【実施例】
【0035】
1.水酸化チタンの作成
四塩化チタン水溶液(チタンとして16.4%含有)2.86kgを純水11.5kgに添加し30分間攪拌した。この水溶液中に6%の水酸化ナトリウム水溶液を、ローラーポンプにてpHが7.0になるまで一定速度で添加し、白色スラリーを得た。このスラリーをろ過・水洗し固形分が11%の含水酸化チタンケーキを得た。
【0036】
2.チタン酸バリウム粉体の作成
還流管付き容器内で水酸化バリウム486gと純水500gを混合し、100℃に煮沸還流した。この際、炭酸バリウムの生成を防止するため、窒素ガスを容器内にパージした。
上記で得た含水酸化チタンケーキを800g採取し、純水を250g加えスラリー化し、上記水酸化バリウム溶液にゆっくり加え、1.5時間還流反応させた。反応後、スラリーをろ過・水洗し、Ba/Ti比を調整後、乾燥しチタン酸バリウム粉体を得た。
なお、チタン酸バリウム粉体の平均一次粒子径は、特開平6−48734号公報の実施例、比較例に記載の方法を適用した。すなわち(Ba/Ti比や濃度等の)反応条件を管理することにより調整した。
【0037】
実施例1
比表面積から算出した、平均一次粒子径が球形換算値で30nmのチタン酸バリウム粉体100gをトルエン200gに混合した後、該チタン酸バリウム粉体に対し6重量%のイソブチルトリメトキシシランを添加しスラリー化した。本スラリーを遊星ボールミルにて湿式分散し、減圧蒸留、乾燥、解砕してイソブチルトリメトキシシランで表面処理されたチタン酸バリウム粉体を得た。
【0038】
実施例2
実施例1で用いたチタン酸バリウム粉体に代えて、平均一次粒子径16nmのチタン酸バリウム粉体を用いた以外は実施例1と同様の処理を行って表面処理されたチタン酸バリウム粉体を得た。
【0039】
実施例3
実施例2において、イソブチルトリメトキシシランを5重量%、イソプロピルトリイソステアロイルチタネートを5重量%混合処理した以外は実施例2と同様の処理を行って表面処理されたチタン酸バリウム粉体を得た。
【0040】
実施例4
実施例2においてイソブチルトリメトキシシランを5重量%、3−メタクリロキシプロピルトリメトキシシランを5重量%混合処理した以外は実施例2と同様の処理を行って表面処理されたチタン酸バリウム粉体を得た。
【0041】
実施例5
実施例2においてイソブチルトリメトキシシランを7.5重量%、3−メタクリロキシプロピルトリメトキシシランを7.5重量%混合処理した以外は実施例2と同様の処理を行って表面処理されたチタン酸バリウム粉体を得た。
【0042】
実施例6
実施例2においてイソブチルトリメトキシシランを10.0重量%、3−メタクリロキシプロピルトリメトキシシランを10.0重量%混合処理した以外は実施例2と同様の処理を行って表面処理されたチタン酸バリウム粉体を得た。
【0043】
実施例7
実施例1で用いたチタン酸バリウム粉体に代えて、平均一次粒子径30nmのチタン酸ストロンチウム粉体を用いた以外は実施例1と同様の処理を行って表面処理されたチタン酸ストロンチウム粉体を得た。
【0044】
比較例1
実施例2においてイソブチルトリメトキシシランを添加せずに処理を行い、表面処理されていない16nmのチタン酸バリウム粉体を得た。
【0045】
比較例2
実施例2において0.6重量%のイソブチルトリメトキシシランを添加した以外は実施例2と同様の処理を行って表面処理されたチタン酸バリウム粉体を得た。
【0046】
比較例3
実施例1においてイソブチルトリメトキシシランを添加せずに処理を行い、表面処理されていない30nmのチタン酸バリウム粉体を得た。
【0047】
比較例4
実施例1において30nmのチタン酸バリウムに代え平均一次粒子径が50nmのチタン酸バリウムを使用し、イソブチルトリメトキシシランを添加せずに処理を行い、表面処理されていない50nmのチタン酸バリウム粉体を得た。
【0048】
比較例5
実施例1において30nmのチタン酸バリウムに代え平均一次粒子径が100nmのチタン酸バリウムを使用し、イソブチルトリメトキシシランを添加せずに処理を行い、表面処理されていない100nmのチタン酸バリウム粉体を得た。
【0049】
3.チタン酸バリウム粉体の評価
実施例1〜7および比較例1〜5で得られた粉体について、以下に述べる測定方法により、モノテルペンアルコールの一種であるテルピネオールへの分散性、水分吸着量、X線回折の強度比を測定した。
【0050】
平均一次粒子径:
測定装置としてQUADRASURB S1(カンタクローム社製)を用い、測定ガスは窒素を使用した。
比表面積の測定値から、下記計算式を用い球形換算値で算出した。
D=6000/(S×ρ)
ここでDは平均一次粒子径(nm)、Sは比表面積値(m
2/g)、ρは密度(g/cm
2)を表す。
【0051】
テルピネオールへの分散性:
50mlスクリュー管にテルピネオールを10g投入し、実施例1〜7および比較例1〜5で得た粉体をサンプルとして1gを加え50回振とうした。4時間静置後、粉体の沈降具合を目視で観察し、以下のように分散性を判断した。
○:沈降がほぼ無い状態
△:わずかに沈降が見られる状態
×:ほぼ全量沈降している状態
【0052】
水分吸着量:
実施例1〜7および比較例1〜5で得た粉体を測定サンプルとして1g秤量ビンに採取し、乾燥機内で120℃、4時間乾燥後、デシケータ中で放冷した。放冷後のサンプルを25℃、50%の環境下に24時間暴露し、重量増から水分吸着量(%)を算出した。
【0053】
X線回折の強度比:
実施例1〜7および比較例1〜5で得た粉体を測定サンプルとして25℃、50%の環境下に14日間暴露した後、X線回折測定を行い、チタン酸化合物の最も大きなピーク強度を100とした際の炭酸塩の最も大きなピーク強度の比(%)を算出した。
なお、測定装置はX線回折測定装置X PERT PRO(PANALYTICAL社製)を使用した。
【0054】
Ba/Ti比:
測定装置として、蛍光X線測定装置 スペクトリス AKIOS−4KW型(PANALYTICAL社製)を使用し、蛍光X線の定量分析結果からBa/Ti比を算出した。
なお、Sr/Ti比は測定していない。
【0055】
実施例1〜7および比較例1〜5で得られたチタン酸化合物粉体の上記特性について、その測定結果を表1に示す。
【表1】
【0056】
上記実施例および比較例において、平均一次粒子径がチタン酸バリウムの吸水率にどのような影響を及ぼすのかについて詳しく調べるため、平均一次粒子径の異なる比較例1,3〜5の未表面処理のチタン酸バリウムの吸水率の測定結果を
図1に示す。また、表面処理の有無がチタン酸バリウムの吸水率にどのような影響を及ぼすのかについて詳しく調べるため、シラン系カップリング剤を用いて表面処理を行った実施例2のチタン酸バリウム、シラン系カップリング剤とチタネート系カップリング剤の両方を用いて表面処理を行った実施例3のチタン酸バリウムおよび表面処理を行わなかった比較例1のチタン酸バリウムの吸水率の測定結果を
図2に示す。
【0057】
また、上述したテルピネオールへの分散性を示す例示として、表面処理を施した実施例2のチタン酸バリウム粉体と、表面処理を施していない比較例1のチタン酸バリウム粉体について、50回振とうし、4時間静置した時の分散状態を
図3に示す。
【0058】
4.考察
図1から明らかなように、表面処理を行っていないチタン酸バリウム粉体は、平均一次粒子径が小さければ小さいほどその水分吸着量は多くなる。これは、粉体の粒子径が小さければ小さいほどその比表面積が大きくなることによる影響であると考えられる。このため、表面処理を行っていないチタン酸バリウム粉体の平均一次粒子径が100nmよりも大きくなると、その比表面積が小さくなる結果、水分吸着量は暴露時間に関係なくほぼ0wt%となり、チタン酸バリウム粉体に表面処理を施すことの意義が薄れてしまう。また、平均一次粒子径が100nmよりも大きなチタン酸バリウム粉体は、薄層化が進められているMLCCの内部電極層のペースト材として使用するには、粒子径が大き過ぎて不適当である。
【0059】
実施例1〜7と比較例1〜5で得られた粉体の特性を示した表1から明らかなように、表面処理を行わなかったり或いは被覆量が少ない場合、平均一次粒子径が50nm未満の粉体では水分吸着量が1wt%
を超える。特に
図3を参照して理解されるように、水分吸着量が大きくなると、非水系の溶剤(ここではテルピネオール)に分散させた場合に均一分散できずに凝集してしまう。また、効果的な表面処理を行わず粉体のまま放置しておくと、粒子径が小さい(=比表面積が大きい)粉体は、その表面活性により炭酸塩の生成が起こり、当該粉体を配合した最終製品などの品質に悪影響を及ぼすという弊害が生じる。これは、比表面積の大きい粒子表面が高活性状態となり、結果として水分吸着や、炭酸塩形成を引き起こすものと考えられる。
【0060】
また、表1および
図2から明らかなように、表面処理を行ったチタン酸バリウム粉体は、その表面処理剤としてシラン系カップリング剤を用いた場合においてもチタネート系カップリング剤を用いた場合においても、温度25℃、相対湿度50%の環境下に24時間暴露した際の水分吸着量を1wt%以下に抑え、溶媒に対して高い分散性を示すことが判った。
【0061】
本発明では、問題解決策として粒子表面を改質することに着目し、カップリング剤を用いて対象粉体に対し1〜30wt%の表面処理を施すことにより、水分吸着の低減と異組成物である炭酸塩の形成を抑制することができるようになった。本発明を適用した複合酸化物材料を電子部品などへ用いることにより、従来では得られなかった高品質、高信頼性を期待することができる。