特許第6236470号(P6236470)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ JFEスチール株式会社の特許一覧

<>
  • 特許6236470-磁気特性に優れる無方向性電磁鋼板 図000003
  • 特許6236470-磁気特性に優れる無方向性電磁鋼板 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6236470
(24)【登録日】2017年11月2日
(45)【発行日】2017年11月22日
(54)【発明の名称】磁気特性に優れる無方向性電磁鋼板
(51)【国際特許分類】
   C22C 38/00 20060101AFI20171113BHJP
   C21D 8/12 20060101ALI20171113BHJP
   C21D 9/46 20060101ALI20171113BHJP
   C22C 38/06 20060101ALI20171113BHJP
   C22C 38/60 20060101ALI20171113BHJP
   H01F 1/147 20060101ALI20171113BHJP
【FI】
   C22C38/00 303U
   C21D8/12 A
   C21D9/46 501A
   C22C38/06
   C22C38/60
   H01F1/147 175
【請求項の数】5
【全頁数】10
(21)【出願番号】特願2015-551904(P2015-551904)
(86)(22)【出願日】2015年6月24日
(86)【国際出願番号】JP2015068123
(87)【国際公開番号】WO2016027565
(87)【国際公開日】20160225
【審査請求日】2015年10月19日
【審判番号】不服2016-12228(P2016-12228/J1)
【審判請求日】2016年8月12日
(31)【優先権主張番号】特願2014-167609(P2014-167609)
(32)【優先日】2014年8月20日
(33)【優先権主張国】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000001258
【氏名又は名称】JFEスチール株式会社
(74)【代理人】
【識別番号】110001542
【氏名又は名称】特許業務法人銀座マロニエ特許事務所
(72)【発明者】
【氏名】中島 宏章
(72)【発明者】
【氏名】大久保 智幸
(72)【発明者】
【氏名】中西 匡
(72)【発明者】
【氏名】尾田 善彦
【合議体】
【審判長】 鈴木 正紀
【審判官】 金 公彦
【審判官】 板谷 一弘
(56)【参考文献】
【文献】 特開2007−31793(JP,A)
【文献】 特開2000−273549(JP,A)
【文献】 特開2000−328207(JP,A)
【文献】 特開2001−158949(JP,A)
【文献】 特開平3−219020(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C22C 38/00-38/60
C21D 8/12, 9/46
(57)【特許請求の範囲】
【請求項1】
C:0.01mass%以下、Si:6mass%以下、Mn:0.05〜3mass%、P:0.2mass%以下、Al:2mass%以下、N:0.005mass%以下、S:0.01mass%以下およびGa:0.0005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、熱延板焼鈍を省略しても優れた磁気特性を有する無方向性電磁鋼板。
【請求項2】
Alの含有量が0.005mass%以下であることを特徴とする請求項1に記載の無方向性電磁鋼板。
【請求項3】
上記成分組成に加えてさらに、Sn:0.01〜0.2mass%およびSb:0.01〜0.2mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1または2に記載の無方向性電磁鋼板。
【請求項4】
上記成分組成に加えてさらに、Ca:0.0005〜0.03mass%、REM:0.0005〜0.03mass%およびMg:0.0005〜0.03mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の無方向性電磁鋼板。
【請求項5】
上記成分組成に加えてさらに、Ni:0.01〜2.0mass%、Co:0.01〜2.0mass%、Cu:0.03〜5.0mass%およびCr:0.05〜5.0mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載の無方向性電磁鋼板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無方向性電磁鋼板に関し、具体的には磁気特性に優れる無方向性電磁鋼板に関するものである。
【背景技術】
【0002】
無方向性電磁鋼板は、回転器などの鉄心材料として広く使用されている軟磁性材料の一種である。近年、省エネルギー化の流れの中で、電気機器の効率向上や小型・軽量化等への要求が高まり、鉄心材料に対する磁気特性の向上が益々重要となってきている。
【0003】
無方向性電磁鋼板は、通常、珪素を含有する鋼素材(スラブ)を熱間圧延し、必要に応じて熱延板焼鈍し、冷間圧延し、仕上焼鈍することによって製造されている。優れた磁気特性を実現するためには、仕上焼鈍後の段階において、磁気特性に好ましい集合組織を得ることが必要であるが、そのためには熱延板焼鈍が必須であると考えられている。
【0004】
しかし、熱延板焼鈍の工程を追加することは、製造日数が長くなるだけでなく、製造コストの上昇を招くという問題がある。特に、最近では、電磁鋼板に対する需要の増加に伴い、生産性の向上や製造コストの低減が重要視され始めており、熱延板焼鈍を省略する技術の開発が盛んに行われるようになってきている。
【0005】
熱延板焼鈍を省略する技術として、例えば、特許文献1には、S量を0.0015mass%以下に低減して結晶粒成長性を向上させ、SbおよびSnを添加して表層の窒化を抑制し、さらに、熱延時に高温巻き取りすることによって、磁束密度に影響を与える熱延板の結晶粒径を粗大化して磁気特性の向上を図る技術が開示されている。
また、特許文献2には、合金成分元素を制御し,熱間圧延条件を最適化し、鋼の相変態を用いて熱延組織を制御することにより、熱延板焼鈍を行わなくても鉄損を低くし、磁束密度を向上させた無方向性電磁鋼板の製造方法に関する技術が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2000−273549号公報
【特許文献2】特表2008−524449号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1に開示の技術は、S量を極微量まで低減することが必要になるため、製造コスト(脱硫コスト)が上昇する。また、特許文献2の技術では、鋼成分や熱間圧延条件に制約が多く、実際に製造することは難しいという問題がある。
【0008】
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、熱延板焼鈍を省略しても、優れた磁気特性を有する無方向性電磁鋼板を安価に提供することにある。
【課題を解決するための手段】
【0009】
発明者らは、上記課題の解決に向け、鋼素材中に不可避的に含まれる不純物が磁気特性及ぼす影響に着目して鋭意検討を重ねた。その結果、不可避的不純物の中でも特にGaを極微量まで低減することによって、あるいはさらに、Alを極微量まで低減することによって、熱延板焼鈍を省略した場合でも、磁束密度や鉄損を大幅に向上することができることを見出し、本発明を開発するに至った。
【0010】
すなわち、本発明は、C:0.01mass%以下、Si:6mass%以下、Mn:0.05〜3mass%、P:0.2mass%以下、Al:2mass%以下、N:0.005mass%以下、S:0.01mass%以下およびGa:0.0005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する無方向性電磁鋼板である。
【0011】
本発明の上記無方向性電磁鋼板は、Alの含有量が0.005mass%以下であることを特徴とする。
【0012】
また、本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、Sn:0.01〜0.2mass%およびSb:0.01〜0.2mass%のうちから選ばれる1種または2種を含有することを特徴とする。
【0013】
また、本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、Ca:0.0005〜0.03mass%、REM:0.0005〜0.03mass%およびMg:0.0005〜0.03mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。
【0014】
また、本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、Ni:0.01〜2.0mass%、Co:0.01〜2.0mass%、Cu:0.03〜5.0mass%およびCr:0.05〜5.0mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。
【発明の効果】
【0015】
本発明によれば、熱延板焼鈍を省略しても磁気特性に優れる無方向性電磁鋼板を製造することができるので、磁気特性に優れる無方向性電磁鋼板を安価かつ短納期で提供することが可能となる。
【図面の簡単な説明】
【0016】
図1】Ga含有量が磁束密度B50に及ぼす影響を示すグラフである。
図2】Al含有量が磁束密度B50に及ぼす影響を示すグラフである。
【発明を実施するための形態】
【0017】
まず、本発明を開発する契機となった実験について説明する。
<実験1>
発明者らは、熱延板焼鈍を省略しても磁気特性に優れる無方向性電磁鋼板を開発するべく、不可避的不純物であるGaの含有量が磁束密度に及ぼすに及ぼす影響を調査した。
C:0.0025mass%、Si:3.0mass%、Mn:0.25mass%、P:0.01mass%、N:0.002mass%、S:0.002mass%を含有し、Alを0.2mass%および0.002mass%の2水準で含有する成分系をベースとし、これにGaをtr.〜0.002mass%の範囲で種々に変化させて添加した鋼を実験室的に溶解し、鋳造して鋼塊とし、熱間圧延して板厚3.0mmの熱延板とした後、巻取温度が750℃に相当する熱処理を施した。次いで、上記熱延板を熱延板焼鈍を施すことなく酸洗し、冷間圧延して板厚0.50mmの冷延板とした後、20vol%H−80vol%N雰囲気下で1000℃×10secの仕上焼鈍を施した。
【0018】
上記のようにして得た仕上焼鈍後の鋼板の磁束密度B50を、25cmエプスタイン装置で測定し、その結果を図1に示した。
この結果から、Gaの含有量が0.0005mass%以下で、磁束密度B50が急激に向上すること、および、上記Ga低減による磁束密度向上効果は、Alの含有量が0.2mass%よりも0.002mass%の方が大きいことがわかった。
【0019】
<実験2>
そこで、発明者らは、磁束密度に及ぼすAl含有量の影響を調査する実験を行った。
C:0.0025mass%、Si:3.0mass%、Mn:0.25mass%、P:0.01mass%、N:0.002mass%、S:0.002mass%を含有し、さらにGaを0.0002mass%まで低減した成分系をベースとし、これにAlをtr.〜0.01mass%の範囲で種々に変化させて添加した鋼を実験室的に溶解し、上記の<実験1>と同様にして、仕上焼鈍後の鋼板の磁束密度B50を、25cmエプスタイン装置で測定した。
【0020】
図2は、上記の測定結果について、Al含有量と磁束密度B50との関係として示したものである。この図から、Alの含有量が0.005mass%以下で、磁束密度が向上していることがわかる。
【0021】
上記の実験の結果から、Gaの含有量を0.0005mass%以下に低減することで、さらには、Alの含有量を0.005mass%以下とした上で、Gaの含有量を0.0005mass%以下に低減することで、磁束密度を著しく向上することができることがわかった。
【0022】
GaやAlの含有量の低減により、磁束密度が大きく向上する理由は、現時点ではまだ十分に明らかとなっていないが、Gaを低減したことで、素材の再結晶温度が低下することによって熱間圧延中の再結晶挙動が変化し、熱延板の集合組織が改善されたためと推定している。特に、Alが0.005mass%以下で磁束密度が大きく向上する理由は、Ga,Alを低減したことで粒界の易動度が変化し、磁気特性に有利な結晶方位の成長が促進されたためであると考えている。
本発明は、上記の新規な知見に基き開発したものである。
【0023】
次に、本発明の無方向性電磁鋼板が有すべき成分組成について説明する。
C:0.01mass%以下
Cは、製品板における磁気時効を引き起こすため0.01mass%以下に制限する。好ましくは、0.005mass%以下である。
【0024】
Si:6mass%以下
Siは、鋼の固有抵抗を高め、鉄損低減に有効な元素であるため、1mass%以上含有させることが好ましい。しかし、6mass%を超えて添加すると、著しく脆化して冷間圧延することが困難となるため、上限は6mass%とする。好ましくは1〜4mass%、より好ましくは1.5〜3mass%の範囲である。
【0025】
Mn:0.05〜3mass%
Mnは、熱間圧延時の赤熱脆性を防止するのに有効な元素であるため、0.05mass%以上含有させる必要がある。しかし、3mass%を超えると冷間圧延性が低下したり、磁束密度の低下を招いたりするため、上限は3mass%とする。好ましくは0.05〜1.5mass%、より好ましくは0.2〜1.3mass%の範囲である。
【0026】
P:0.2mass%以下
Pは、固溶強化能に優れるため、硬さ調整し、打抜加工性の改善に有効な元素であるので添加することができる。しかし、0.2mass%を超えると、脆化が顕著となるため、上限は0.2mass%とする。好ましくは0.15mass%以下、より好ましくは0.1mass%以下である。
【0027】
S:0.01mass%以下
Sは、MnS等の硫化物を生成して、鉄損を増加させる有害元素であるため上限を0.01mass%に制限する。好ましくは0.005mass%以下、より好ましくは0.003mass%以下である。
【0028】
Al:2mass%以下
Alは、鋼の比抵抗を高めて渦電流損を低下するのに有効な元素であるので添加することができる。しかし、2.0mass%を超えると、冷間圧延性が低下するため、上限は2.0mass%とする。
ただし、Ga低減による磁気特性の向上効果をより享受するためには、0.005mass%以下に低減することが好ましく、より好ましくは0.001mass%以下である。
【0029】
N:0.005mass%以下
Nは、窒化物を生成し、鉄損を増加させる有害元素であるため、上限を0.005mass%とする。好ましくは0.003mass%以下である。
【0030】
Ga:0.0005mass%以下
Gaは、微量でも熱延板集合組織に大きな悪影響を及ぼす、本発明において最も重要な元素である。上記悪影響を抑止するためには、0.0005mass%以下とすることが必要である。好ましくは0.0001mass%以下である。
【0031】
本発明の無方向性電磁鋼板は、磁気特性の改善を目的として、上記成分に加えてさらに、SnおよびSbのうちから選ばれる1種または2種を、Sb:0.01〜0.2mass%、Sn:0.01〜0.2mass%の範囲で含有することができる。
SbおよびSnは、いずれも製品板の集合組織を改善するため、磁束密度の向上に有効な元素である。上記の効果は0.01mass%以上の添加で得られる。しかし、0.2mass%を超えると、上記効果が飽和する。よって、上記元素を添加する場合は、それぞれ0.01〜0.2mass%の範囲とするのが好ましい。より好ましくはSb:0.02〜0.15mass%、Sn:0.02〜0.15mass%の範囲である。
【0032】
本発明の無方向性電磁鋼板は、上記成分に加えてさらに、Ca,REMおよびMgのうちから選ばれる1種または2種以上を、Ca:0.0005〜0.03mass%、REM:0.0005〜0.03mass%、Mg:0.0005〜0.03mass%の範囲で含有することができる。
Ca,REMおよびMgは、いずれも、Sを固定し、硫化物の微細析出を抑制するため、鉄損低減に有効な元素である。この効果を得るためには、それぞれ0.0005mass%以上添加する必要がある。しかし、0.03mass%超え添加しても、上記効果は飽和する。よって、Ca,REMおよびMgを添加する場合は、それぞれ0.0005〜0.03mass%の範囲とするのが好ましい。より好ましくは、それぞれ0.001〜0.01mass%の範囲である。
【0033】
また、本発明の無方向性電磁鋼板は、上記成分に加えてさらに、Ni,Co,CuおよびCrのうちから選ばれる1種または2種以上を、Ni:0.01〜2.0mass%、Co:0.01〜2.0mass%、Cu:0.03〜5.0mass%、Cr:0.05〜5.0mass%の範囲で含有することができる。
Ni,Co,CuおよびCrは、いずれも、鋼の比抵抗を増加させるため、鉄損低減に有効な元素である。この効果を得るためには、Ni,Coは、それぞれ0.01mass%以上、Cuは0.03mass%以上、Crは0.05mass%以上添加するのが好ましい。しかし、Ni,Coは、2.0mass%を超えて、また、Cu,Crは5.0mass%を超えて添加すると、合金コストが上昇する。よって、Ni,Coを添加する場合は0.01〜2.0mass%、Cuを添加する場合は0.03〜5.0mass%、Crを添加する場合は0.05〜5.0mass%の範囲とする。より好ましくは、Ni:0.03〜1.5mass%、Co:0.03〜1.5mass%、Cu:0.05〜3.0mass%およびCr:0.1〜3.0mass%の範囲である。
【0034】
本発明の無方向性電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の効果を阻害しない範囲内であれば、他の成分の含有を拒むものではない。
【0035】
次に、本発明の無方向性電磁鋼板の製造方法について述べる。
本発明の無方向性電磁鋼板は、その製造に用いる鋼素材として、GaおよびAlの含有量が上記した範囲内のものを用いる限り、公知の無方向性電磁鋼板の製造方法を用いて製造することができ、例えば、転炉や電気炉等で鋼を溶製し、さらに真空脱ガス設備等で二次精錬する精錬プロセスで上記した成分組成に調整した鋼を、造塊−分塊圧延法あるいは連続鋳造法で鋼素材(スラブ)とした後、熱間圧延し、酸洗し、冷間圧延し、仕上焼鈍し、絶縁被膜を塗布・焼付する方法で製造することができる。
【0036】
なお、本発明の無方向性電磁鋼板の製造方法は、熱間圧延後の熱延板焼鈍を省略しても優れた磁気特性を得ることができるが、熱延板焼鈍を施してもよく、その場合の均熱温度は900〜1200℃の範囲とするのが好ましい。均熱温度が900℃未満では、熱延板焼鈍の効果が十分に得られないので、磁気特性をさらに向上する効果が得られない。一方、1200℃を超えると、熱延板の粒径が粗大化し過ぎて、冷間圧延時に割れや破断を起こすおそれがある他、コスト的にも不利となるからである。
【0037】
また、熱延板から製品板厚(最終板厚)の冷延板とする冷間圧延は、1回または中間焼鈍を挟む2回以上とすることができるが、特に、最終板厚とする最終冷間圧延は、板温を200℃程度の温度に昇温して行う温間圧延とすることが、設備上や生産制約上、コスト上で問題がなければ、磁束密度を向上する効果が大きいので、好ましい。
【0038】
最終板厚とした冷延板に施す仕上焼鈍は、900〜1150℃の温度で5〜60秒間均熱する連続焼鈍とするのが好ましい。均熱温度が900℃未満では、再結晶が十分に進行せず良好な磁気特性が得られない。一方、1150℃を超えると、結晶粒が粗大化し、特に高周波数域での鉄損が増加するからである。
【0039】
上記仕上焼鈍後の鋼板は、その後、層間抵抗を高めて鉄損を低減するため、鋼板表面に絶縁被膜を被成するのが好ましい。特に、良好な打抜き性を確保したい場合には、樹脂を含有する半有機の絶縁被膜を適用することが望ましい。
【0040】
絶縁被膜を被成した無方向性電磁鋼板は、ユーザーにおいて、さらに歪取焼鈍を施してから使用してもよいし、歪取焼鈍を施さずにそのまま使用してもよい。また、ユーザーにおいて打抜加工を施した後に、歪取焼鈍を施してもよい。なお、上記歪取焼鈍は、750℃×2hr程度の条件で行うのが一般的である。
【実施例】
【0041】
転炉−真空脱ガス処理の精錬プロセスで、表1に示した成分組成を有するNo.1〜31の鋼を溶製し、連続鋳造法でスラブとした後、該スラブを1140℃で1hr加熱した後、熱延仕上温度を900℃とする熱間圧延により板厚3.0mmの熱延板とし、750℃の温度でコイルに巻き取った。次いで、上記コイルを、熱延板焼鈍を施すことなく酸洗した後、1回の冷間圧延で板厚0.5mmの冷延板とし、均熱条件を1000℃×10secとする仕上焼鈍を施し、無方向性電磁鋼板とした。
上記のようにして得た鋼板から30mm×280mmのエプスタイン試験片を採取し、25cmエプスタイン装置で鉄損W15/50および磁束密度B50を測定し、その結果を表1中に併記した。
表1から、鋼素材の成分組成を本発明の範囲に制御することにより、熱延板焼鈍を省略しても、磁気特性に優れる無方向性電磁鋼板を得ることができることがわかる。
【0042】
【表1】
図1
図2