのダイパッドに個別に結合される。従って、図2Bに示すように、W相ダイパッド222aはPQFNパッケージ200のW相出力端子212qに対応させることができ、V相ダイパッド222bはPQFNパッケージ200のV相出力端子212pに対応させることができ、U相ダイパッド222cはPQFNパッケージ200のU相出力端子212oに対応させることができる。
【0036】
同様に図2Bに示すように、U相パワースイッチ204a、V相パワースイッチ206a、及びW相パワースイッチ208aはPQFNパッケージ200のエッジ242bに沿ってリードフレーム260上に置かれる。U相パワースイッチ204a、V相パワースイッチ206a、及びW相パワースイッチ208aは共通ダイパッド228の上に置かれる。具体的には、U相パワースイッチ204aのドレイン236d、V相パワースイッチ206aのドレイン236e、及びW相パワースイッチ208aのドレイン236fがリードフレーム260の共通ダイパッド228の上に置かれる。従って、図2Bに示すように、共通ダイパッド228はPQFNパッケージ200のVBUS端子(例えばバス電圧入力端子)に対応させることができる。
【0037】
この構成の一例は図2Dに詳細に示されている。図2DはPQFNパッケージ200の断面図を示す。図2Dの断面図は図2B及び2Cの断面2D−2Dに対応する。図2Dはリードフレーム260の導電性接着剤254及びめっき層248aにより共通ダイパッド228に接続されたV相パワースイッチ206aのドレイン236eを示す。導電性接着剤254はQMI529HT等の銀充填接着剤とすることができる。PQFNパッケージ200内に他のダイを同様にしてリードフレーム260に接続することもできる。
【0038】
図2Bに示すように、ドライバIC202はリードフレーム260上に置かれる。具体的には、ドライバIC202はリードフレーム260のドライバICダイパッド220の上に置かれる。ドライバICダイパッド220はドライバIC202より大きく、従ってドライバIC202と異なる機能を有するもっと大きな異なるドライバICを収容することができる。
【0039】
図2Bには更に、ワイヤボンド244aのようなワイヤボンドによってドライバIC202が、VCC端子212b、HIN1端子212c、HIN2端子212d、HIN3端子212e、LIN1端子212f、LIN2端子212g、LIN3端子212h、EN端子212i、FAULT端子212j、RCIN端子212k、IM端子212l、VSS端子212m、VB1端子212r、VB2端子212s、及びVB3端子212tに、及びU相パワースイッチ204a及び204b、V相パワースイッチ206a及び206b、W相パワースイッチ208a及び208bのそれぞれのゲートに電気的に且つ機械的に接続されることが示されている。
【0040】
図2Bに示されるワイヤボンド244a及び同様に示されるワイヤボンドは、例えば直径1.3ミルのGIタイプの金(Au)ワイヤとすることができる。ワイヤボンド246a,246b,246c,246d,246e及び246f(「ワイヤボンド246」)等の電力接続のためにはもっと太いワイヤを使用することができる。ワイヤボンド246は、例えば直径2.0ミルの銅(Cu)ワイヤとすることができ、例えばクリッケ・アンド・ソッファから入手し得るMaxsoft(登録商標)LDワイヤとすることができる。図2Bに示されるように、ワイヤボンド246に対しては、追加の処理能力を与えるために複数のワイヤボンド、例えば2つのワイヤボンドを並列に設けることもできる。
【0041】
U相パワースイッチ204b、V相パワースイッチ206b、及びW相パワースイッチ208bはそれぞれU相パワースイッチ204a、V相パワースイッチ206a、及びW相パワースイッチ208aにリードフレーム260を介して結合される。
【0042】
図2Bにおいて、ワイヤボンド246aはU相パワースイッチ204aのソース238dをリードフレーム260に電気的に且つ機械的に接続する。具体的には、ソース238dはワイヤボンド246aによりリードフレームストリップ232のリードフレームアイランド236に接続される。従って、図1AのU相出力ノード110aはリードフレーム260のリードフレームストリップ232上に置かれ、このリードフレームストリップ232がリードフレーム260のU相ダイパッド222cに接続される。従って、PQFNパッケージ200はワイヤボンド246a、及びワイヤボンド244b等の他のワイヤボンドの配置に大きなフレキシビリティを有し、配線交差に起因する配線短絡を回避しながら高い電気的及び熱的性能を達成することができる。ワイヤボンド244bは、図1Aに示すようにSW1をドライバIC202に供給するために、リードフレームアイランド236においてドライバIC202とリードフレーム260のリードフレームストリップ232とを電気的に且つ機械的に接続する。図1AのU相出力ノード110aもリードフレーム260のリードフレームアイランド236上に位置する。リードフレームアイランド236はPQFNパッケージ200の底面240bで露出し(図2C参照)、U相出力ノード110aで発生する熱をPQFNパッケージ200から効率的に放散することができる。
【0043】
同様に、ワイヤボンド246bはV相パワースイッチ206aのソース238eをリードフレーム260に電気的に且つ機械的に接続する。図2Dはこの接続の一例を示す。ソース238eはワイヤボンド246bによりリードフレームストリップ230のリードフレームアイランド234にリードフレーム260のめっき層248bを介して接続される。リードフレームストリップ230は続いてV相ダイパッド222bを経てV相パワースイッチ206bのドレイン236bに接続する。ソース238dをU相パワースイッチ204bのドレイン236cに接続するのと同様の接続を使用することができる。ワイヤボンド246bはリードフレームアイランド234においてV相パワースイッチ206aのソース238eをリードフレームストリップ230に接続する。従って、図1AのV相出力ノード110bはリードフレーム260のリードフレームストリップ230上に置かれ、このリードフレームストリップ230はリードフレーム260のV相ダイパッド222bに接続される。従って、PQFNパッケージ200はワイヤボンド246b及びワイヤボンド244c等の他のワイヤボンドの配置に大きなフレキシビリティを有し、配線交差に起因する配線短絡を回避しながら高い電気的及び熱的性能を達成することができる。ワイヤボンド244cは、図1Aに示すようにSW2をドライバIC202に供給するために、リードフレームアイランド234においてドライバIC202とリードフレーム260のリードフレームストリップ230とを電気的に且つ機械的に接続する。図1AのV相出力ノード110bもリードフレーム260のリードフレームアイランド234上に位置する。リードフレームアイランド234はPQFNパッケージ200の底面240bで露出し(図2C参照)、V相出力ノード110aで発生する熱をPQFNパッケージ200から効率的に放散することができる。
【0044】
PQFNパッケージ200はリードフレームストリップ230及び/又は232のないリードフレームアイランド234及び/又は236を含むこともできる点に注意されたい。例えば、リードフレームアイランド234はPCB上のトラックを経てV相ダイパッド222bに接続することもできる。更に、PQFNパッケージ200はリードフレームアイランド234及び/又は236のないリードフレームストリップ230及び/又は232を含むこともできる。しかしながら、リードフレームアイランド234及び/又は236を有するリードフレームストリップ230及び/又は232は多くの場合PQFNパッケージ200内のワイヤボンドの配置に大きなフレキシビリティをもたらし、高い電気的及び熱的性能を達成することができる。
【0045】
図2Bにおいて、ワイヤボンド246cはW相パワースイッチ208aのソース238fをリードフレーム260に電気的に且つ機械的に接続する。具体的には、ワイヤボンド246cはW相パワースイッチ208aのソース238fをリードフレーム260上のW相ダイパッド222aに接続する。従って、図1AのW相出力ノード110cはW相パワースイッチ208bとともにリードフレーム260のW相ダイパッド222a上に置かれる。W相パワースイッチ208bはW相パワースイッチ208aに隣接するので、W相パワースイッチ208aのソース238fを、配線交差に起因する配線短絡を容易に避けながら、W相パワースイッチ208bのドレイン236aに結合することができ、高い電気的及び機械的性能を達成することができる。これはリードフレームストリップ及び/又はリードフレームアイランドを使用することなく達成することもできる。従って、PQFNパッケージ200は、U相出力ノード110a、V相出力ノード110b及びW相出力ノード110c間のアーク放電を避けながら大幅に小さくすることができる。例えば、追加のリードフレームストリップ及び/又はリードフレームアイランドは、アーク放電の防止のためにリードフレームストリップ230及び232間の間隔を十分に大きく(例えば1mm以上)維持するために大きなPQFNパッケージ200を必要とする。更に、この構成はPQFNパッケージ200内のワイヤボンド配置のフレキシビリティにあまり影響を与えない。また、W相ダイパッド222aはPQFNパッケージ200の底面240bで露出するので(図2C参照)、W相出力ノード110aで発生する熱をPQFNパッケージ200から効率的に放散することができる。ワイヤボンド244dは、図1Aに示すようにSW3をドライバIC202に供給するために、ドライバIC202とソース238fを電気的に且つ機械的に接続する。
【0046】
PQFNパッケージ200はドライバIC202のサポート論理回路に結合されたリードフレーム260の論理接地を含む。リードフレーム260の論理接地は論理接地端子212mを含む。少なくともワイヤボンド244gがリードフレーム260の論理接地端子212mをドライバIC202に電気的に且つ機械的に接続し、具体的にはリードフレーム260の論理接地端子212mをドライバIC202のサポート論理回路に接続する。
【0047】
PQFNパッケージ200は更に、U相パワースイッチ204b、V相パワースイッチ206b、及びW相パワースイッチ208bのソース238c,238b及び238aに結合されたリードフレーム260の電力段接地を含む。リードフレーム260の電力段接地は電力段接地端子212n、ドライバICダイパッド220、及びリードフレームアイランド233を含む。図2Bにおいて、少なくともワイヤボンド246dがリードフレーム260の電力段接地の電力段接地端子212nをW相パワースイッチ208bのソース238aに電気的に且つ機械的に接続する。少なくともワイヤボンド246eがW相パワースイッチ208bのソース238aをV相パワースイッチ206bのソース238bに電気的に且つ機械的に接続する。同様に、少なくともワイヤボンド246fがV相パワースイッチ206bのソース238bをU相パワースイッチ204bのソース238cに電気的に且つ機械的に接続する。従って、ソース238a,238b及び238cはPQFNパッケージ200内で互いに電気的に且つ機械的に接続される。
【0048】
また、本実施形態においては、リードフレーム260の電力段接地はドライバIC202のゲートドライバ(例えば図1のゲートドライバ174b)に結合される。ワイヤボンド244e及び244fがリードフレーム260を介してU相パワースイッチ204bのソース238cをドライバIC202のゲートドライバに接続する。ワイヤボンド244eがU相パワースイッチ204bのソース238cをリードフレーム260のリードフレームアイランド233に電気的に且つ機械的に接続する。ワイヤボンド244fがリードフレーム260のリードフレームアイランド233をドライバIC202に電気的に且つ機械的に接続する。U相パワースイッチ204bのソース238cをリードフレーム260を介してドライバIC202に接続することによってPQFNパッケージ200の接続配線にフレキシビリティがもたらされる。しかしながら、リードフレームアイランド233は任選択であり、ワイヤボンドによってU相パワースイッチ204bのソース238cをドライバICに直接接続しても良いことに注意されたい。更に、一部の実施形態においては、ドライバIC202は任意選択としてリードフレーム260のドライバICダイパッド220の上に置かれた接地256を有することができる。接地256は電力段接地及び/又は論理接地とすることができる。図示の実施形態においては、接地256が電力段接地である場合には、ワイヤボンド244fは除去することができる。
【0049】
従って、図1A,IB及び図2A−2Dにつき上述したように、様々な実施形態によれば、PQFNパッケージは配線交差及び配線短絡の回避及び高い電気的及び熱的性能を達成しながら一般的なQFNより大幅に複雑にすることができる。そうすることで、PQFNパッケージは複雑な回路、例えば電力段接地と別個の論理接地を有するシングルシャントインバータ回路を達成することができる。
【0050】
以上の説明から明らかなように、本願に記載の発明の概念は本発明の概念の範囲を逸脱することなく種々の技術を用いて実施することができる。更に、特に幾つかの実施形態について本発明の概念を説明したが、当業者であれば、それらの形態及び細部に本発明の概念の精神及び範囲を逸脱することなく種々な変更を加えることができることは理解されよう。従って、上述した実施形態はあらゆる点において例示的なものであり、限定的なものではないと考慮されたい。更に、本発明は上述した特定の実施形態に限定されず、本発明の範囲から逸脱することなしに、本発明に多くの再配置、変形及び置換を行い得ることを理解されたい。
図1A
図1B
図2A
図2B
図2C
図2D