(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6236430
(24)【登録日】2017年11月2日
(45)【発行日】2017年11月22日
(54)【発明の名称】マイクロ波グランドプレーンアンテナプローブ
(51)【国際特許分類】
A61B 18/18 20060101AFI20171113BHJP
【FI】
A61B18/18 100
【請求項の数】9
【全頁数】12
(21)【出願番号】特願2015-231484(P2015-231484)
(22)【出願日】2015年11月27日
(62)【分割の表示】特願2011-134687(P2011-134687)の分割
【原出願日】2011年6月17日
(65)【公開番号】特開2016-41368(P2016-41368A)
(43)【公開日】2016年3月31日
【審査請求日】2015年12月14日
(31)【優先権主張番号】12/823,211
(32)【優先日】2010年6月25日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】513109016
【氏名又は名称】コビディエン エルピー
(74)【代理人】
【識別番号】100114775
【弁理士】
【氏名又は名称】高岡 亮一
(72)【発明者】
【氏名】マニ,エヌ.プラカッシュ
(72)【発明者】
【氏名】フランチェスカ,ロゼット
(72)【発明者】
【氏名】ジョゼフ,ディー.ブラナン
(72)【発明者】
【氏名】タオ,ニュエン
【審査官】
木村 立人
(56)【参考文献】
【文献】
米国特許出願公開第2003/0100894(US,A1)
【文献】
特表2004−518471(JP,A)
【文献】
特開2010−88899(JP,A)
【文献】
国際公開第2006/084676(WO,A1)
【文献】
米国特許出願公開第2007/0185554(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 18/12 ― 18/18
(57)【特許請求の範囲】
【請求項1】
切除プローブであって、
内側導体と、
前記内側導体の周囲に同軸的に配置される第1誘電体と、
前記第1誘電体の周囲に同軸的に配置される外側遮蔽体と、
前記外側遮蔽体の遠位端に接合され、かつ、前記プローブの長手方向軸に対して実質的に横断方向に配向される第1グランドプレーンと、
前記第1のグランドプレーンの遠位表面上に配置される第2誘電体と、
前記第2誘電体の内径と前記内側導体との間に配置される第3の誘電体と、
前記外側遮蔽体の遠位端より近位の接合部で、前記外側遮蔽体に接合し、かつ、前記プローブの長手方向軸に対して実質的に横断方向に配向される第2グランドプレーンと、
前記第1グランドプレーンと前記第2グランドプレーンとの間に配置されるグランドプレーン誘電体と、
前記外側遮蔽体の近位部分の周囲に配置され、それらの間に導管を画定するカテーテルと、
少なくとも前記第1グランドプレーンの周囲に配置される膨張可能なバルーンと、を含む、切除プローブ。
【請求項2】
前記内側導体が、前記外側遮蔽体の遠位端から遠位方向に延在する遠位区域を含む、請求項1に記載の切除プローブ。
【請求項3】
少なくとも前記内側導体の前記遠位区域の周囲に同軸的に配置される第4誘電体を更に含む、請求項2に記載の切除プローブ。
【請求項4】
前記第4誘電体の遠位端に接合される先細先端部を更に含む、請求項3に記載の切除プローブ。
【請求項5】
前記切除プローブは、前記第3誘電体の遠位端に接合される先細先端部を更に含み、前記第2誘電体は、前記第3誘電体の少なくとも一部分の周囲に配置される補強部材であり、前記第3誘電体は、前記内側導体の遠位部分の周囲に同軸に配置される、請求項2に記載の切除プローブ。
【請求項6】
前記外側遮蔽体または前記第1のグランドプレーンの少なくとも一方が、導電性材料から形成される、請求項1に記載の切除プローブ。
【請求項7】
前記導管が、その近位端で、圧力源と操作可能に結合するように適合される、請求項1に記載の切除プローブ。
【請求項8】
前記導管が、その遠位端で、前記膨張可能なバルーンと操作可能に結合される、請求項1に記載の切除プローブ。
【請求項9】
前記内側導体が、その近位端で、切除エネルギー源と操作可能に結合するように適合される、請求項1に記載の切除プローブ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、生体組織にエネルギーを提供するためのシステムおよび方法に関し、特に伝導性グランドプレーンを有するマイクロ波切除外科用プローブ、並びにその使用および製造の方法に関する。
【背景技術】
【0002】
エネルギーに基づく組織の処置は、当該技術分野において周知である。さまざまな種類のエネルギー(例えば、電気、超音波、マイクロ波、極低温、熱、レーザーなど)が、所望の結果を達成するために組織に適用される。電気外科処置は、組織の切開、切除、凝固、または密閉のために、高無線周波電流を手術部位に適用することを伴う。単極の電気外科処置では、ソース電極、すなわちアクティブ電極が、電気外科処置用発電機からの無線周波エネルギーを組織に供給し、かつ、対極板が電流を発電機に運び戻す。単極の電気外科処置では、ソース電極は、典型的には、外科医によって保持され、処置する組織に適用される、外科用器具の一部分である。患者の対極板は、アクティブ電極から離れて設置され、電流を発電機に運び戻す。組織切除の電気外科処置では、無線周波エネルギーは、アンテナ、すなわちプローブによって標的組織に供給することができる。
【0003】
使用されるマイクロ波アンテナアセンブリには、例えば、単極、双極、および螺旋などの、いくつかの種類が存在し、それらを組織切除の用途に使用することができる。単極および双極のアンテナアセンブリでは、マイクロ波エネルギーは、一般に、導体の軸から垂直に離れる方向で放射される。単極アンテナアセンブリは、典型的には、単一の細長い導体を含む。典型的な双極アンテナアセンブリは、2つの細長い導体を含み、それらは線状に配列されて、互いに対して端部を付き合せて配置され、それらの間に電気絶縁体が設置される。螺旋アンテナアセンブリは、グランドプレーンに接続される螺旋形状の導体を含む。螺旋アンテナアセンブリは、数多くのモードで作動可能であり、それらのモードとしては、螺旋によって放射される場が、螺旋軸に対して垂直平面で最大である、通常モード(ブロードサイド)、及び最大放射が螺旋軸に沿う、軸モード(エンドファイヤ)が挙げられる。螺旋アンテナアセンブリの調整は、螺旋アンテナの構成要素の物理的特性、例えば、螺旋の直径、ピッチ、すなわち螺旋のコイル間の距離、及び取り付けられるプローブアセンブリに対する、螺旋の位置によって、少なくとも部分的に決定され得る。
【0004】
典型的なマイクロ波アンテナは、プローブの長手方向軸に沿って延在し、誘電性材料よって取り囲まれた、長く細い内側導体を有し、その誘電性材料の周りを、外側導体が更に囲み、外側導体もまた、プローブの軸に沿って延在する。効果的な外方向へのエネルギーの放射または加熱を提供する、プローブの別の変種では、外側導体の一部分またはいくつかの部分を、選択的に除去することができる。この種類の構成は、典型的には、「漏洩導波」アンテナまたは「漏洩同軸」アンテナと称される。マイクロ波プローブの別の変種は、効果的な放射に必要な構成を提供するための、螺旋などの均一な渦巻きパターンに形成された先端部を有することを伴う。この変種を使用して、エネルギーを特定の方向に、例えば、軸に対して垂直に、順方向に(すなわち、アンテナの遠位端に向けて)、またはこれらの組み合わせなどで、方向付けることができる。
【0005】
マイクロ波アンテナプローブの、通常の身体開口部を介した治療点への直接的な挿入、もしくは経皮的な挿入のいずれかが可能な、侵襲的施術およびデバイスが開発されている。そのような侵襲的施術およびデバイスは、処置中の組織のより良好な温度制御を潜在的に提供する。変性悪性細胞に関して要求される温度と、健常細胞に対して有害な温度との小さな差異のために、処置される組織に加熱が限定されるような、既知の加熱パターンおよび予測可能な温度制御が重要である。例えば、約41.5℃の閾値温度での温熱療法は、一般に、ほとんどの悪性の細胞増殖に対してわずかな効果しかもたらさない。しかしながら、おおよそ43℃〜45℃の範囲を超える、若干の上昇温度で、ほとんどの種類の正常細胞への熱的損傷が、常に認められる。したがって、健常組織では、これらの温度を超過しないように、細心の注意を払わなければならない。
【0006】
組織切除の場合、約300MHz〜約10GHzの範囲の高周波電流を標的組織部位に適用し、特定の寸法および形状を有し得る切除容積を作り出す。切除容積は、アンテナの設計、アンテナの性能、アンテナのインピーダンス、および組織のインピーダンスと相関性がある。特定の種類の組織切除施術は、所望の手術結果を達成するために、特定の切除容積を指示することができる。例として、限定するものではないが、脊髄の切除施術では、より長く、より幅の狭い切除容積が要求される場合があり、一方で前立腺の切除施術では、より球状の切除容積が要求される場合がある。場合によっては、標的の病変が、標的器官の表面上または表面付近に位置することもある。そのような表面の病変は、侵襲的切除用針または切除用スティックを用いて処置されているが、それらは、近接する解剖学的構造に対して損傷を引き起こし、出血の可能性を増大させ、手術時間および回復時間を長引かせる恐れがある。
【発明の概要】
【0007】
本開示は、周囲に同軸的に配置された第1誘電体を有する内側導体を含む、単極マイクロ波切除プローブを目的とする。外側遮蔽体は、第1誘電体の周囲に同軸的に配置され、その遠位端に電気機械的に接合する第1グランドプレーンを含む。第1グランドプレーンならびに本明細書に記載の他のグランドプレーンは、ディスク形状とすることができるが、開示されるグランドプレーンは、限定するものではないが、卵形、多角形、および放射状の突出を含めた、任意の形状を含み得ることを理解されたい。第1グランドプレーンは、プローブの長手方向軸に対して実質的に横断方向に配向させることができる。このグランドプレーンの遠位表面は、その上に配置される第2誘電体を含み得る。内側導体は、外側遮蔽体の遠位端を越えて、遠位方向に延在し得る。開示されるプローブは、その遠位端に接合される先細先端部を含み得る。
【0008】
一実施形態では、開示される切除プローブは、外側遮蔽体の遠位端より近位の接合部で、外側遮蔽体に接合する第2グランドプレーンを更に含み得る。第2グランドプレーンは、プローブの長手方向軸に対して実質的に横断方向に配向させることができる。更に、グランドプレーン誘電体を、第1グランドプレーンと第2グランドプレーンとの間に配置することができる。
【0009】
本開示によるプローブは、外側遮蔽体の近位部分の周囲に配置され、それらの間に導管を画定する、カテーテルを含み得る。導管は、その遠位端で、少なくとも第1グランドプレーンの周囲に配置される膨張可能なバルーンに、操作可能に結合され得る。導管は、その近位端で、バルーンの膨張および/または収縮のための選択的な増大あるいは減少が可能な、ガス圧または液体圧などの圧力源に、操作可能に結合するように適合され得る。
【0010】
外側遮蔽体の内部に同軸的に配置される内側導体を有し、外側遮蔽体が内側導体の周囲の内側領域を画定する切除プローブもまた、開示される。プローブは、外側遮蔽体の遠位端に接合し、プローブの長手方向軸に対して実質的に横断方向に配向される第1グランドプレーン、および外側遮蔽体の遠位端より近位の接合部で、外側遮蔽体に接合し、プローブの長手方向軸に対して実質的に横断方向に配向される第2グランドプレーンを含む。概して管状の外側カテーテルが、外側遮蔽体の周囲に同軸的に配置され、外側カテーテルと外側遮蔽体との間に冷却導管を画定する。開示されるプローブはまた、外周表面および遠位表面を有する、半円筒形ハウジングも含み得る。この半円筒形ハウジングの外周表面の近位縁部は、第2グランドプレーンの外周縁部に接合される。半円筒形ハウジングの遠位表面内に開口部が画定され、この開口部を通って、内側導体が遠位方向に延在し得る。
【0011】
本明細書に記載の切除プローブに操作可能に結合される切除エネルギー源を有する、切除システムもまた開示される。開示されるこのシステムは、本明細書に記載の切除プローブに操作可能に結合される、冷却剤源または圧力源の少なくとも一方を更に含み得る。
【0012】
本開示の、上述ならびに他の態様、特徴、および利点は、以下の詳細な説明と照らし合わせて、以下の添付の図面と関連させたとき、より明らかになるであろう。
【図面の簡単な説明】
【0013】
【
図1】本開示の一実施形態による、外科用切除プローブを有するマイクロ波切除システムの概略図である。
【
図2】本開示による、グランドプレーンを有するマイクロ波切除プローブの一実施形態の斜視図である。
【
図3】本開示による、グランドプレーンを有するマイクロ波切除プローブの別の実施形態の断面図である。
【
図4】本開示による、グランドプレーンを有するマイクロ波切除プローブのまた別の実施形態の断面図である。
【
図5】本開示による、グランドプレーンおよび膨張可能なバルーンを含むマイクロ波切除プローブの更に別の実施形態の斜視図である。
【
図6】本開示による、グランドプレーンおよび膨張可能なバルーンを有するマイクロ波切除プローブの
図5の実施形態の断面図である。
【
図7】本開示による、グランドプレーンおよび針電極を有するマイクロ波切除プローブの実施形態の斜視図である。
【
図8】本開示による、グランドプレーンおよび針電極を有するマイクロ波切除プローブの
図7の実施形態の断面図である。
【発明を実施するための形態】
【0014】
本開示の具体的な実施形態を、添付の図面を参照し、以下で説明するが、開示される実施形態は、本開示の単なる例であって、様々な形態で具現化し得ることを理解されたい。周知の、および/または反復する、機能ならびに構成は、不必要な、または冗長な詳細において本開示を不明瞭なものにすることを避けるために、詳細には説明しない。したがって、本明細書で開示される特定の構造的および機能的な詳細は、制限として解釈されるべきではなく、単に特許請求の範囲のための基準として、また実質的にいかなる適切な詳細構造にも、本開示を様々に利用することを、当業者に教示するための代表的な基準として解釈されるべきである。
【0015】
以下の図面および説明において、用語「近位」は、従来のように、よりユーザに近い、器具の末端部を指し、一方で用語「遠位」は、よりユーザから遠い末端部を指すものとする。
【0016】
図1は、本開示によるマイクロ波切除システム10の実施形態を示す。マイクロ波切除システム10は、ケーブル15によってコネクタ16に操作可能に結合する切除プローブ5を含み、コネクタ16は更に、アンテナプローブ10を発電機アセンブリ20に操作可能に結合し得る。プローブ10は、概して円形のディスク形状グランドプレーン12がその上に配置される、遠位放射部分11を含む。発電機アセンブリ20は、例えば約300MHz〜約10GHzの範囲のマイクロ波エネルギーなどの切除エネルギーの、源とすることができる。一部の実施形態では、発電機アセンブリ20は、約915MHz〜約2.45GHzの範囲の切除エネルギーを提供し得る。ケーブル15は、冷却剤源18からの冷却剤および/または圧力源14からの流体圧を、切除プローブ10に提供するように構成される導管(明示的には図示せず)を、追加的にあるいは代替として提供し得る。圧力源14は、空気圧(例えば、圧縮された、空気または他のガス)を提供するように構成され得るが、任意の好適な加圧媒体を、圧力源14によって提供し得ることが想定される。
【0017】
図2および
図3を参照して、同軸の給電単極マイクロ波切除プローブ100を示す。開示されるプローブ100は、シャフトアセンブリ110、近位区域112、グランドプレーン区域113、および遠位区域114を含む。遠位端109を有する内側導体101は、シャフトアセンブリ110を軸方向に貫通して配置される。内側導体101は、近位誘電体104、グランドプレーン内側誘電体103、および遠位誘電体102の内部に同軸的に配置される。近位誘電体104、グランドプレーン内側誘電体103、および/または遠位誘電体102は、例えば、セラミック、磁器、またはポリマー材料などの、電気絶縁特性を有する、任意の好適な耐熱材料から形成することができる。一実施形態では、近位誘電体104、グランドプレーン内側誘電体103、および/または遠位誘電体102の少なくとも1つは、例えば、ジルコニアまたはアルミナジルコニア複合体などの、高強度の誘電材料から形成することができる。
【0018】
遠位誘電体102の遠位端115は、遠位先端部123で終端となる先細端部120に接合され、最小限の抵抗を伴う、組織内への挿入を促す。あるいは、先端部123は、丸形または平坦であってもよい。先細端部120は、図示のように、内側導体101の遠位端109を収容するように内部に画定された凹部121を有する、近位基部122を含む。遠位誘電体102の遠位部分124は、凹部121内部に延在することができ、それにより遠位誘電体102と先細端部120との間の接合部に、更なる強度を付与することができる。遠位誘電体102および先細端部120は、任意の好適な取り付け手段によって接合することができ、その手段としては、限定するものではないが、接着剤結合、締まり嵌め、および/またはネジ結合が挙げられる。一実施形態では、遠位誘電体区域102および先細端部120は、一体的に形成することができる
【0019】
プローブ100の近位区域112は、近位誘電体104の周りに同軸的に配置される、概して管状の外側遮蔽体105を含む。外側遮蔽体105は、その遠位端108で、グランドプレーン106に電気機械的に接合する。このグランドプレーン106は、概してディスク状の形状を有し、かつ、プローブ100の長手方向軸に対して、例えば、内側導体101に対して、実質的に横断方向の構成で配向される。外側遮蔽体105およびグランドプレーン106は、任意の好適な耐熱性、導電性(例えば、金属製)の材料から形成することができ、その材料としては、限定するものではないが、ステンレス鋼が挙げられる。外側遮蔽体105およびグランドプレーン106は、任意の好適な取り付け手段によって接合することができ、その手段としては、限定するものではないが、溶接、ロウ付け、圧着、ハンダ付け、締まり嵌め、および/またはネジ結合が挙げられる。いくつかの実施形態では、外側遮蔽体105およびグランドプレーン106は、例えば、鋳造、鍛造、スピン成形、機械加工などによって、一体的に形成することができる。グランドプレーン106は、その遠位表面上に配置される、グランドプレーン表面誘電体107を含み得る。グランドプレーン表面誘電体107は、例えば、セラミック、磁器、またはポリマー材料などの、電気絶縁特性を有する任意の好適な耐熱材料から形成することができる。一部の実施形態では、近位区域112およびその構成要素(例えば、内側導体101、近位誘電体104、外側遮蔽体105など)は、近位区域112が、概して剛性の構造を形成するように、実質的に硬質の材料から形成することができる。他の実施形態では、近位区域112およびその構成要素は、近位区域112が、概して柔軟な構造を形成するように、実質的に可撓性の材料から形成することができる。このように、本開示によるアンテナプローブは、特定の外科的要件に合わせて調整することができる。
【0020】
一部の実施形態では、近位誘電体104、グランドプレーン内側誘電体103、グランドプレーン表面誘電体107、および/または遠位誘電体102の様々な組み合わせを、一体的に形成することができる。更には、または代替として、近位誘電体104、グランドプレーン内側誘電体103、グランドプレーン表面誘電体107、および/または遠位誘電体102は、互いに異なる誘電特性を有する異種の誘電材料から、個別に(または組み合わせて)形成することができる。このように、例えば、インピーダンス、放射パターン、切除パターンなどの、プローブ100の電気的特性を、外科的要件に合わせて調整することができる。
【0021】
更には、または代替として、プローブ100の外側表面、ならびに/または本明細書で提示する他の実施形態、例えば、以下で論じるプローブ180およびプローブ200の外側表面は、任意の好適な耐熱順応性材料から形成され得る、潤滑性の、例えば非粘着性のコーティング(明示的には図示せず)を含んでもよく、その材料としては、限定するものではないが、ポリテトラフルオロエチレン(別名、PTFEまたはTeflon(登録商標)、Wilmington,Delaware,USAのE.I.du Pont de Nemours and Co.による製造)、ポリエチレンテレフタレート(PET)などが挙げられる。更には、または代替として、記載される実施形態の外側表面は、ポリオレフィンチューブまたは任意の好適な熱収縮材料などの、熱収縮カバーを含み得る。
【0022】
図4を参照して、二重グランドプレーン区域133を有する単極マイクロ波切除プローブ150の実施形態を示す。プローブ150は、近位誘電体139の周りに同軸的に配置される外側遮蔽体115を有する、近位部分122を含む。内側導体101は、近位誘電体139、グランドプレーン内側誘電体138、および遠位誘電体137の内部に同軸的に配置される。第1の外径を有し、内側導体101に対して横断方向に配向される遠位グランドプレーン119は、外側遮蔽体115の遠位端135に電気機械的に接合される。第2の外径を有し、遠位グランドプレーン119に対して離間した関係で、実質的に平行に配向される近位グランドプレーン116は、外側遮蔽体115の遠位端135の近位方向に位置する接合部136で、電気機械的に外側遮蔽体115に接合される。
図4に示すように、遠位グランドプレーン119の外径は、近位グランドプレーン116の外径よりも小さいものとすることができる。しかしながら、遠位グランドプレーン119は、近位グランドプレーン116の外径よりも大きいか、または等しい外径を有し得ることを理解されたい。
【0023】
バラン誘電体117を、遠位グランドプレーン119と近位グランドプレーン116との間に配置することができる。更には、または代替として、遠位誘電体118を、遠位グランドプレーン116の遠位表面またはバラン誘電体117の遠位表面の少なくとも一方の上に配置することができる。使用時には、遠位グランドプレーン119、近位グランドプレーン116、およびバラン誘電体117の、記載の二重グランドプレーンの配置構成は、限定するものではないが、インピーダンス、放射パターン、および切除パターンなどのプローブ特性の、制御の改善を促進することができる。使用中、内側導体101の近位端は、切除エネルギー源、例えば発電機20に操作可能に結合されて、切除エネルギーを組織に供給することができる。
【0024】
図5および
図6を参照すると、膨張可能なバルーン160を有する単極マイクロ波切除プローブ180の実施形態が開示される。プローブ180は、近位誘電体164の周りに同軸的に配置される外側遮蔽体145を含む。近位誘電体164および遠位誘電体162は、内側導体101の周りに同軸的に配置される。図示のように、近位誘電体164の遠位端165は、外側遮蔽体145の遠位端171の遠位方向に延在する。概して管状の補強部材168が、近位誘電体164の遠位端165、および遠位誘電体162の少なくとも一部分の周囲に配置される。補強部材168は、例えば、限定するものではないが、ポリグラス複合体(例えば、ガラス繊維)、炭素繊維などの、任意の好適な材料から形成することができる。
【0025】
プローブ180は、第1の外径を有し、内側導体101に対して横断方向に配向される遠位グランドプレーン169を含む。遠位グランドプレーン169は、外側遮蔽体145の遠位端171に電気機械的に接合される。第2の外径を有し、遠位グランドプレーン169に対して離間した関係で、実質的に平行に配向される近位グランドプレーン166は、外側遮蔽体145の遠位端171の近位方向に位置する接合部172で、電気機械的に外側遮蔽体145に接合される。遠位グランドプレーン169の外径は、近位グランドプレーン166の外径よりも小さいものとすることができるが、遠位グランドプレーン169は、近位グランドプレーン166の外径よりも大きいか、または等しい外径を有し得ることが想定される。誘電体167を、遠位グランドプレーン169と近位グランドプレーン166との間に配置することができる。
図6に示すように、誘電体167は、近位グランドプレーン166の直径よりも小さく、遠位グランドプレーン169の直径よりも大きい直径を有し得るが、誘電体167は、近位グランドプレーン166の直径よりも大きいか、または等しい直径を有し得るか、あるいは誘電体167は、遠位グランドプレーン169の直径よりも小さいか、または等しい直径を有し得る。
【0026】
膨張可能なバルーン160を、グランドプレーン166およびグランドプレーン169の周囲に配置することができる。バルーン160は、その遠位端172で、例えば、補強部材168、誘電体162、または先端部120に対して、任意の好適な手段によって封止されるが、その手段としては、限定するものではないが、熱融着、化学結合、接着剤、または機械的保持(例えば、クランプもしくはリング)が挙げられる。カテーテル155が、外側遮蔽体145の近位部分の周囲に配置され、それらの間に導管157を画定する。カテーテル155は、硬質な材料または可撓性の材料から形成することができる。バルーン160の近位端141が、カテーテル155の遠位端158に封止される。使用中、導管157の近位端は、圧力源14に操作可能に結合し、バルーン160を膨張させることができる。圧力源14は、例えば、空気、水、生理食塩水などの、ガス状または流体の膨張媒体を、選択的な方法で提供することができ、それによって、所望される、膨張媒体のバルーン160への導入および/またはバルーン160からの抜き取りが可能となる。一実施形態では、圧力源は、手動操作(ベローズ、シリンジ、バルブなど)または自動化(例えば、ポンプ)が可能である。使用中、バルーン160の選択的な膨張および/または収縮によって、外科医は、限定するものではないが、インピーダンス、放射パターン、および切除パターンなどの、プローブ180の電気的特性を、要求に応じて、有利に変更することが可能になり得る。更に、バルーン160の選択的な膨張および/または収縮を使用して、例えば、気管内施術などの間、空気、流体、または他の物質の、内腔への流入もしくは内腔からの流出を制御することができる。更には、バルーン160の選択的な膨張および/または収縮によって、外科医は、手術部位の、またはその付近の解剖学的構造に関連した、プローブ180の位置決めを制御することが可能になり得る。
【0027】
バルーン160は、好適な機械的特性(穿刺抵抗、ピンホール抵抗、引張り強度、膨張時の順応性など)、化学的特性(プローブ180に対する好適な結合の形成など)、および生体適合性を有する材料から形成することができる。一実施形態では、バルーン160の壁は、好適な機械的特性および化学的特性を有するポリウレタンから形成することができる。好適なポリウレタンの一例は、Dow Pellethane(登録商標)2363―90Aである。別の実施形態では、膨張可能なバルーン160の壁は、好適なポリ塩化ビニル(PVC)から形成することができる。他の好適な材料としては、ポリプロピレン、ポリエチレンテレフタレート(PETP)、低密度ポリエチレン(LDPE)、シリコーン、ネオプレン、ポリイソプレン、またはポリウレタン(PU)が挙げられる。
【0028】
バルーン160は、例えば、限定するものではないが、ブロー成形、押出ブロー成形、または浸漬コーティングなどの、多数の方法で形成することができる。例えば、バルーン160は、予め押し出されたチューブから、成形用キャビティ内で適切な熱および圧力を加えることにより形成し、所望の形状を達成することができる(例えば、ブロー成形)。バルーン160はまた、押出ブロー成形によって形成することができ、この場合、融解させたポリマーペレットを、ダイを通して押し出し、管形状を形成する。次いで、未だ溶融状態のポリマーを成形型内に取り込み、空気圧を加えて、成形型の壁に対して管を膨張させることによって、要求される形状のバルーン160を形成する。更に別の実施形態では、基材(例えば、フォーム)を、溶融したポリマー内に浸漬させる。基材は、不整合性(例えば「激しい振動」)を避けるために、一定の速度で浸漬させることができる。基材は、ポリマー材料が所望の厚さのコーティングを確立し得る十分な時間の間、溶融ポリマー内に滞留させておく。次いで、基材を溶融ポリマーから、好ましくは一定の速度で引き出す。更には、または代替として、基材を溶融ポリマーへ浸漬させる速度および/または溶融ポリマーから引き出す速度は、得られるバルーン160の壁の厚さに影響を及ぼし得る。
【0029】
図7および
図8を参照して、グランドプレーン214を有するマイクロ波切除針プローブ200を提示する。プローブ200は、外側遮蔽体213の周囲に同軸的に配置され、それらの間に冷却導管241を画定する、概して管状の外側カテーテル205を有する、プローブシャフト202を含む。外側カテーテル205は、任意の好適な流体不浸透性材料から形成することができ、その材料としては、限定するものではないが、ガラス繊維複合体、炭素繊維、アルミニウム、ステンレス鋼などが挙げられる。第1の外径を有し、内側導体201に対して横断方向に配向される、概してディスク形状の遠位グランドプレーン215は、外側遮蔽体213の遠位端216に固定される。第2の外径を有し、遠位グランドプレーン215に対して離間した関係で、実質的に平行に配向される近位グランドプレーン214は、外側遮蔽体213の遠位端216の近位方向に位置する接合部217で、電気機械的に外側遮蔽体213に接合し、それらの間に空隙242を形成する。遠位グランドプレーン215の外径は、近位グランドプレーン214の外径よりも小さいものとすることができるが、しかしながら、遠位グランドプレーン215は、近位グランドプレーン214の外径よりも大きいか、または等しい外径を有し得ることを理解されたい。外周表面291および遠位表面212を有する半円筒形ハウジング222は、近位グランドプレーン214の外周縁部223に接合される。開口部211が、半円筒形ハウジング222の遠位表面212の中心に画定され、以下で詳細に説明するように、内側導体210を収容する。内側容積243が、半円筒形ハウジング222内に画定される。
【0030】
外側カテーテル205の遠位端218は、近位グランドプレーン214の近位表面246に接合し、流体密の封止を形成する。外側カテーテル205の遠位端218は、近位グランドプレーン214の近位表面246に、任意の好適な取り付け手段によって接合することができ、その手段としては、接着剤結合、ネジ結合、溶接、ハンダ付け、ロウ付け、ガスケット結合などが挙げられる。あるいは、外側カテーテル205および近位グランドプレーン214は、例えば、機械加工、成形、覆い成形、および/または鍛造によって、一体的に形成することができる。外側遮蔽体213、遠位グランドプレーン215、および/または近位グランドプレーン214は、任意の好適な耐熱性、導電性(例えば、金属製)の材料から形成することができ、その材料としては、限定するものではないが、ステンレス鋼が挙げられる。外側遮蔽体213は、遠位グランドプレーン215、および/または近位グランドプレーン214に、任意の好適な取り付け手段によって接合することができ、その手段としては、限定するものではないが、溶接、ロウ付け、圧着、ハンダ付け、締まり嵌め、および/またはネジ結合が挙げられる。
【0031】
内側導体201は、シャフト202の長手方向軸を通って軸方向に配置され、開口部211を通って、半円筒形ハウジング222の遠位表面212を越えて遠位方向に延在し、針電極224を形成する。一実施形態では、針電極224は、組織を容易に貫通するように先鋭化された先端部225を含み得る。あるいは、先端部225は、鈍的形状を有してもよく、またはボール先端部(明示的には図示せず)を含んでもよい。内側導体201は、限定するものではないが、ステンレス鋼などの、任意の好適な生体適合性の導電性材料から形成することができる。一実施形態では、針電極224は、使用中、例えば、標的組織内への挿入および/または標的組織との接触の間、屈曲に抵抗するか、または屈曲を低減するような、十分な機械的剛性を有する。内側導体224は、外側遮蔽体213の内側領域244内に、同軸的に配置される。内側導体201の近位端は、コネクタ240に操作可能に結合して、プローブ200と発電機20および/または冷却剤源18との間の、選択的に着脱可能な連結を容易にすることができる。いくつかの実施形態では、コネクタ240は、SMAコネクタ、あるいは電気的結合および/または流体的結合を提供するように適合された、任意の他の好適なコネクタとすることができる。
【0032】
冷却導管241の近位端は、冷却剤源18に操作可能に結合することができる。使用中、冷却導管241内の冷却剤の流れにより、プローブ200の温度の低減または制御が可能であり、そのため、非標的組織の温度を制御しながら、標的組織への、より高い電力レベルの供給が可能になり得る。冷却導管241内に収容される冷却剤は、誘電体としての役割を更に果たし得る。このようにして、手術結果の改善、より短い手術時間、および非標的組織への悪影響の低減を、実現することができる。更には、使用中、空隙242、半円筒形ハウジング222の内側容積243、および/または外側遮蔽体213の内側領域内244内に自然に存在する空気が、プローブ200、およびその関連する構成要素、例えば、内側導体201の冷却を、更に提供し得る。空気および/または他のガス状冷却剤が、空隙242、半円筒形ハウジング222の内側容積243、および/または外側遮蔽体213の内側領域244内を、能動的もしくは受動的に循環して、プローブ200の冷却を改善し得ることもまた、想定される。
【0033】
本開示の、記載された実施形態は、限定ではなくむしろ例示であるとされ、本開示のあらゆる実施形態を表すものではない。上述の実施形態の更なる変種、ならびに他の機構および機能、あるいはそれらの代替を、文字通り、および法的に同等と認識される双方で、以下の特許請求の範囲で記載する本開示の趣旨および範囲から逸脱することなく、作製、あるいは望ましくは、多くの他の異なるシステムまたは用途へと組み合わせることができる。