【実施例】
【0152】
実施例1:活性化ポリマーの調製
PLA(dl−ポリラクチド)(Boehringer−IngelheimからのResomer R202H、KOH相当酸価0.21mmol/g、固有粘度(iv):0.21dl/g)(10g、2.1mmol、1.0当量)をジクロロメタン(DCM)(35mL)に溶解した。EDC(2.0g、10.5mmol、5当量)およびNHS(1.2g、10.5mmol、5当量)を添加した。超音波処理の助けを借りて、固形物を溶解した。得られた溶液を室温で6日間撹拌した。溶液を濃縮してDCMの大部分を除去し、残液を250mLのジエチルエーテルおよび5mLのMeOH溶液に添加して、活性化PLA−NHSエステルを沈殿させた。溶剤を除去してポリマーをエーテルで2回洗浄し(2×200mL)、真空下で乾燥させてPLA−NHS活性化エステルを白色の泡状固体として得た(約8gを回収し、H NMRを使用してNHSエステルの存在を確認した)。PLA−NHSエステルは、−10度未満の冷凍庫内でアルゴン下において使用時まで保存した。
【0153】
代案としては、DCMの代わりにDMF、THF、ジオキサン、またはCHCl
3中で反応を実施し得る。EDCの代わりにDCCを使用し得る(得られるDCC−尿素は、PLA−NHSエステルのエーテルからの沈殿の前に濾過して除去する)。EDCまたはDCCおよびNHSの量は、PLAの2から10当量の範囲であり得る。
【0154】
同様に、ivが0.33dl/gで酸価が0.11mmol/gのPLAまたはPLGA(Resomer RG653H、65%ラクチド−35%グリコリド、iv:0.39dl/gおよび酸価0.08mmol/g)またはPLGA(Resomer RG752H、75%ラクチド−25%グリコリド、iv:0.19dl/gおよび酸価0.22mmol/g)を対応するPLA−NHSまたはPLGA−NHS活性化エステルに変換し、−10度未満の冷凍庫内でアルゴン下において使用時まで保存する。
【0155】
実施例2:活性化ポリマーの調製
PLA(R202H、酸価0.21mmol/g)(2.0g、0.42mmol、1.0当量)を10mLの乾燥アセトニトリルに溶解した。N’,N−ジスクシンイミジルカーボネート(DSC)(215mg、1.26mmol、3.0当量)および触媒量の4−(N,N−ジメチルアミノ)ピリジン(DMAP)を添加した。得られた混合物をアルゴン下で1日間撹拌した。得られた溶液をほぼ乾燥するまで濃縮した。次に残留物を40mLのエーテルに添加してポリマーを沈殿させ、それをエーテルで2回洗浄し(2×30mL)、真空下で乾燥させてPLA−NHS活性化エステルを得た(1H NMRはNHSエステル量が約80%であることを示した)。
【0156】
実施例3:活性化ポリマーの調製
PLA(R202H)(5.0g、1.05mmol)を25mLの無水DCMおよび2.5mLの無水DMFに溶解した。DCC(650mg、3.15mmol、5.0当量)およびペンタフルオロフェノール(PFP)(580mg、3.15mmol、5.0当量)を添加した。得られた溶液を室温で6日間撹拌し、次に濃縮してDCMを除去した。得られた残留物を250mLのエーテルに添加して、活性化PLAポリマーを沈殿させ、それをエーテルで洗浄し(2×100mL)、真空下で乾燥させてPLA−PFP活性化エステルを白色の泡状固体(4.0g)として得た。
【0157】
実施例4:免疫調節薬の共役
PLA−NHS(1.0g)、R848(132mg、0.42mmol)およびジイソプロピルエチルアミン(DIPEA)(0.073mL、0.42mmol)をアルゴン下で2mLの乾燥DMFに溶解した。得られた溶液を50〜60℃で2日間加熱した。溶液を室温に冷却し、40mLの脱イオン(DI)水に添加して、ポリマー生成物を沈殿させた。次にポリマーをDI水(40mL)およびエーテル(2×40mL)で洗浄し、真空下30℃で乾燥させて、R848−PLA抱合体を白色の泡状固体として得た(0.8g、H NMRはアミド結合を通じたR848のPLAへの共役を示した)。ポリマー上のR848の共役の程度(装填量)は、次のようにしてHPLC分析によって確認した。秤量された量のポリマーをTHF/MeOHに溶解して15%NaOHで処理した。得られた加水分解ポリマー生成物をR848の量について、HPLCによって標準曲線と比較して分析した。
【0158】
実施例5:免疫調節薬の共役
PLA−NHS(1.0g、0.21mmol、1.0当量)、R848(132mg、0.42mmol、2.0当量)、DIPEA(0.15mL、0.84mmol、4.0当量)、およびDMAP(25mg、0.21mmol、1.0当量)をアルゴン下で2mLの乾燥DMFに溶解した。得られた溶液を50〜60℃で2日間加熱した。溶液を室温に冷却して、40mLの脱イオン(DI)水に添加してポリマー生成物を沈殿させた。次にポリマーをDI水(40mL)とエーテル(2×40mL)で洗浄し、真空下30℃で乾燥させてPLA−R848抱合体を白色の泡状固体として得た(0.7g;20mgのポリマーを0.2mLのTHF、0.1mLのMeOH、および0.1mLの15%NaOHの溶液中で加水分解した。ポリマー上のR848の量は、逆相HPLC分析(C18カラム、移動相A:水中の0.1%TFA、移動相B:CH
3CN中の0.1%TFA、勾配)によって約35mg/gと測定された)。
【0159】
実施例6:免疫調節薬の共役
PLA(R202H)(2.0g、0.42mmol、1.0当量)、DCC(260mg、1.26mmol、3.0当量)、NHS(145mg、1.26mmol、3.0当量)、R848(200mg、0.63mmol、1.5当量)、DMAP(77mg、0.63mmol、1.5当量)、およびDIPEA(0.223mL、1.26mmol、3.0当量)を4mLの乾燥DMFに溶解した。混合物を50〜55℃で3日間加熱した。混合物を室温に冷却し、DCMで希釈した。DCC−尿素を濾過して濾液を濃縮し、DCMを除去した。得られたDMF中の残留物を水(40mL)に添加して、ポリマー生成物を沈殿させ、それを水(40mL)、エーテル/DCM(40mL/4mL)、およびエーテル(40mL)で洗浄した。真空下30℃で乾燥後、所望のPLA−R848抱合体を白色の泡状固体(1.5g)として得た。
【0160】
実施例7:免疫調節薬の共役
PLA(R202H)(2.0g、0.42mmol、1.0当量)、EDC(242mg、1.26mmol、3.0当量)、HOAt(171mg、1.26mmol、3.0当量)、R848(200mg、0.63mmol、1.5当量)、およびDIPEA(0.223mL、1.26mmol、3.0当量)を4mLの乾燥DMFに溶解した。混合物を50〜55℃で2日間加熱した。溶液を室温に冷却して水(40mL)に添加し、ポリマー生成物を沈殿させて、それを水(40mL)、エーテル/MeOH(40mL/2mL)、およびエーテル(40mL)で洗浄した。オレンジ色のポリマーを4mLのDCMに溶解し、得られた溶液を40mLのエーテルに添加して、ポリマーをほぼオレンジ色なしに沈殿させた。淡色のポリマーをエーテル(40mL)で洗浄した。真空下30℃で乾燥後、所望のPLA−R848抱合体を淡褐色泡状固体(1.5g)として得た。
【0161】
実施例8:免疫調節薬の共役
PLA(R202H)(1.0g、0.21mmol、1.0当量)、EDC(161mg、0.84mmol、4.0当量)、HOBt.H2O(65mg、0.42mmol、2.0当量)、R848(132mg、0.42mmol、2.0当量)、およびDIPEA(0.150mL、0.84mmol、4.0当量)を2mLの乾燥DMFに溶解した。混合物を50〜55℃で2日間加熱した。溶液を室温に冷却し、水(40mL)に添加してポリマー生成物を沈殿させた。オレンジ色のポリマーを2mLのDCMに溶解し、得られた溶液を40mLのエーテルに添加してポリマーを沈殿させ、それを水/アセトン(40mL/2mL)およびエーテル(40mL)で洗浄した。真空下30℃で乾燥後、灰色がかった泡状固体として、所望のPLA−R848抱合体を得た(1.0g;ポリマー上のR848の装填量はHPLC分析に基づいて約45mg/gであり、
1H NMRによって確認された)。同様にして、PLGA(75%ラクチド)−R848およびPLGA(50%ラクチド)−R848を調製した。
【0162】
実施例9:免疫調節薬の共役
【化7】
撹拌棒および冷却管を装着した丸底フラスコに、イミダゾキノリン、レシキモド(R−848、218mg、6.93×10
−4モル)、D/Lラクチド(1.0g、6.93×10
−3モル)、および無水硫酸ナトリウム(800mg)を添加した。フラスコおよび内容物を真空下55℃で8時間乾燥させた。冷却後、次にフラスコをアルゴンでフラッシュしてトルエン(50mL)を添加した。反応を全てのラクチドが溶解するまで120℃に設定された油浴内で撹拌し、次にピペットでエチルヘキサン酸スズ(19mg、15μL)を添加した。アルゴン下で16時間加熱を継続した。冷却後、反応をエーテル(200mL)で希釈して、溶液を水(200mL)で洗浄した。溶液を硫酸マグネシウム上で乾燥させて、濾過して真空下で蒸発させて880mgの粗製ポリ乳酸−R−848抱合体を得た。塩化メチレン中の10%メタノールを溶出剤として使用して、シリカ上で粗製ポリマーをクロマトグラフ分析した。抱合体を含有する画分をプールして蒸発させ、精製抱合体を得た。これを高真空下で乾燥させ、抱合体を固体フォームとして702mg(57.6%)の収率で得た。キノリンの芳香族部分のNMRシグナルを統合し、これを乳酸のCHプロトンの統合強度と比較することで、抱合体の分子量はおよそ2KDと判定された。GPCは、抱合体が5%未満の遊離R848を含有したことを示した。
【0163】
実施例10:低分子量PLA−R848抱合体の調製
【化8】
EtOAc(120mL)中のPLA−CO
2H(平均分子量:950、DPI:1.32;5.0g、5.26mmol)およびHBTU(4.0g、10.5mmol)溶液をアルゴン下室温で45分間撹拌した。化合物R848(1.65g、5.26mmol)を添加して、DIPEA(5.5mL、31.6mmol)がそれに続いた。混合物を室温で6時間、次に50〜55℃で15時間撹拌した。冷却後、混合物をEtOAc(150mL)で希釈して、1%クエン酸溶液(2×40mL)、水(40mL)、および鹹水溶液(40mL)で洗浄した。溶液をNa
2SO
4(10g)上で乾燥させ、ゲル様残留物に濃縮した。次にメチルt−ブチルエーテル(MTBE)(150mL)を添加して、ポリマー抱合体を溶液から析出させた。次にポリマーをMTBE(50mL)で洗浄し、真空下室温で2日間乾燥させて白色フォームにした(5.3g、GPCによる平均分子量は1200、PDI:1.29;HPLCによるR848装填量は20%)。
【0164】
実施例11:低分子量PLA−R848抱合体の調製
【化9】
EtOAc(120mL)中のPLA−CO2H(平均分子量:1800、DPI:1.44;9.5g、5.26mmol)およびHBTU(4.0g、10.5mmol)の溶液をアルゴン下室温で45分間撹拌した。化合物R848(1.65g、5.26mmol)を添加して、DIPEA(5.5mL、31.6mmol)がそれに続いた。混合物を室温で6時間、次に50〜55℃で15時間撹拌した。冷却後、混合物をEtOAc(150mL)で希釈して、1%クエン酸溶液(2×40mL)、水(40mL)、および鹹水溶液(40mL)で洗浄した。溶液をNa
2SO
4(10g)上で乾燥させ、ゲル様残留物に濃縮した。次にメチルt−ブチルエーテル(MTBE)(150mL)を添加して、ポリマー抱合体を溶液から析出させた。次にポリマーをMTBE(50mL)で洗浄し、真空下室温で2日間乾燥させ白色フォームにした(9.5g、GPCによる平均分子量は1900、PDI:1.53;HPLCによるR848装填量は17%)。
【0165】
実施例12:イミド開環を通じたPCADKへのR848の共役
以下の実施例は、下のステップ1で例証されるような、Pulendranらに付与された国際公開第2008/127532号パンフレットで提供される方法に従った、ポリケタールPCADKの合成について記載する。
【0166】
短経路蒸留ヘッドに接続された50mL二口フラスコ内で、PCADKを合成する。最初に5.5mgの再結晶化p−トルエンスルホン酸(0.029mmol、Aldrich,St.Louis,MO)を6.82mLの酢酸エチルに溶解して、1,4−シクロヘキサンジメタノール(12.98g、90.0mmol、Aldrich)を含有する30mLのベンゼン溶液(100℃に保持される)に添加する。酢酸エチルを煮沸して取り除き、蒸留2,2−ジメトキシプロパン(10.94mL、90.0mmol、Aldrich)をベンゼン溶液に添加して重合反応を開始する。引き続いて計量漏斗を通じて、追加的用量の2,2−ジメトキシプロパン(5mL)およびベンゼン(25mL)を6時間にわたって反応に毎時添加し、蒸留除去される2,2−ジメトキシプロパンおよびベンゼンを補う。8時間後、500μLのトリエチルアミンの添加によって反応を停止する。ポリマーを冷ヘキサン(−20℃で保存される)中の沈殿によって単離し、真空濾過がそれに続く。UV検出器を装着したゲル透過クロマトグラフィー(GPC)(日本国京都の島津製作所)によって、PCADKの分子量を測定する。THFを流速1ml/分の移動相として使用する。Polymer Laboratories(Amherst,MA)からのポリスチレン標準を使用して、分子量較正曲線を確立する。この化合物を使用して、引き続く全実験においてPCADK粒子を作成する。
【0167】
R848は、下に示すステップ2に従ってイミド開環を通じて、分子量6000を有するPCADKの末端アルコール基に共役してもよい。
ステップ1:PCADKの調製
【化10】
ステップ2:PCADKのR848への共役
【化11】
【0168】
ステップ2では、ステップ1(12g、2.0×10
−3モル)からのポリマーを塩化メチレン100mLに溶解し、R848のラクタム(3.3g、8.0×10
−3モル)を添加する。1,5,7−トリアザビシクロ−[4,4,0]デカ−5−エン(TBD、0.835g、6×10
−3モル)を一度に添加しながら、このスラリーを撹拌する。室温で一晩の撹拌後、透明溶液が形成する。溶液を塩化メチレン(100mL)で希釈し、溶液を5%クエン酸で洗浄する。この溶液を硫酸ナトリウム上で乾燥させ、その後それを濾過して真空下で蒸発させる。高真空下での乾燥後、11.3グラム(81%)のポリマーが得られる。一部を酸の中で加水分解して、R848含量は9重量%と測定される。
【0169】
実施例13:イミド開環を通じたポリ−カプロラクトンジオールへのR848の共役
イミド開環を使用して、分子量2000のポリ−カプロラクトンジオールの末端アルコール基にR854を付着する。ポリカプロラクトンジオールはAldrich Chemical Company(カタログ番号189421)から購入され、以下の構造を有する。
【化12】
【0170】
ポリカプロラクトンジオール−R854抱合体は、以下の構造を有する。
【化13】
【0171】
ポリマー(5g、2.5×10
−3モル)を塩化メチレン25mLに溶解し、R854のラクタム(2.4g、5.0×10
−3モル)を添加する。1,5,7−トリアザビシクロ−[4,4,0]デカ−5−エン(TBD、0.557g、4×10
−3モル)を一度に添加しながら、このスラリーを撹拌する。室温で15分間撹拌した後、透明な淡黄色溶液が形成する。溶液を塩化メチレン(100mL)で希釈し、溶液を5%クエン酸で洗浄する。この溶液を硫酸ナトリウム上で乾燥させ、その後それを濾過して真空下で蒸発させる。高真空下での乾燥後、5.2グラム(70%)のポリマーが得られる。一部を酸の中で加水分解して、R848含量が18.5重量%であると判定される。
【0172】
実施例14:イミド開環を通じたポリ−(ヘキサメチレンカーボネート)ジオールへのR848の共役
イミド開環を使用して、分子量2000のポリ−(ヘキサメチレンカーボネート)ジオールの末端アルコール基にR848を付着する。ポリ(ヘキサメチレンカーボネート)ジオールは、Aldrich Chemical Company(カタログ番号461164)から購入されて、以下の構造を有する。
HO−[CH
2(CH
2)
4CH
2OCO
2]nCH
2(CH
2)
4CH
2−OH
【0173】
ポリ(ヘキサメチレンカーボネート)ジオール−R848抱合体は以下の構造を有する。
【化14】
【0174】
ポリマー(5g、2.5×10
−3モル)を塩化メチレン25mLに溶解し、R848のラクタム(2.06g、5.0×10
−3モル)を添加する。1,5,7−トリアザビシクロ−[4,4,0]デカ−5−エン(TBD、0.557g、4×10
−3モル)を一度に添加しながら、このスラリーを撹拌する。室温で一晩の撹拌後、透明な淡黄色溶液が形成する。溶液を塩化メチレン(100mL)で希釈し、溶液を5%クエン酸で洗浄する。この溶液を硫酸ナトリウム上で乾燥させ、その後それを濾過して真空下で蒸発させる。高真空下での乾燥後、5.9グラム(84%)のポリマーが得られる。NMRを使用してR848含量を測定し、それは21%と判定される。
【0175】
実施例15:エチルヘキサン酸スズ触媒を使用したイミダゾキノリンのポリ乳酸抱合体
【化15】
撹拌棒および冷却管を装着した二口丸底フラスコに、イミダゾキノリンレシキモド(R−848、100mg、3.18×10
−4モル)、D/Lラクチド(5.6g、3.89×10
−2モル)、および無水硫酸ナトリウム(4.0g)を入れた。フラスコおよび内容物を真空下50℃で8時間乾燥させた。次にフラスコをアルゴンでフラッシュし、トルエン(100mL)を添加した。反応を全てのラクチドが溶解するまで、120℃に設定された油浴内で撹拌し、次にエチルヘキサン酸スズ(75mg、60μL)をピペットで添加した。アルゴン下で16時間加熱を継続した。冷却後、水(20mL)を添加し、30分間撹拌を継続した。反応を追加的なトルエン(200mL)で希釈して、次に水(200mL)で洗浄した。次にトルエン溶液を5%濃塩酸(200mL)を含有する10%塩化ナトリウム溶液で洗浄し、飽和炭酸水素ナトリウム(200mL)がそれに続いた。TLC(シリカ、塩化メチレン中の10%メタノール)は、溶液が遊離R−848を含有しないことを示した。溶液を硫酸マグネシウム上で乾燥させ、濾過して真空下で蒸発させて3.59グラムのポリ乳酸−R−848抱合体を得た。ポリマーの一部を塩基中で加水分解し、HPLCによってR−848含量について調べた。R−848濃度の標準曲線とHPLC応答とを比較することで、ポリマーは、ポリマー1gあたり4.51mgのR−848を含有すると判定された。ポリマーの分子量は、GPCによって約19,000と測定された。
【0176】
実施例16:イミダゾキノリンの低分子量ポリ乳酸抱合体
【化16】
撹拌棒および冷却管を装着した丸底フラスコに、イミダゾキノリン、レシキモド(R−848、218mg、6.93×10
−4モル)、D/Lラクチド(1.0g、6.93×10
−3モル)、および無水硫酸ナトリウム(800mg)を添加した。フラスコおよび内容物を真空下55℃で8時間乾燥させた。次に冷却後、フラスコをアルゴンでフラッシュしてトルエン(50mL)を添加した。反応を全てのラクチドが溶解するまで120℃に設定された油浴内で撹拌し、次にエチルヘキサン酸スズ(19mg、15μL)をピペットで添加した。アルゴン下で16時間加熱を継続した。冷却後、反応をエーテル(200mL)で希釈して、溶液を水(200mL)で洗浄した。溶液を硫酸マグネシウム上で乾燥させ、濾過して真空下で蒸発させて880mgの粗製ポリ乳酸−R−848抱合体を得た。塩化メチレン中の10%メタノールを溶出剤として使用して、シリカ上で粗製ポリマーをクロマトグラフ分析した。抱合体を含有する画分をプールして蒸発させ、精製抱合体を得た。これを高真空下で乾燥させて、抱合体を702mg(57.6%)の収率で固体フォームとして得た。キノリンの芳香族部分のNMRシグナルを統合し、これを乳酸のCHプロトンの統合強度と比較することで、抱合体の分子量はおよそ2KDと判定された。GPCは、抱合体が5%未満の遊離R848を含有したことを示した。
【0177】
実施例17:低分子量のイミダゾキノリンのポリ乳酸−コ−グリコール酸抱合体
【化17】
撹拌棒および冷却管を装着した丸底フラスコに、イミダゾキノリン、レシキモド(R−848、436mg、1.39×10
−3モル)、グリコリド(402mg、3.46×10
−3モル)、D/Lラクチド(2.0g、1.39×10
−2モル)、および無水硫酸ナトリウム(1.6g)を入れた。フラスコおよび内容物を真空下55℃で8時間乾燥させた。次に冷却後、フラスコをアルゴンでフラッシュしてトルエン(60mL)を添加した。反応を全てのR848、グリコリド、およびラクチドが溶解するまで、120℃に設定した油浴内で撹拌し、次にエチルヘキサン酸スズ(50mg、39μL)をピペットで添加した。アルゴン下で16時間加熱を継続した。冷却後、反応を酢酸エチル(200mL)で希釈して、溶液を水(200mL)で洗浄した。溶液を硫酸マグネシウム上で乾燥させて、濾過して真空下で蒸発させ、粗製PLGA−R−848抱合体を得た。塩化メチレン中の10%メタノールを溶出剤として使用して、シリカ上で粗製ポリマーをクロマトグラフ分析した。抱合体を含有する画分をプールして蒸発させ、精製抱合体を得た。これを高真空下で乾燥させて抱合体を1.55g(54.6%)の収率で固体フォームとして得た。キノリンの芳香族部分のNMRシグナルを統合し、これを乳酸のCHプロトンの統合強度と比較することで、抱合体の分子量はおよそ2KDと判定された。GPCは、抱合体が検出可能な遊離R848を含有しないことを示した。
【0178】
実施例18:リチウムジイソプロピルアミド触媒作用を使用したイミダゾキノリンのポリ乳酸抱合体
イミダゾキノリン(R−848)、D/Lラクチド、および関連ガラス器具を使用に先だって、全て真空下50℃で8時間乾燥させた。撹拌棒および冷却管を装着した丸底フラスコに、R−848(33mg、1.05×10
−4モル)および乾燥トルエン(5mL)を入れた。これを加熱して還流し、全てのR−848を溶解した。溶液を窒素下で撹拌し、室温に冷却して超微粒子R−848の懸濁液を得た。この懸濁液にリチウムジイソプロピルアミド(THF中の2.0M、50μL、1.0×10
−4モル)の溶液を添加して、その後撹拌を室温で5分間継続した。形成された淡黄色溶液に、シリンジを通じて窒素下で、D/Lラクチドの熱(120℃)溶液(1.87g、1.3×10
−2モル)を添加した。淡黄色溶液を冷ましてから、室温で1時間撹拌した。溶液を塩化メチレン(200mL)で希釈して、次にそれを1%塩酸(2×50mL)で洗浄し、飽和炭酸水素ナトリウム溶液(50mL)がそれに続いた。溶液を硫酸マグネシウム上で乾燥させて濾過し、真空下で蒸発させてポリ乳酸−R−848抱合体を得た。TLC(シリカ、塩化メチレン中の10%メタノール)は、溶液が遊離R−848を含有しないことを示した。ポリマーを塩化メチレン(10mL)に溶解し、溶液を撹拌されるヘキサン(200mL)に滴下した。沈殿したポリマーをデカンテーションによって単離し、真空下で乾燥させて1.47グラムのポリ乳酸-R−848抱合体を白色固体として得た。ポリマーの一部を塩基中で加水分解し、HPLCによってR−848含量について調べた。R−848濃度の標準曲線をHPLC応答と比較することで、ポリマーは、ポリマー1gあたり10.96mgのR−848を含有すると判定された。
【0179】
実施例19:低分子量PLAへの免疫調節薬の付着
分子量が5000(10.5g、2.1mmol、1.0当量)であるPLA(D/L−ポリラクチド)をジクロロメタン(DCM)(35mL)に溶解する。EDC(2.0g、10.5mmol、5当量)およびNHS(1.2g、10.5mmol、5当量)を添加する。得られる溶液を室温で3日間撹拌する。溶液を濃縮してDCMの大部分を除去し、残留物を250mLのジエチルエーテルおよび5mLのMeOHの溶液に添加して、活性化PLA−NHSエステルを沈殿させる。溶剤を除去して、ポリマーをエーテルで2回洗浄し(2×200mL)、真空下で乾燥させてPLA−NHS活性化エステルを白色の泡状固体として得る(約8gが回収され、H NMRを使用してNHSエステルの存在を確認し得る)。PLA−NHSエステルを−10度未満の冷凍庫内でアルゴン下において使用時まで保存する。
【0180】
代案としては、反応をDCMの代わりに、DMF、THF、ジオキサン、またはCHCl
3中で実施し得る。EDCの代わりにDCCを使用し得る(得られるDCC−尿素は、エーテルからのPLA−NHSエステルの沈殿前に濾過して取り除かれる)。EDCまたはDCCおよびNHSの量は、PLAの2〜10当量の範囲であり得る。
【0181】
実施例20:低分子量PLGAへの免疫調節薬の付着
ポリマー活性化について上述したのと同様に、50%〜75%のグリコリドがある低分子量PLGAを対応するPLGA−NHS活性化エステルに変換して、−10度未満の冷凍庫内でアルゴン下において使用時まで保存する。
【0182】
実施例21:触媒存在下におけるD/L−ラクチドによるR848のワンポット開環重合
【化18】
2mLの無水トルエン中のR848(0.2mmol、63mg)、D/L−ラクチド(40mmol、5.8g)、および4−ジメチルアミノピリジン(DMAP)(50mg、0.4mmol)の混合物を150℃(油浴温度)に緩慢に加熱して、18時間この温度に保った(3時間後、R848は残留しなかった)。混合物を周囲温度に冷却し、得られた混合物を水(50mL)で急冷して、結果として生じるポリマーR848−PLAを沈殿させた。次にポリマーを各45mLのMeOH、iPrOH、およびエチルエーテルで逐次洗浄した。ポリマーを真空下30℃で乾燥させて、灰色がかった膨脹性固体(5.0g)を得た。ポリマー構造をCDCl
3中で
1H NMRによって確認した。ポリマーの少量のサンプルをTHF/MeOH中の2N NaOH aqで処理し、逆相HPLCによってポリマー上のR848の装填量を測定した。R848の装填量は、1グラムのポリマーあたり3mgであった(0.3%装填量−理論量の27.5%)。
【0183】
実施例22:D/L−ラクチドおよびグリコリドによるR848の二段階開環重合
【化19】
D/L−ラクチド(10.8g、0.075モル)およびグリコリド(2.9g、0.025モル)の混合物をアルゴン下で135℃に加熱した。ひとたび全ての材料が溶解して透明溶液が得られたら、R848(1.08g、3.43×10
−3モル)を添加した。この溶液を緩慢なアルゴン流の下において、135℃で1時間撹拌した。エチルヘキサン酸スズ(150μL)を添加し、加熱を4時間継続した。冷却後、固体淡褐色の塊を塩化メチレン(250mL)に溶解して、溶液を5%酒石酸溶液(2×200mL)で洗浄した。塩化メチレン溶液を硫酸マグネシウム上で乾燥させ、濾過して次に真空下で濃縮した。残留物を塩化メチレン(20mL)に溶解し、2−プロパノール(250mL)を撹拌しながら添加した。分離したポリマーを2−プロパノールのデカンテーションによって単離し、高真空下で乾燥させた。NMRはポリマーが分子量4000であり、ラクチドが71.4%およびグリコリドが28.6%であることを示した。NMRによるR848の装填量は、理論量に近かった。
【0184】
実施例23:PLGA−R848抱合体の調製
【化20】
無水EtOAc(160mL)中のPLGA(Lakeshores Polymers、分子量約5000、7525DLG1A、酸価0.7mmol/g、10g、7.0mmol)およびHBTU(5.3g、14mmol)の混合物をアルゴン下室温で50分間撹拌した。化合物R848(2.2g、7mmol)を添加して、ジイソプロピルエチルアミン(DIPEA)(5mL、28mmol)がそれに続いた。混合物を室温で6時間、次に50〜55℃で一晩(約16時間)撹拌した。冷却後、混合物をEtOAc(200mL)で希釈して、飽和NH
4Cl溶液(2×40mL)、水(40mL)、および鹹水溶液(40mL)で洗浄した。溶液をNa
2SO
4(20g)上で乾燥させて、ゲル様残留物に濃縮した。次にイソプロピルアルコール(IPA)(300mL)を添加して、ポリマー抱合体を溶液から析出させた。次にポリマーをIPA(4×50mL)で洗浄して残留試薬を除去し、真空下35〜40℃で3日間乾燥させて白色粉末にした(10.26g、GPCによる分子量は5200、HPLCによるR848装填量は12%)。
【0185】
実施例24:PLGA−854A抱合体の調製
【化21】
無水EtOAc(20mL)中のPLGA(Lakeshores Polymers、分子量約5000、7525DLG1A、酸価0.7mmol/g、1.0g、7.0mmol)およびHBTU(0.8g、2.1mmol)の混合物をアルゴン下室温で45分間撹拌した。化合物845A(0.29g、0.7mmol)を添加して、ジイソプロピルエチルアミン(DIPEA)(0.73mL、4.2mmol)がそれに続いた。混合物を室温で6時間、次に50〜55℃で一晩(約15時間)撹拌した。冷却後、混合物をEtOAc(100mL)で希釈し、飽和NH
4Cl溶液(2×20mL)、水(20mL)、および鹹水溶液(20mL)で洗浄した。溶液をNa
2SO
4(10g)上で乾燥させてゲル様残留物に濃縮した。次にイソプロピルアルコール(IPA)(40mL)を添加して、ポリマー抱合体を溶液から析出させた。次にポリマーをIPA(4×25mL)で洗浄して残留試薬を除去し、真空下35〜40℃で2日間乾燥させて白色粉末にした(1.21g、GPCによる分子量は4900、HPLCによる854A装填量は14%)。
【0186】
実施例25:PLGA−BBHA抱合体の調製
【化22】
無水EtOAc(30mL)中のPLGA(Lakeshores Polymers、分子量約5000、7525DLG1A、酸価0.7mmol/g、1.0g、7.0mmol)およびHBTU(0.8g、2.1mmol)の混合物をアルゴン下室温で30分間撹拌した。2mLの乾燥DMSO中の化合物BBHA(0.22g、0.7mmol)を添加して、ジイソプロピルエチルアミン(DIPEA)(0.73mL、4.2mmol)がそれに続いた。混合物を室温で20時間撹拌した。追加量のHBTU(0.53g、1.4mmol)およびDIPEA(0.5mL、2.8mmol)を添加し、混合物を50〜55℃で4時間加熱した。冷却後、混合物をEtOAc(100mL)で希釈し、飽和NH
4Cl溶液(20mL)、水(2×20mL)、および鹹水溶液(20mL)で洗浄した。溶液をNa
2SO
4(10g)上で乾燥させて、ゲル様残留物に濃縮した。次にイソプロピルアルコール(IPA)(35mL)を添加して、茶色がかったポリマー抱合体を溶液から析出させた。次にポリマーをIPA(2×20mL)で洗浄して残留試薬を除去し、真空下35〜40℃で2日間乾燥させて、茶色がかった粉末(1.1g)にした。
【0187】
実施例26:ポリアミドであるポリグリシンへのR848の共役
【化23】
Aliferisら(Biomacromolecules,5,1653,(2004年))の方法によって、6−アミノヘキサン酸ベンジルエステル(Aldrich、カタログ番号S33465)を使用して、グリシンN−カルボキシ無水物(Aldrich、カタログ番号369772)の開環重合によって、t−ブチルオキシカルボニル(tBOC)で保護されるポリグリシンカルボン酸(I)を調製する。t−BOCカルバメートとしての末端アミノ基の保護と、それに続くパラジウム炭素への水素付加がベンジルエステルを除去して、BOC保護ポリグリシンカルボン酸(I)の合成が完了する。
【0188】
無水DMF(100mL)中のBOC保護ポリグリシンカルボン酸(5gm、分子量=2000、2.5×10
−3モル)およびHBTU(3.79gm、1.0×10
−2モル)の混合物をアルゴン下室温で50分間撹拌する。次にR848(1.6gm、5.0×10
−3モル)を添加して、ジイソプロピルエチルアミン(4mL、2.2×10
−2モル)がそれに続く。混合物を室温で6時間、次に50〜55℃で一晩(16時間)撹拌する。冷却後、DMFを真空下で蒸発させて、残留物をEtOAc(100mL)中で磨砕する。ポリマーを濾過によって単離し、次にポリマーを2−プロパノール(4×25mL)で洗浄して、残留試薬を除去して真空下35〜40℃で3日間乾燥させる。ポリマーは灰色がかった固体として、5.1g(88%)の収率で単離される。R848装填量はNMRによって測定され得て、10.1%である。
【0189】
トリフルオロ酢酸を使用してt−BOC保護基を除去し、得られたポリマーを従来の方法によってカルボキシル末端基を用いて、PLAにグラフトする。
【0190】
実施例27:ポリグリシン/R848ポリマーのPLGA抱合体の調製
ステップ1:t−BOC保護ポリグリシン/R848抱合体(5g)をトリフルオロ酢酸(25mL)に溶解し、この溶液を50℃で1時間加温する。冷却後、トリフルオロ酢酸を真空下で除去し、残留物を酢酸エチル(25mL)中で磨砕する。ポリマーを濾過によって単離し、2−プロパノールで十分洗浄した。真空下で乾燥後、4.5グラムのポリマーが灰色がかった固体として得られる。
【0191】
ステップ2:無水DMF(100mL)中のPLGA(Lakeshores Polymers、分子量約5000、7525DLG1A、酸価0.7mmol/g、10g、7.0mmol)およびHBTU(5.3g、14mmol)の混合物をアルゴン下室温で50分間撹拌する。乾燥DMF(20mL)に溶解させた上からのポリマー(1.4g、7mmol)を添加し、ジイソプロピルエチルアミン(DIPEA)(5mL、28mmol)がそれに続く。混合物を室温で6時間、次に50〜55℃で一晩(16時間)撹拌する。冷却後、DMF真空下で蒸発させ、残留物を塩化メチレン(50mL)に溶解する。ポリマーを2−プロパノール(200mL)の添加によって沈殿させる。ポリマーをデカンテーションによって単離し、2−プロパノール(4×50mL)で洗浄して残留試薬を除去し、次に真空下35〜40℃で一晩乾燥させる。9.8g(86%)のブロック共重合体が得られる。
【0192】
実施例28:PLGA−2−ブトキシ−8−ヒドロキシ−9−ベンジルアデニン抱合体の調製
【化24】
無水EtOAc(30mL)中のPLGA(Lakeshores Polymers、分子量約5000、7525DLG1A、酸価0.7mmol/g、1.0g、7.0mmol)およびHBTU(0.8g、2.1mmol)の混合物をアルゴン下室温で30分間撹拌する。2mLの乾燥DMSO中の化合物(I)(0.22g、0.7mmol)を添加して、ジイソプロピルエチルアミン(DIPEA)(0.73mL、4.2mmol)がそれに続く。混合物を室温で20時間撹拌する。追加量のHBTU(0.53g、1.4mmol)およびDIPEA(0.5mL、2.8mmol)を添加して、混合物を50〜55℃で4時間加熱する。冷却後、混合物をEtOAc(100mL)で希釈して、飽和NH
4Cl溶液(20mL)、水(2×20mL)、および鹹水溶液(20mL)で洗浄する。溶液をNa
2SO
4(10g)上で乾燥させて、ゲル様残留物に濃縮する。次にイソプロピルアルコール(IPA)(35mL)を添加して、茶色がかったポリマー抱合体を溶液から析出させる。次にポリマーをIPA(2×20mL)で洗浄して残留試薬を除去し、真空下35〜40℃で2日間乾燥させて、茶色がかった粉末(1.0g)にする。
【0193】
実施例29:PLGA−2,9−ジベンジル−8−ヒドロキシアデニン抱合体の調製
【化25】
無水EtOAc(30mL)中のPLGA(Lakeshores Polymers、分子量約5000、7525DLG1A、酸価0.7mmol/g、1.0g、7.0mmol)およびHBTU(0.8g、2.1mmol)の混合物をアルゴン下室温で30分間撹拌する。2mLの乾燥DMSO中の化合物(II)(0.24g,0.7mmol)を添加して、ジイソプロピルエチルアミン(DIPEA)(0.73mL、4.2mmol)がそれに続く。混合物を室温で20時間撹拌する。追加量のHBTU(0.53g、1.4mmol)およびDIPEA(0.5mL、2.8mmol)を添加して、混合物を50〜55℃で4時間加熱する。冷却後、混合物をEtOAc(100mL)で希釈して、飽和NH
4Cl溶液20mL)、水(2×20mL)および鹹水溶液(20mL)で洗浄する。溶液をNa
2SO
4(10g)上で乾燥させて、ゲル様残留物に濃縮する。次にイソプロピルアルコール(IPA)(35mL)を添加して、茶色がかったポリマー抱合体を溶液から析出させる。次にポリマーをIPA(2×20mL)で洗浄して残留試薬を除去し、真空下35〜40℃で2日間乾燥させて、茶色がかった粉末(1.2g)にする。
【0194】
実施例30:2−ペンチル−8−ヒドロキシ−9−ベンジルアデニンを分子量2000のポリ(ヘキサメチレンカーボネート)ジオールの末端アルコール基に付着させるために使用されるイミド開環
ポリ(ヘキサメチレンカーボネート)ジオールは、Aldrich Chemical Company(カタログ番号461164)から購入される。
ポリ(ヘキサメチレンカーボネート)ジオール
HO−[CH
2(CH
2)
4CH
2OCO
2]nCH
2(CH
2)
4CH
2−OH
ポリ(ヘキサメチレンカーボネート)ジオール-8−オキソアデニン抱合体
【化26】
【0195】
ポリマー(5g、2.5×10
−3モル)を塩化メチレン25mLに溶解し、2−ペンチル−8−ヒドロキシ−9−ベンジルアデニンのラクタム(2.05g、5.0×10
−3モル)を添加する。1,5,7−トリアザビシクロ−[4,4,0]デカ−5−エン(TBD、0.557g、4×10
−3モル)を一度に添加しながら、このスラリーを撹拌する。室温で一晩の撹拌後、透明な淡黄色溶液が形成する。溶液を塩化メチレン(100mL)で希釈し、溶液を5%クエン酸で洗浄する。この溶液を硫酸ナトリウム上で乾燥させ、その後それを濾過して真空下で蒸発させる。高真空下での乾燥後、5.5グラム(78%)のポリマーが得られる。NMRを使用して、ベンジルアデニン含量が18%と測定される。
【0196】
実施例31:ニコチン−PEG−PLA抱合体
3−ニコチン−PEG−PLAポリマーは、次のように合成した。
最初に分子量3.5KD(0.20gm、5.7×10
−5モル)のJenKem(登録商標)からのモノアミノポリ(エチレングリコール)と過剰な4−カルボキシコチニン(0.126gm、5.7×10
−4モル)をジメチルホルムアミド(5.0mL)に溶解した。溶液を撹拌して、ジシクロヘキシルカルボジイミド(0.124gm、6.0×10
−4モル)を添加した。この溶液を室温で一晩撹拌した。水(0.10mL)を添加し、さらに15分間撹拌を継続した。ジシクロヘキシル尿素沈殿物を濾過により除去して、濾液を真空下で蒸発させた。残留物を塩化メチレン(4.0mL)に溶解し、この溶液をジエチルエーテル(100mL)に添加した。溶液を冷蔵庫内で2時間冷却して、沈殿したポリマーを濾過により単離した。ジエチルエーテルでの洗浄後、固体白色ポリマーを高真空下で乾燥させた。収率は0.188gmであった。このポリマーをさらなる精製なしに、次のステップで使用した。
【0197】
コチニン/PEGポリマー(0.20gm、5.7×10
−5モル)を乾燥テトラヒドロフラン(10mL)に窒素下で溶解し、テトラヒドロフラン中の水素化アルミニウムリチウムの溶液(1.43mLの2.0M、2.85×10−3モル)を添加しながら、溶液を撹拌した。水素化アルミニウムリチウムの添加は、ポリマーをゼラチン様の塊として沈殿させた。反応を緩慢な窒素流の下で80℃に加熱して、テトラヒドロフランを蒸発させた。次に残留物を80℃で2時間加熱した。冷却後、水(0.5mL)を注意深く添加した。ひとたび水素の発生が停止したら塩化メチレン(50mL)中の10%メタノールを添加し、ポリマーが溶解するまで反応混合物を撹拌した。この混合物をCelite(登録商標)銘柄の珪藻土(EMD Inc.からCelite(登録商標)545、パーツ番号CX0574−3として入手できる)を通して濾過し、乾燥するまで濾液を真空下で蒸発させた。残留物を塩化メチレン(4.0mL)に溶解し、この溶液をジエチルエーテル(100mL)に緩慢に添加した。ポリマーは白色綿状の固体として分離し、遠心分離によって単離された。ジエチルエーテルでの洗浄後、固体を真空下で乾燥させた。収率は0.129グラムであった。
【0198】
次に、撹拌棒および還流冷却管に装着した100mLの丸底フラスコに、PEG/ニコチンポリマー(0.081gm、2.2×10
−5モル)、D/Lラクチド(0.410gm、2.85×10
−3モル)、および無水硫酸ナトリウム(0.380gm)を装入した。これを真空下55℃で8時間乾燥させた。フラスコを冷却し、アルゴンでフラッシュして次に乾燥トルエン(10mL)を添加した。フラスコを120℃に設定された油浴に入れて、ひとたびラクチドが溶解したらエチルヘキサン酸スズ(5.5mg、1.36×10
−5モル)を添加した。反応を120℃で16時間進行させた。室温に冷却後、水(15mL)を添加して30分間撹拌を継続した。塩化メチレン(200mL)を添加して分液漏斗内で撹拌後、相を十分安定させた。塩化メチレン層を単離して、無水硫酸マグネシウム上で乾燥させた。濾過して乾燥剤を除去した後、濾液を真空下で蒸発させてポリマーを無色のフォームとして得た。ポリマーをテトラヒドロフラン(10mL)に溶解し、この溶液を撹拌しながら緩慢に水(150mL)に添加した。沈殿したポリマーを遠心分離によって単離し、固体を塩化メチレン(10mL)に溶解した。塩化メチレンを真空下で除去し、残留物を真空下で乾燥させた。3−ニコチン−PEG−PLAポリマーの収率は0.38グラムであった。
【0199】
実施例32:合成ナノキャリア製剤
Gersterらに付与された米国特許第5,389,640号明細書の実施例99に提供される合成に従って、カプセル化アジュバント製剤のためにレシキモド(別名R848)を合成した。
【0200】
R848は上で提供される方法によってPLAに共役され、PLA構造はNMRによって確認された。
【0201】
PLA−PEG−ニコチン抱合体を実施例31に従って調製した。
【0202】
PLAは購入した(Boehringer Ingelheim Chemicals,Inc.,2820 North Normandy Drive,Petersburg,VA 23805)。ポリビニルアルコール(Mw=11KD〜31KD、85〜89%加水分解)は、VWR Scientificから購入した。オボアルブミンペプチド323−339は、Bachem Americas Inc.(3132 Kashiwa Street,Torrance CA 90505.パーツ番号4064565)から得られた。
【0203】
上の材料を使用して、以下の溶液を調製した。
1.塩化メチレン中のレシキモド(R848)(10mg/mL)およびPLA(100mg/mL)、または塩化メチレン中のPLA−R848抱合体(100mg/mL)
2.塩化メチレン中のPLA−PEG−ニコチン(100mg/mL)
3.塩化メチレン中のPLA(100mg/mL)
4.水中のオボアルブミンペプチド323−339(10または69mg/mL)
5.水中のポリビニルアルコール(50mg/mL)
【0204】
溶液#1(0.25〜0.75mL)、溶液#2(0.25mL)、溶液#3(0.25〜0.5mL)および溶液#4(0.1mL)を小型バイアル内で合わせて、Branson Digital Sonifier 250を使用して、混合物を50%振幅で40秒間超音波処理した。このエマルジョンに溶液#5(2.0mL)を添加して、Branson Digital Sonifier 250を使用して35%振幅で40秒間超音波処理し、第2のエマルジョンを形成した。これをリン酸緩衝液溶液(30mL)を含有するビーカーに入れて、この混合物を室温で2時間撹拌してナノ粒子を形成した。
【0205】
粒子を洗浄するため、ナノ粒子分散体の一部(7.4mL)を遠心管に移し、5,300gで1時間遠沈させて上清を除去し、ペレットを7.4mLのリン酸緩衝食塩水に再懸濁した。遠心分離処置を繰り返して、ペレットを2.2mLのリン酸緩衝食塩水に再懸濁して、約10mg/mLの最終ナノ粒子分散体にした。
【0206】
実施例33:複数の一次エマルジョンがある二重エマルジョン
材料
オボアルブミンタンパク質のT細胞エピトープであることが知られている、アミノ酸17個のペプチドであるオボアルブミンペプチド323−339は、Bachem Americas Inc.(3132 Kashiwa Street,Torrance CA 90505)から購入した。
【0207】
レシキモド(別名R848)は、米国特許第6,608,201号明細書で提供される方法に従って合成された。
【0208】
PLA−R848、レシキモドは、上で提供される方法に従って、分子量がおよそ2,500ダルトンのPLAに共役された。
【0209】
PLGA−R848、レシキモドは、上で提供される方法に従って、分子量がおよそ4,100ダルトンのPLGAに共役された。
【0210】
ナトリウム対イオンがある、ヌクレオチド配列5’−TCC ATG ACG TTC CTG ACG TT−3’を有する完全にホスホロチオ化(phosphorothioated)された主鎖があるPS−1826 DNAオリゴヌクレオチドは、Oligos Etc(9775 SW Commerce Circle C−6,Wilsonville,OR 97070)から購入した。
【0211】
ナトリウム対イオンがある、ヌクレオチド配列5’−TCC ATG ACG TTC CTG ACG TT−3’を有するリン酸ジエステル主鎖があるPO−1826 DNAオリゴヌクレオチドは、Oligos Etc(9775 SW Commerce Circle C−6,Wilsonville,OR 97070)から購入した。
【0212】
インヘレント粘度が0.21dL/gであるPLAは、SurModics Pharmaceuticals(756 Tom Martin Drive,Birmingham,AL 35211.製品コード100 DL 2A)から購入した。
【0213】
インヘレント粘度が0.71dL/gであるPLAは、SurModics Pharmaceuticals(756 Tom Martin Drive,Birmingham,AL 35211.製品コード100 DL 7A)から購入した。
【0214】
インヘレント粘度が0.19dL/gであるPLAは、Boehringer Ingelheim Chemicals,Inc.(Petersburg,VA.製品コードR202H)から購入した。
【0215】
分子量がおよそ18,500〜22,000ダルトンであるPLA−PEG−ニコチンは、上で提供される方法に従って調製された。
【0216】
分子量がおよそ15,000ダルトンであるPLA−PEG−R848は合成され、上で提供される方法に従って調製された。
【0217】
ポリビニルアルコール(Mw=11,000〜31,000、87〜89%加水分解)はJ.T.Baker(パーツ番号U232−08)から購入した。
【0218】
二重エマルジョン法を使用し、複数の一次エマルジョンを用いてバッチを製造した。下の表は溶液の添え字(例えば溶液#1の縦列中のBは、溶液#1Bが使用されたことを示す)、および使用された溶液の体積を参照する。
【0219】
【表2】
【0220】
溶液1A:希塩酸溶液中のオボアルブミンペプチド323−339(35mg/mL)。オボアルブミンペプチドを0.13N塩酸溶液に室温で溶解して、溶液を調製した。
【0221】
溶液1B:希塩酸溶液中のオボアルブミンペプチド323−339(70mg/mL)。オボアルブミンペプチドを0.13N塩酸溶液に室温で溶解して、溶液を調製した。
【0222】
溶液2A:塩化メチレン中の0.21−IV PLA(75mg/mL)およびPLA−PEG−ニコチン(25mg/ml)。最初に2種の別々の溶液を室温で調製して、溶液を調製した。純粋塩化メチレン中の0.21−IV PLA(100mg/mL)、および純粋塩化メチレン中のPLA−PEG−ニコチン(100mg/mL)。各1部のPLA−PEG−ニコチン溶液に3部のPLA溶液を添加して、最終溶液を調製した。
【0223】
溶液2B:塩化メチレン中の0.71−IV PLA(75mg/mL)およびPLA−PEG−ニコチン(25mg/ml)。最初に2種の別々の溶液を室温で調製して、溶液を調製した。純粋塩化メチレン中の0.71−IV PLA(100mg/mL)、および純粋塩化メチレン中のPLA−PEG−ニコチン(100mg/mL)。各1部のPLA−PEG−ニコチン溶液に3部のPLA溶液を添加して、最終溶液を調製した。
【0224】
溶液2C:塩化メチレン中の0.19−IV PLA(75mg/mL)およびPLA−PEG−ニコチン(25mg/ml)。最初に2種の別々の溶液を室温で調製して、溶液を調製した。純粋塩化メチレン中の0.19−IV PLA(100mg/mL)、および純粋塩化メチレン中のPLA−PEG−ニコチン(100mg/mL)。各1部のPLA−PEG−ニコチン溶液に3部のPLA溶液を添加して、最終溶液を調製した。
【0225】
溶液3A:精製水中のオリゴヌクレオチド(PS−1826またはPO−1826のどちらか)(200mg/ml)。オリゴヌクレオチドを精製水に室温で溶解して、溶液を調製した。
【0226】
溶液4A:溶液#2Aと同じ。
【0227】
溶液4B:溶液#2Bと同じ。
【0228】
溶液4C:溶液#2Cと同じ。
【0229】
溶液5A:100mM pH8のリン酸緩衝液中のポリビニルアルコール(50mg/mL)。
【0230】
2種の別々の油中水エマルジョンを調製した。W1/O2は、小型圧力管内で溶液1および溶液2を合わせて、Branson Digital Sonifier250を使用して50%振幅で40秒間超音波処理して調製した。W3/O4は、小型圧力管内で溶液3および溶液4を合わせて、Branson Digital Sonifier250を使用して50%振幅で40秒間超音波処理して調製した。2種の内部エマルジョン([W1/O2、W3/O4]/W5)がある第3のエマルジョンは、0.5mLの各一次エマルジョン(W1/O2およびW3/O4)と溶液5を合わせ、Branson Digital Sonifier250を使用して30%振幅で40〜60秒間超音波処理して調製した。
【0231】
70mMリン酸緩衝液溶液(30mL)を含有するビーカーに、第3のエマルジョンを入れて室温で2時間撹拌し、塩化メチレンを蒸発させてナノキャリアを形成した。ナノキャリア懸濁液を遠心管に移し、13,823gで1時間遠沈して上清を除去し、ペレットをリン酸緩衝食塩水に再懸濁して、ナノキャリアの一部を洗浄した。洗浄処置を繰り返し、ペレットをリン酸緩衝食塩水に再懸濁して、約10mg/mLの最終ナノキャリア分散体にした。
【0232】
ナノキャリア中のオリゴヌクレオチドおよびペプチドの量をHPLC分析によって測定した。
【0233】
実施例34:標準二重エマルジョン
材料
上の実施例33で提供されるのと同じ。
【0234】
標準二重エマルジョン法を使用して、バッチを製造した。下の表は溶液の添え字(例えば溶液#1の縦列中のBは、溶液#1Bが使用されたことを示す)、および使用された溶液の体積を参照する。
【0235】
【表3】
【0236】
溶液1A:脱イオン水中のオボアルブミンペプチド323−339(69mg/mL)。室温で混合しながらオボアルブミンペプチドを水に緩慢に添加して、溶液を調製した。
【0237】
溶液1B:希塩酸溶液中のオボアルブミンペプチド323−339(70mg/mL)。オボアルブミンペプチドを室温で0.13N塩酸溶液に溶解して、溶液を調製した。
【0238】
溶液1C:精製水中のオリゴヌクレオチド(PS−1826)(50mg/ml)。オリゴヌクレオチドを室温で精製水に溶解して、溶液を調製した。
【0239】
溶液1D:希塩酸溶液中のオボアルブミンペプチド323−339(17.5mg/mL)。オボアルブミンペプチド(70mg/ml)を室温で0.13N塩酸溶液に溶解し、次に溶液を1部の開始溶液あたり3部の精製水で希釈して、溶液を調製した。
【0240】
溶液2A:室温で調製された純粋塩化メチレン中のR848(10mg/ml)および0.19−IV PLA(100mg/mL)。
【0241】
溶液2B:室温で調製された純粋塩化メチレン中のPLA−R848(100mg/ml)。
【0242】
溶液2C:室温で調製された純粋塩化メチレン中のPLGA−R848(100mg/ml)。
【0243】
溶液2D:室温で調製された純粋塩化メチレン中のPLA−PEG−R848(100mg/ml)。
【0244】
溶液3A:室温で調製された純粋塩化メチレン中のPLA−PEG−ニコチン(100mg/ml)。
【0245】
溶液4A:室温で調製された純粋塩化メチレン中の0.19−IV PLA(100mg/mL)。
【0246】
溶液5A:脱イオン水中のポリビニルアルコール(50mg/mL)。
【0247】
溶液5B:100mM pH8リン酸緩衝液中のポリビニルアルコール(50mg/mL)。
【0248】
溶液1および溶液2、溶液3、および溶液4を小型圧力管内で合わせ、Branson Digital Sonifier 250を使用して50%振幅で40秒間超音波処理して、油中水(W/O)一次エマルジョンを調製した。溶液5を一次エマルジョンに添加して、Branson Digital Sonifier 250を使用して30%〜35%振幅で40秒間超音波処理して、水/油/水(W/O/W)二重エマルジョンを調製した。
【0249】
リン酸緩衝液溶液(30mL)を含有するビーカーに二重エマルジョンを入れて、室温で2時間撹拌して塩化メチレンを蒸発させ、ナノキャリアを形成した。ナノキャリア懸濁液を遠心管に移して5,000〜9,500RPMで1時間遠沈し、上清を除去してペレットをリン酸緩衝食塩水に再懸濁して、ナノキャリアの一部を洗浄した。洗浄処置を繰り返し、ペレットをリン酸緩衝食塩水に再懸濁して、約10mg/mLの最終ナノキャリア分散体にした。
【0250】
実施例35:薬剤量の測定
R848およびペプチド(例えばovaペプチド、ヒトペプチド、TT2pDT5t)のための方法
Agilent Zorbax SB−C18カラム(3.5μm.75×4.6mm.カラム温度=40℃(パーツ番号866953−902))を装着した、Agilent 1100システム上の逆相HPLCを使用して、適切な波長(R848ではλ=254nm、ovaペプチドでは215nm)で、95%水/5%アセトニトリル/0.1%TFAの移動相A(MPA)、および90%アセトニトリル/10%水/0.09%TFAの移動相B(MPB)を使用して、R848(免疫賦活剤)およびovaペプチド(T細胞抗原)の量を測定した。(勾配:7分間でB=5〜45%;9分間で95%Bに上昇させ;9.5分間で5%のBに低下させて、終わりまで平衡を保った。総実行時間は、流速1mL/分で13分間であった)。
【0251】
CpGのための方法
Waters XBridge C−18(2.5μm粒子、50×4.6mm内径(パーツ番号186003090)、カラム温度600℃)を装着した、Agilent 1100システム上の逆相HPLCを使用して、260nmで、100mM TEA−酢酸緩衝液中の2%アセトニトリル、pH約8.0の移動相A、および90%アセトニトリルと10%水の移動相Bを使用して、CpG(免疫賦活剤)量を測定した。(カラムを5%のBで平衡化させ、8.5分間で55%のBに増大させて、次に12分間で90%のBに上昇させた。Bの濃度を1分間で迅速に5%に低下させ、停止時点まで16分間平衡化させた。流速は、方法終了時まで16分間1mL/分であった)。
【0252】
ニコチン類似体のための方法
Waters X−Bridge C−18(5μm粒子、100×4.6mm内径、カラム温度400℃)を装着した、Agilent 1100システム上の逆相HPLCを使用して、254nmで、95%水/5%アセトニトリル/0.1%TFAの移動相A(MPA)、および90%アセトニトリル/10%水/0.09%TFAの移動相B(MPB)を使用して、ニコチン類似体を測定した。(勾配:カラムを5%のBで平衡化させ、14分間で45%のBに増大させた。次に14〜20分間で95%Bに上昇させた。移動相Bの濃度を迅速に5%に低下させ、方法終了時まで平衡化した。方法の流速は、25分間の総実行時間0.5mL/分に保った。NC懸濁液を14000rpmで粒度に応じて約15〜30分間分遠心分離した。収集されたペレットを撹拌しながら溶液が透明になるまで、200μLの濃NH
4OH(8M)で2時間処理した。200μLの1%TFAを添加して混合物溶液を中和すると、ペレット溶液の総体積は200μLになった。溶液の50μLのアリコートをMPA(または水)で200μLに希釈して、上と同様にHPLC上で分析し、ペレット中に存在する量を測定した。
【0253】
ナノキャリア中のカプセル化遊離R848
0.5mLのNC懸濁液を14000rpmで約15分間遠心分離した。収集されたペレットを0.3mLのアセトニトリルで溶解して、14000rpmで短時間遠心分離して、あらゆる残留不溶性物質を除去した。透明溶液をMPAの4倍相当体積でさらに希釈して、上述の逆相HPLC上でアッセイした。
【0254】
ナノキャリア中のカプセル化CpG
製造からの330μLのNC懸濁液(PBS中の約10mg/mLの懸濁液)を14000rpmで粒度に応じて15〜30分間遠沈した。収集されたペレットを500μLの水に再懸濁し、30分間超音波処理して粒子を完全に分散させた。次にNCを600℃で10分間加熱した。追加的な200μLの1N NaOHを混合物に添加してさらに5分間加熱したところ、混合物は透明になった。加水分解されたNC溶液を14000rpmで短時間遠心分離した。次に水を使用して透明溶液の最終2倍希釈を行い、上述の逆相HPLC上でアッセイした。
【0255】
カプセル化T細胞抗原(例えばovaペプチド、またはヒトペプチド、TT2pDT5t)
製造からの330μLのNC懸濁液(PBS中の約10mg/mL懸濁液)を14000rpmで15〜30分間遠沈した。100μLのアセトニトリルをペレットに添加して、NCのポリマー構成要素を溶解した。混合物をボルテックスして1〜5分間超音波処理した。100μLの0.2%TFAを混合物に添加してペプチドを抽出し、さらに5分間超音波処理して、凝集体の崩壊を確実にした。混合物を14000rpmで15分間遠心分離して、あらゆる不溶性物質(例えばポリマー)を分離した。150μLのMPA(または水)で希釈された上清の50μLのアリコートを取って、上述のように逆相HPLCでアッセイした。
【0256】
ナノキャリア中の抱合型ニコチン類似体(B細胞抗原)量
1.5mLのNC懸濁液を14000rpmで約15分間遠沈して、150μLの濃NH
4OH(8M)を使用して約2〜3時間、溶液が透明になるまでペレットを加水分解した。150μLの2%TFA(aq)溶液をペレット混合物に添加して、溶液を中和した。混合物の100μLのアリコートを200μLの水で希釈し、上述の逆相HPLC上でアッセイし、製造で使用されるPLA−PEG−ニコチン前駆物質(PEG−ニコチン)を使用して確立された標準曲線に基づいて、定量化した。
【0257】
実施例36:放出速度試験
37℃におけるPBS(100mM、pH=7.4)およびクエン酸緩衝液(100mM、pH=4.5)中での合成ナノキャリア(ナノ粒子)からのT細胞抗原、ovaペプチド、およびアジュバントR848の放出を次のようにして実施した。
【0258】
分析法:放出されたR848およびovaペプチドの量は、λ=215nmでAgilent Zorbax SB−C18カラム(3.5μm。75×4.6mm。カラム温度=40℃(パーツ番号866953−902))を装着したAgilent 1100システム上の逆相HPLCを使用して、98%水/2%アセトニトリル/0.1%TFAの移動相A(MPA)、および90%アセトニトリル/10%水/0.09%TFAの移動相B(MPB)を使用して、7分間でB=5〜45%;9分間で95%のBに上昇させ;終わりまで再平衡化させる勾配、13分間の実行時間、流速=1mL/分で測定される。
【0259】
ナノ粒子中に存在するR848およびovaペプチドの総量は表1に示すとおりであった。次に試験された合成ナノキャリアの水性懸濁液をPBSで最終貯蔵体積4.4mLに希釈した。
【0260】
(A)PBS(pH=7.4)中の生体外放出速度測定:
T0サンプルでは、200μLのアリコートをNPの各サンプルから即座に取って、微量遠心機(型名:Galaxy 16)を使用して微小遠心管内で14000rpmで遠心分離した。100μLの上清を取ってHPLC移動相A(MPA)で200μLに希釈し、放出されたR848およびovaペプチドの量について逆相HPLC上でアッセイした。
【0261】
各時点の測定では、9×200μL(非抱合型では3×200)の各サンプルを微小遠心管に入れて、上記各アリコートに300μLの37℃のPBSを添加して、サンプルを即座に37℃のオーブンに入れた。(抱合型R848では)24時間、48時間、96時間、および144時間、または(非抱合型(カプセル化)R848では)2時間、16時間、および24時間の時点でサンプルを遠心分離して、放出されたR848およびovaペプチドの量について、上のT0サンプルと同様にしてアッセイした。
【0262】
(B)クエン酸緩衝液(pH=4.5)中の生体外放出速度測定:
T0サンプルでは、各サンプルから200μLのアリコートを取って6000rpmで20分間遠心分離し、上清を除去した。残留ナノ粒子を200μLのクエン酸緩衝液に再懸濁し、14000rpmで15分間遠心分離した。100μLの上清を取ってMPAで200μLに希釈し、上記のようにR848およびペプチドについてアッセイした。
【0263】
各時点の測定では、9×200μL(非抱合型では3×200)の各サンプルを微小遠心管に入れて6000rpmで20分間遠心分離し、上清を取り出した。次にNPを500μLのクエン酸緩衝液に再懸濁して、37℃のオーブンに入れた。(抱合型R848では)24時間、48時間、96時間、および144時間、または(非抱合型(カプセル化)R848では)2時間、16時間、および24時間の時点でサンプルを遠心分離し、上のT0サンプルと同様にして、放出されたR848およびovaペプチドの量についてアッセイした。
【0264】
上のPBSおよびクエン酸緩衝液中の測定からの質量平衡を完結するために、各サンプルからの残留ペレット(抱合型R848サンプルのみ)を混合しながら、200μLの濃NH
4OH(8M)で3時間処理した。混合物が沈降した後、200μLの1%TFAを添加して、ペレットの総体積を400μLにした。50μLのアリコートの溶液をMPAで200μLに希釈して、上記のようにHPLCで分析し、生体外放出後にペレット中に残留するR848およびovaペプチドの量を測定して質量平衡を閉じた。非抱合型サンプルでは、サンプルをアセトニトリル中のTFAで希釈し、上のR848およびペプチドと同様にしてアッセイした。
【0265】
結果を
図1〜3に要約する。
【0266】
材料および方法
HPLC−Agilent 1100。λ=215nm。カラム温度=40℃。
カラム−Agilent Zorbax SB−C18、3.5μm。75×4.6mm。(パーツ番号866953−902)
C18ガードカラム
移動相A(MPA)−98%水/2%アセトニトリル/0.1%TFA
移動相B(MPB)−90%アセトニトリル/10%水/0.09%TFA
勾配:7分間でB=5〜45%;9分までに95%のBに上昇;終了時まで再平衡。13分実行時間。流速=1mL/分。
PBS−100mM、pH=7.4。
クエン酸緩衝液-100mM、pH=4.5。
オーブン
微量遠心機−Galaxy 16
微小遠心管
超音波処理器
ピペット−20、200、調節可能1000μL
HPLC等級水−EMD−#WX0008−1.
NH
4OH−約8M。Mallinkcrodt。
TFA、0.2%。Prep4/27/09。
TFA、1%。Prep5/13/09。
温度計
【0267】
サンプル − 「6−1」および「6−2」は、捕捉R848を有する。残りは全て抱合型R848を有する。推定値は「62」シリーズからの装填量結果に基づく。
【0268】
【表4】
【0269】
サンプル体積は予定をわずかに下回った。全時点で十分な材料が利用できるように、以下の体積のPBSをサンプルに添加して全てを4.4mLにした。
【0270】
【表5】
【0271】
手順
1)T=0サンプル調製
a.PBS
i.各サンプルから200μLのアリコートを取る。14000rpmで微量遠心。上清を取り出す。
ii.上清をMPA中で100μL>200μLに希釈する。(DF=2)
iii.ペプチドおよびR848についてアッセイする。
b.クエン酸
i.各サンプルから200μLのアリコートを取る。6000rpmで20分間微量遠心。上清を除去する。
ii.200μLのクエン酸緩衝液を添加して、完全に再懸濁する。
iii.14000rpmで15分間微量遠心する。上清を取り出す。
iv.上清をMPA中で100μL>200μLに希釈する。(DF=2)
v.ペプチドおよびR848についてアッセイする。
2)PBS IVR
a.9×200μL(非抱合型では3×200)の各サンプルを微小遠心管に入れる。
b.各アリコートに37℃の300μLのPBSを添加する。
c.サンプルを即座に37℃のオーブンに入れる。
3)クエン酸IVR
a.9×200μL(非抱合型では3×200)の各サンプルを微小遠心管に入れる。
b.6000rpmで20分間遠心分離する。
c.上清を除去する。
d.各試験管に500μLのクエン酸緩衝液を入れて、完全に再懸濁する。
e.サンプルを37℃のオーブンに入れる。
4)ロット1〜4および8では、以下の時点でサンプルを取り出す(ステップ6参照)。
a.抱合型
i.24時間
ii.48時間(2日間)
iii.96時間(4日間)
iv.144時間(6日間)
v.上記データに基づいて決定されるさらなる時点。
b)非抱合型
i.2時間
ii.16時間
iii.24時間
5)ロット6および7では、以下の時点でサンプルを取り出す。
a.PBS
i.24時間
ii.48時間(2日間)
iii.96時間(4日間)
iv.144時間(6日間)
v.上記データに基づいて決定されるさらなる時点。
b.クエン酸
i.2時間
ii.16時間
iii.24時間
iv.48時間(2日間)
v.72時間(3日間)
vi.96時間(4日間)
vii.120時間(5日間)
viii.上記データに基づいて決定されるさらなる時点。
6)次のようにサンプル採取する。
a.14000rpmで15分間微量遠心。
b.上清を除去する。
c.MPA中で100μLを200μLに希釈する。(DF=2)
7)ペプチドおよびR848についてアッセイする。これは各時点の放出量を与える。
完全な質量平衡を完結するために、以下を実施する。
8)残留ペレット(抱合型のみ)に200μLのNH
4OHを添加する。
9)短時間ボルテックスし、超音波処理して分散する。
10)撹拌棒を入れる。透明になるまで静置する(少なくとも3時間)。
11)200μLの1%TFAを添加する(総ペレット体積=400μL)。
12)MPA中で50μLを200μLに希釈する。HPLCによって分析し、ペレット中に残留するペプチドおよびR848を測定する。(DF=4)
13)非抱合型ロットでは、典型的なAcN/TFA法によるペプチドおよびR848のアッセイ。
【0272】
実施例37:放出速度試験
37℃におけるリン酸緩衝食塩水溶液(PBS)(100mM、pH=7.4)およびクエン酸緩衝液(100mM、pH=4.5)中での合成ナノキャリアからの抗原(例えばovaペプチド、T細胞抗原)および免疫賦活剤(例えばR848、CpG)の放出を次のようにして測定した。
【0273】
抱合型R848およびovaペプチドから構成されるナノキャリアからのR848の放出は、製造から得られた試験する合成ナノキャリアの所望量の水性懸濁液(例えばPBS中の約10mg/mL)を遠心分離および再懸濁することで、同一体積の適切な放出媒体(クエン酸緩衝液100mM)と交換して達成した。
【0274】
PBS(pH=7.4)中の生体外放出速度測定
1mLのPBS懸濁NCを微小遠心管内で14000rpmで、粒度に応じて一般に15〜30分間遠心分離した。次に収集された上清を等体積の移動相A(MPA)または水で希釈して、保存中に放出されたR848の量について逆相HPLC上でアッセイした。残留するペレットを1mLのPBS中で均質な懸濁液に再懸濁し、絶えず穏やかに撹拌しながら37℃の加温チャンバーに入れた。
【0275】
T0サンプルは、NC懸濁液を37℃加温チャンバーに入れるのに先立って、NC懸濁液から150μLのアリコートを即座に取り出して、微量遠心機(Model:Galaxy 16)を使用して微小遠心管内で14000rpmで遠心分離した。100μLの上清を取り出してHPLC移動相A(MPA)または水で200μLに希釈し、放出されたR848およびovaペプチド量について、逆相HPLC上でアッセイした。
【0276】
時点測定では、37℃のNCサンプル懸濁液から150μLのアリコートを取り出して、サンプルを遠心分離し、T0サンプルと同様に、放出されたR848およびovaペプチドの量についてアッセイした。放出されたR848およびovaペプチドを通例のモニタリングのために6時間、24時間で試験し、完全な放出プロフィールを確立するために、2時間、48時間、96時間、および144時間で追加的に試験した。
【0277】
クエン酸緩衝液(pH=4.5)中の生体外放出速度測定
pH=7.4のPBS緩衝液の代わりに100mMクエン酸ナトリウム緩衝液(pH=4.5)を用いて、元のNC保存溶液(例えばPBS)を交換した。上のPBSおよびクエン酸緩衝液中における測定からの質量平衡を完結するために、各時点で残留したペレットを溶液が透明になるまで、100μLのNH
4OH(8M)で撹拌しながら2時間(または2時間以上)処理した。100μLの1%TFAを添加して混合物を中和し、ペレット溶液の総体積を200μLにした。混合物の50μLのアリコートをMPA(または水)で200μLに希釈して、上記のようにHPLC上で分析し、生体外放出後にペレット中に残留する未放出のR848量を測定して、質量平衡を閉じた。非抱合型サンプルでは、サンプルをアセトニトリル中のTFAで希釈し、上のR848と同様にしてアッセイした。
【0278】
CpGの放出を試料調製およびモニター時点に関しては、R848およびovaペプチドと同様にして測定した。しかし放出媒体中のCpGの量は、上述の逆相HPLC方法によってアッセイした。
【0279】
実施例38:CpGアジュバントを有するNC−Nicによる免疫化
5匹のマウスのグループを2週間間隔で(0、14、および28日目)、100μgのNC−Nicで3回免疫化した(皮下、後肢)。NC−Nicはニコチンを外面に提示するナノキャリアの組成物であり、グループ1以外の全てのマウスグループで、ナノキャリアから異なる速度で放出されるCpG−1826(チオ化(thioated))アジュバントを有した。ナノキャリアは、上で提供される方法に従って調製した。次に26および40日目に、血清抗ニコチン抗体を測定した。ポリリジン−ニコチンに対して標準ELISAで測定された、抗ニコチン抗体のEC
50を
図4に示す。
【0280】
グループ1のマウスには、Ovaペプチドと、その75%がPLAであり25%がPLA−PEG−Nicであるポリマーとを含有するが、CpG−1826を含まないNC−Nicをで投与した。グループ2のマウスには、ovaペプチドと、その75%がPLAであり25%がPLA−PEG−Nicであるポリマーと、3.2%のCpG−1826とを含有するNC−Nicを投与した。24時間目の放出速度:1mgのNCあたり4.2μgのCpG。グループ3のマウスには、その75%がPLAであり25%がPLA−PEG−Nicであるポリマーと、3.1%のCpG−1826とを含有するNC−Nicを投与した;24時間目の放出速度:1mgのNCあたり15μgのCpG。放出はpH4.5で測定した。
【0281】
図4に示す結果は、ナノキャリア内へのアジュバントの捕捉がNC−関連抗原に対する免疫応答にとって有益であること、さらには24時間目におけるナノキャリア(NC)内からの捕捉CpGアジュバントのより高い放出速度が、放出速度のより低いCpGアジュバント(TLR9作動薬)によって誘発されるものと比較して増大された免疫応答を生じることを例証する。
【0282】
実施例39:
2形態のCpGアジュバントを有するNC−Nicによる免疫化
5匹のマウスのグループを4週間間隔で(0および28日目)、100μgのNC−Nicで2回免疫化して(皮下、後肢)、次に12、24、および40日目に血清抗ニコチン抗体を測定した。NC−Nicはニコチンを外面に提示するナノキャリア組成物であり、2形態のCpG−1826アジュバントの内1つを有した。ナノキャリアは、上で提供される方法に従って調製した。ポリリジン−ニコチンに対して標準ELISAで測定された、抗ニコチン抗体のEC
50を
図5に示す。
【0283】
グループ1のマウスには、ovaペプチドと、その75%がPLAであり25%がPLA−PEG−Nicであるポリマーと、6.2%のCpG−1826(チオ化(thioated))とを含有するNC−Nicを投与した;24時間目の放出速度:1mgのNCあたり16.6μgのCpG。グループ2のマウスには、ovaペプチドと、その75%がPLAであり25%がPLA−PEG−Nicであるポリマーと、7.2%のCpG−1826(チオ化(thioated))とを含有するNC−Nicを投与した;24時間目の放出速度:1mgのNCあたり13.2μgのCpG。グループ3のマウスには、ovaペプチドと、その75%がPLAであり25%がPLA−PEG−Nicであるポリマーと、7.9%のCpG−1826(リン酸ジエステルまたはPO、非チオ化(non−thioated))とを含有するNC−Nicを投与した;24時間目の放出速度:1mgのNCあたり19.6μgのCpG。グループ4のマウスには、ovaペプチドと、その75%がPLAであり25%がPLA−PEG−Nicであるポリマーと、8.5%のCpG−1826(PO、非チオ化(non−thioated))とを含有するNC−Nicを投与した;24時間目の放出速度:1mgのNCあたり9.3μgのCpG。放出はpH4.5で測定した。
【0284】
図5に示す結果は、ナノキャリアからの捕捉アジュバント(CpG、TLR9作動薬)の放出速度が、NC−結合抗原(ニコチン)に対する抗体の生成に影響することを例証し、24時間目により高い放出速度を示すナノキャリアは、より強力な体液性免疫応答を誘発した(グループ1>グループ2およびグループ3>グループ4)。これは使用されたCpGの形態(より安定したチオ化(thioated)、または不安定な非チオ化(non−thioated))に関わりなく事実であった。
【0285】
実施例40:R848を有するNC−Nicによる免疫化
5匹のマウスのグループを2週間間隔で(0、14、および28日目)、100μgのNC−Nicで3回免疫化して(皮下、後肢)、次に26、40、および54日目に血清抗ニコチン抗体を測定した。ナノキャリアは、上で提供される方法に従って調製した。ポリリジン−ニコチンに対して標準ELISAで測定された、抗ニコチン抗体のEC
50を
図6に示す。
【0286】
グループ1マウスには、ovaペプチドとその75%がPLAであり25%がPLA−PEG−Nicであるポリマーとを含有するが、アジュバントを含まないNC−Nicを投与した。グループ2のマウスには、ovaペプチドと、その75%がPLAであり25%がPLA−PEG−Nicであるポリマーと、1.0%のR848とを含有するNC−Nicを投与し;その92%は2時間目に放出され、96%以上は6時間目に放出された。グループ3のマウスには、ovaペプチドと、その75%がPLA−R848であり25%がPLA−PEG−Nicであるポリマーと、1.3%のR848とを含有するNC−Nicを投与し;その29.4%は6時間目に放出され、67.8%が24時間目に放出された。グループ4のマウスには、ovaペプチドと、その75%がPLA−R848であり25%がPLA−PEG−Nicであるポリマーと、1.4%のR848とを含有するNC−Nicを投与し;その20.4%は6時間目に放出され、41.5%が24時間目に放出された。グループ5のマウスには、ovaペプチドと、25%がPLA−PEG−R848であり50%がPLAであり25%がPLA−PEG−Nicであるポリマーと、0.7%のR848とを含有するNC−Nicを投与し;その1%未満が24時間目に放出された。放出はpH4.5で測定した。
【0287】
図6に示す結果は、NC中に含有されるR848アジュバント(TLR7/8作動薬)が、NC関連抗原に対する体液性免疫応答を増強することを例証する(グループ2〜5>>グループ1)。さらに迅速な(グループ2)、または緩慢な(グループ5)R848の放出のいずれも、中間速度でR848を放出するNCと同一レベルには免疫応答を増大させない(グループ3≒グループ4>グループ2≒グループ5)。
【0288】
実施例41:捕捉PO−CpGを有するNC−Nicによる免疫化
5匹のマウスのグループを2週間間隔で(0、14、および28日目)、捕捉PO−CpGを含有するか、または捕捉PO−CpGを含有せずに遊離PO−CpGと混合された、100μgのNC−Nic(ニコチンを外面に提示するナノキャリア)で3回免疫化した(皮下、後肢)。合成ナノキャリアは、上で提供される方法に従って調製した。次に双方のグループで、血清抗ニコチン抗体を26および40日目に測定した。ポリリジン−ニコチンに対して標準ELISAで測定された、抗ニコチン抗体のEC
50を
図7に示す。
【0289】
グループ1のマウスは、カプセル化された、1826PO−CpGおよびオボアルブミンからのMHC−IIヘルパーペプチド(Ov−II)がある(6.6%PO−CpG;2.3%Ov−II)NC−Nicで免疫化した。グループ2のマウスは、20μgの遊離1826PO−CpGと混合された0.7%の捕捉Ov−IIがあるNC−Nicで免疫化した。
【0290】
この実験は、ナノキャリア中の(NC)PO−CpGの捕捉が、捕捉PO−CpGなしで約3倍高い用量の遊離PO−CpGをNCと混合した場合に誘発されるものよりも、優れた体液性免疫応答を生じさせることを実証する(グループ1中の抗体力価>グループ2中の抗体力価)。