(58)【調査した分野】(Int.Cl.,DB名)
眼鏡レンズを保持するレンズチャック軸を回転するレンズ回転手段と、レンズの周縁を加工するための加工具が取付けられた加工具回転軸と、前記レンズチャック軸又は前記加工具回転軸を保持するキャリッジであって、前記レンズチャック軸と前記加工具回転軸との軸間距離が変動する方向にモータの駆動によって移動可能にされたキャリッジを有する軸間距離変動手段と、入力された玉型に基づいて前記レンズ回転手段及び前記軸間距離変動手段を制御してレンズ周縁を前記加工具によって加工させる制御手段と、を備える眼鏡レンズ加工装置において、
前記軸間距離変動手段は、前記モータの駆動によって前記軸間距離方向に移動される移動部材と、前記移動部材と前記キャリッジとを連結する連結部材と、前記連結部材に設けられ、前記連結部材の前記軸間距離方向の変形を検知する変形検知センサと、前記レンズチャック軸に保持されたレンズを前記加工具に押し付ける加工圧を付与するための付勢手段と、を備え、
前記制御手段は、前記付勢手段の付勢力と前記変形検知センサの検知結果とを基に、レンズと前記加工具との間に掛かる加工圧を求め、求めた加工圧が設定値を超えないように前記モータの駆動を制御することを特徴とする眼鏡レンズ加工装置。
【背景技術】
【0002】
眼鏡レンズ加工装置は、一般的に、眼鏡レンズを保持するレンズチャック軸と、レンズの周縁を加工するための加工具(粗加工具、仕上げ加工具等)が取付けられた加工具回転軸と、レンズを加工具側方向へ相対的に移動するために、レンズチャック軸と加工具回転軸との軸間距離を変動させる軸間距離変動機構と、を有し、入力された玉型に基づいてレンズチャック軸の回転を制御すると共に軸間距離変動機構を制御してレンズ周縁を加工する。
【0003】
軸間距離変動機構としては、レンズチャック軸を保持するキャリッジを加工具側に押し付けるときの加工圧を発生するために、バネ等の付勢手段を利用する第1方式(特許文献1参照)と、付勢手段を使用せずに、キャリッジを加工具側に移動するためのモータの駆動によって直接加工圧を発生する第2方式(特許文献2参照)と、が知られている。
【0004】
第1方式の機構では、レンズチャック軸を保持するキャリッジは、軸間距離変動機構のガイドシャフトに沿って加工具方向に移動可能にされているが、加工具方向の位置はモータによって移動されるガイドブロックまでとされる。そして、キャリッジは、ガイドブロックから離れる方向には付勢手段の付勢力に逆らって自由に移動できる。このため、第1方式の機構では、キャリッジがガイドブロックの位置まで達しているか否かを検知する加工終了センサが設けられている。
【0005】
第2方式の機構では、モータによって送りネジ及びナット等の直動変換機構が軸間距離方向に移動されることにより、キャリッジが直接的に軸間距離方向に移動され、加工終了センサを使用することなく、軸間距離を制御できる。また、第2方式の機構では、軸間距離変動用のモータとして回転検出器を備えるサーボモータを使用することによって、加工中の加工圧を知ることができる。
【発明を実施するための形態】
【0012】
以下、本発明の実施形態を図面に基づき説明する。
図1は眼鏡レンズ加工装置の加工機構部の概略構成図である。
図2は、レンズ保持部100を装置の正面(作業者側)から見た図である。
【0013】
加工装置本体1は、被加工レンズLEを保持する一対のレンズチャック軸(レンズチャックシャフト)102L、102Rを有するレンズ保持部100と、レンズLEの屈折面形状(レンズの前面及び後面)を測定するための測定子260を備えるレンズ形状測定ユニット200と、レンズLEの周縁を加工するための加工具62が取り付けられた加工具回転軸61aを回転する加工具回転ユニット60Aと、を備える。
【0014】
レンズ保持部100は、レンズ回転ユニット100Aと、レンズチャックユニット300、X方向移動ユニット(チャック軸移動ユニット)100Bと、Y方向移動ユニット(軸間距離変動ユニット)100Cと、レンズチャックユニット300と、備える。
【0015】
レンズ回転ユニット100A(第1回転ユニット100Aa,第2回転ユニット100Ab)は、一対のレンズチャック軸102L、102Rを回転させるために用いられる。X方向移動ユニット100Bは、レンズチャック軸102L、102Rの軸線X1が延びるX方向にレンズチャック軸102L、102Rを移動するために用いられる。なお、X方向移動ユニット100Bは、相対的に加工具回転軸61a(加工具168)をX方向に移動する機構であっても良い。Y方向移動ユニット100Cは、レンズチャック軸102L、102R又は加工具回転軸61aを保持するキャリッジ101であって、レンズチャック軸102L、102Rと加工具回転軸61aとの軸間距離が変動する方向(Y方向)にモータ150の駆動によって移動可能にされたキャリッジ101を有する。Y方向移動ユニット100Cは、レンズチャック軸102L、102Rと加工具回転軸61aとの軸間距離が変動する方向に、加工具回転軸61aに対してレンズチャック軸102L、102Rを相対的に移動させるために用いられる。レンズチャックユニット300は、レンズLEを挟持すべく、一方のレンズチャック軸102Lに対してもう一方のレンズチャック軸102Rをレンズチャック軸102L側に移動させるために用いられる。
【0016】
以下、加工装置本体1の具体例を詳細に説明する。加工装置本体1の本体ベース170上にはレンズ保持部100、加工具回転ユニット60Aが搭載されている。
【0017】
レンズ保持部100は、レンズチャック軸102L、102Rを保持するキャリッジ101を有する。キャリッジ101は、レンズチャック軸102Lを回転可能に保持する第1アーム101Lと、レンズチャック軸102Rを回転可能に、且つX方向(軸線X1方向)に移動可能に保持する第2アーム101Rと、を有する。レンズチャック軸102Rは、レンズチャックユニット300によってレンズチャック軸102L側に移動される。レンズチャック軸102Rの移動によって、レンズLEが2つのレンズチャック軸102R、102Lにより保持(挟持)される。レンズチャックユニット300は周知の機構を使用されるので、その説明は省略する。
【0018】
<レンズ回転ユニット>
レンズ回転ユニット100Aは、レンズチャック軸102Rを回転するためのレンズ回転ユニット100Aaと、レンズチャック軸102Lを回転するためのレンズ回転ユニット100Abと、を備える。レンズ回転ユニット100Aaは、レンズチャックユニット300に取り付けられたモータ120と、回転伝達機構121と、を備える。また、レンズ回転ユニット100Abは、第1アーム101Lに取り付けられたモータ115(
図1では図示を略す)と、回転伝達機構116と、を有する。モータ120及び115が同期して回転されることによってレンズチャック軸102R及び102Lが同時に回転される。なお、レンズ回転ユニット100Aとしては、1つのモータで周知の回転伝達機構を介してレンズチャック軸102R及び102Lの両方を同時に回転する構成であっても良い。
【0019】
<X方向移動ユニット>
キャリッジ101は、レンズチャック軸102R,102Lの軸線X1及び加工具回転軸(シャフト)の軸線X2と平行に延びるシャフト103、104に沿ってX方向に移動可能なX移動支基140に搭載されている。本体ベース170上にモータ145が配置されている。X移動支基140は、ボールネジ及びナット等のスライド機構を介してモータ145の駆動によってX方向に移動される。X移動支基140がX方向に移動されることにより、キャリッジ101に保持されたレンズチャック軸102R,102LがX方向に移動される。モータ145の回転軸にはレンズチャック軸102R,102LのX方向の移動を検出する検出器であるエンコーダ146が設けられている。
【0020】
<Y方向移動ユニット>
Y方向移動ユニット100Cの好ましい構成例を、
図1−
図4に基づいて説明する。
図3は、Y方向移動ユニット100Cを装置1の左側面から見た図である。
図4は、Y方向移動ユニット100Cが備える軸間距離移動機構の主要部の構成図である。
【0021】
X移動支基140には、シャフト103の軸線を中心にキャリッジ101(第1アーム101L及び第2アーム101R)が回転(揺動)可能に設けられている。キャリッジ101の第1アーム101L及び第2アーム101Rがシャフト103の軸線を中心に回転されることにより、第1アーム101L及び第2アーム101Rの先端側に保持されたレンズチャック軸102R,102Lがシャフト103の軸線を中心にしてY方向に移動される。また、移動支基140と第1アーム101Lの先端側との間に付勢手段としてバネ159が配置されている。バネ159の引っ張りバネ力によって、キャリッジ101の第1アーム101L及び第2アーム101Rは加工具62方向に引っ張られる。すなわち、バネ159によってレンズチャック軸102R,102Lが加工具62方向に引っ張られ、レンズLEを加工具62に押し付ける加工圧が与えられる。
【0022】
X移動支基140はシャフト103から前方のシャフト104まで延びて形成されている。X移動支基140の前方に設けられた軸受け部151には、加工具回転軸61aの軸線X2を中心に回転可能な揺動ブロック152が取付けられている。本実施例では揺動ブロック152の回転中心S2は、軸線X2と一致されている。揺動ブロック152にはキャリッジ101(レンズチャック軸102R、102L)をY方向に移動させるためのモータ150が取り付けられている。モータ150としてはパルスモータが使用される。Y方向移動ユニット100Cは、モータ150の回転駆動をキャリッジ101の軸間距離方向(レンズチャック軸102L、102Rと加工具回転軸61aとを結ぶ方向)の直動(直線移動)に変換するための直動変換機構158が設けられている。本実施例の直動変換機構158は、モータ150の回転軸に取り付けられたボールネジ156であって、軸線X1と軸線X2とを結ぶ方向に平行に延びるボールネジ156と、ボールネジ156に噛み合うナット(移動部材)157と、を備える。移動部材であるナット157は、モータ150の駆動によって直接的に軸間距離方向に移動される。直動変換機構158のボールネジ156とナット157の配置を逆にし、ナット157がモータ150によって回転され、ボールネジ156が移動部材として軸間距離方向に直接的に移動される構成としても良い。また、揺動ブロック152は、ボールネジ156と平行に延びるガイドシャフト155が固定されている。
【0023】
一方、キュリッジ101の第1アーム101Lには、回転中心S1を中心に回転可能に金属製の連結ブロック(連結部材)170が設けられている。本実施例では、連結ブロック170の回転中心はレンズチャック軸102Rの軸線と一致するように構成されている。また、連結ブロック170は、ガイドシャフト155が摺動可能に連結された第1連結ブロック170aと、移動部材であるナット157に連結される第2連結ブロック170bと、により構成されている。第1連結ブロック170aと第2連結ブロック170bとは、ネジ等の固定具により一体的に固定されている。第1連結ブロック170aと第2連結ブロック170bを一体的な部材で構成しても良い。また、移動部材(ナット157)と連結ブロック170とを一体的に構成しても良い。
【0024】
ボールネジ156がモータ150によって回転されることにより、ナット157に固定された連結ブロック170は、ボールネジ156及びガイドシャフト155の軸方向に移動される。そして、連結ブロック170がボールネジ156の軸方向に移動されることにより、キャリッジ101の第1アーム101L及び第2アーム101Rはシャフト103の軸中心に回転され、レンズチャック軸102R,102LはY方向に移動される。
【0025】
なお、本実施例では連結ブロック170の回転中心S1がレンズチャック軸102Rの軸線X1に一致し、揺動ブロック152の回転中心S2が加工具回転軸61aの軸線X2に一致するように設けられているが、これに限られない。連結ブロック170の回転中心S1及び揺動ブロック152の回転中心S2は、軸線X1と軸線X2とを結ぶ方向と平行に位置すれば、軸線X1及び軸線X2から離れた位置に設けられていても良い。
【0026】
また、本実施例では、キャリッジ101はシャフト103を中心に回転される揺動式(レンズチャック軸を保持するアームが円弧動される方式)としているが、これに限られない。キャリッジ101は、レンズチャック軸102R,102Lと加工具回転軸61aとを結ぶ方向に直線的に移動される直動式の構成であっても良い。直動式の構成の場合、連結ブロック170を回転可能に保持する機構は省略され、連結ブロック170がキャリッジ101のアーム101L(101R)に固定的に配置される。また、揺動ブロック152も回転可能に保持する機構も省略され、ボールネジ156及びモータ150がX移動支基140に固定的に配置される。
【0027】
ここで、連結ブロック170には、レンズチャック軸と砥石回転軸と結ぶが軸間距離方向における連結ブロック170の変形を検知するための変形検知センサ175が配置されている。変形検知センサ175は、微細な変形が検知可能な歪みゲージが好ましい。変形検知センサ175としては、ロードセル(圧力検出素子)やピエゾ素子を使用することもできる。変形検知センサ175は、連結ブロック170が変形し易い箇所に設置されることが好ましく、キャリッジ101の連結部分(回転中心S1)と、モータ150によって移動力が与えられるボールネジ156の連結部分と、の間の箇所に設置されている。本実施例では、第2連結ブロック170bに設置されている。変形検知センサ175の付近の第2連結ブロック170bには複数の穴176が形成され、連結ブロック170の連結強度を確保しつつ、変形検知センサ175が微細な変形を検知可能な構造としている。連結ブロック170の材質としては、連結強度を確保できるものであれば良い。変形検知センサ175の検出信号は、後述する制御部50に入力される。制御部50は変形検知センサ175の検知信号に基づき、レンズの周縁加工中に加工具62とレンズLEとの間に発生する荷重(加工圧)を得る。
【0028】
なお、上記のY方向移動ユニット100Cでは、キャリッジ101がレンズチャック軸102R,102Lを保持し、加工具回転軸61側に移動される構成としたが、これに限られない。キャリッジ101が加工具回転軸61を保持し、キャリッジ101がレンズチャック軸102R,102L側に移動される構成でも良い。
【0029】
<レンズ形状測定ユニット>
図1において、キャリッジ101の上方であって、キャリッジ101を介してレンズ加工具168と反対方向の位置には、レンズの前屈折面形状及び後屈折面形状を測定するためのレンズ形状測定ユニット200が設けられている。レンズ形状測定ユニット200は、測定子260として、レンズLEの前面に接触させる測定子260aと、レンズLEの後面に接触させる測定子260bと、を備える。測定子260a、260bの先端はレンズチャック軸102R,102LのY方向の移動軌跡上に位置されるように配置されている。測定子260a、260bは、X方向に移動可能にアーム262によって保持されている。レンズ形状測定ユニット200は、アーム262を介して測定子260a、260bのX方向の移動位置を検知するセンサ257(
図5参照)を有する。
【0030】
レンズ形状の測定時には、レンズチャック軸102R,102Lの回転によってレンズLEが回転され、玉型に基づいてレンズチャック軸102R,102LのY方向の移動が制御されることにより、玉型に対応したレンズ前面及び後面のX方向の位置がセンサ257によって検知される。なお、本装置では、レンズチャック軸102R,102LのX方向の移動制御も利用してレンズ前面及び後面の形状測定が行われる。
【0031】
<加工具回転ユニット>
ベース部170上において、キャリッジ101を挟んでレンズ形状測定ユニット200の対向する側(反対側)には、加工具回転ユニット60Aが配置されている。加工具回転ユニット60Aは、加工具回転軸61aを回転するためのモータ60を有する。加工具回転軸61aにはレンズLEの周縁を加工するための加工具62が取付けられている。加工具62は、ガラス用粗砥石63、レンズにヤゲンを形成するV溝(ヤゲン溝)及び平坦加工面を持つ仕上げ用砥石64、平鏡面仕上げ用砥石65、プラスチック用粗砥石66などから構成されている。キャリッジ101が持つレンズチャック軸102L,102Rに挟持されたレンズLEは加工具62に押し付けられ、加工具62によってレンズLEの周縁が加工される。
【0032】
なお、ベース部170上において、キャリッジ101を挟んで加工具回転ユニット60Aに対向する側(反対側)には、加工具の一つである第2のレンズ加工具ユニット400が設置されている。レンズ加工具ユニット400は、加工具回転軸400aに取り付けられた面取り用砥石431、溝堀り用砥石432等を備える。加工具回転軸400aは、モータ421によって回転される。レンズチャック軸102L,102Rに挟持された被加工レンズLEは、レンズ加工具ユニット400の加工具431、432によってその周縁加工がされる。
【0033】
<電気的構成>
図5は、眼鏡レンズ加工装置の電気的構成を説明するブロック図である。制御部50には、スイッチ部7、メモリ51、キャリッジ部100が持つ電気的構成要素(モータ、センサなど)、レンズ形状測定ユニット200、タッチパネル式の表示手段及び入力手段としてのディスプレイ5等が接続される。制御部50はディスプレイ5が持つタッチパネル機能により入力信号を受け、ディスプレイ5の図形及び情報の表示を制御する。また、ここでは、眼鏡レンズ周縁加工装置に眼鏡枠形状測定部2(特開平4−93164号公報等に記載したものを使用できる)が接続されている。眼鏡枠形状測定部2で取得された玉型データは、スイッチ部7のスイッチ操作により入力される。
【0034】
<制御動作>
次に、以上のような構成を持つ眼鏡レンズ加工装置において、レンズ加工時のY方向制御動作を中心に説明する。
【0035】
眼鏡枠形状測定部2によって眼鏡フレームのリムの形状が測定される。測定されたリム形状の玉型データは、スイッチ部7の所定のスイッチが操作者によって操作されることにより入力され、メモリ51に記憶される。玉型データが入力されると、ディスプレイ5に玉型の図形が表示される。操作者は、ディスプレイ5に設けられた所定のスイッチ操作で、装用者の瞳孔間距離(PD値)、眼鏡枠の枠中心間距離(FPD値)、玉型の幾何中心に対する光学中心の高さ等のレイアウトデータを入力することができる。また、作業者は、玉型に対するレンズLEのチャック中心(加工中心)の位置(玉型の幾何中心とするか、レンズLEの光学中心とるか、等)をディスプレイ5のスイッチ操作で指定することができる。これにより、入力された玉型データはチャック中心を基準とした玉型データ(動径長rn、動径角θn)(n=1、2、…、N)に変換される。
【0036】
また、ディスプレイ5にはレンズの材質(プラスチック、ポリカーボネイト、ガラス等)を入力するためのスイッチ、フレームの種類(メタル、セル等)を入力するためのスイッチと、加工モード(ヤゲン加工、平加工、鏡面加工、溝掘り加工)等の加工条件を入力するスイッチが設けられている。
【0037】
加工に必要なデータ入力が完了したら、作業者は、レンズチャック軸102L、102RにレンズLEを保持させる。スイッチ部7のスタートスイッチが押されると、加工に関連する一連の動作が開始される。初めに、レンズLEの屈折面形状の測定が実行される。
【0038】
制御部50は、レンズ形状測定ユニット200を駆動し、玉型に対応するレンズLEの前面及び後面の形状データを得る。レンズLEの前面及び後面の形状データが得られることにより、玉型に対応するレンズ厚(コバ厚)が得られる。
【0039】
レンズ形状測定が完了すると、粗加工段階に移行される。例えば、レンズの材質としてプラスチックが入力されると、粗加工段階では粗加工具(粗砥石66)が適用される。制御部50は、X方向移動ユニット100Bのモータ145の駆動を制御し、粗砥石66上にレンズLEが位置するようにレンズチャック軸102R,102LをX方向に移動する。続いて、制御部50は、モータ120を駆動してレンズLEを回転すると共に玉型データ(動径長rn、動径角θn)(n=1、2、…、N)に基づいてY方向移動ユニット100C(モータ150)の駆動を制御し、レンズLEの回転角毎に軸間距離を変えながら粗砥石66にレンズLEを押し当てつつ、レンズLEの周縁を粗加工させる。この周縁加工時、制御部50は変形検知センサ175の検知結果に基づいてレンズと加工具との間に掛かる加工圧(荷重)を求め、求めた加工圧が所定の設定値を超えないようにモータ150の駆動を制御する。以下、Y方向移動ユニット100Cの制御を具体的に説明する。
【0040】
キャリッジ101は、バネ159の付勢力によって加工具62側に引っ張られている。バネ159の付勢力(圧力)をPAとする。付勢力PAは、既知であり、メモリ51に記憶されている。モータ150の駆動により連結ブロック170が加工具62側に移動され、これによりキャリッジ101と共にレンズLEが加工具62側に移動される。このとき、連結ブロック170の変形は変形検知センサ175によって検知され、変形検知センサ175の検知信号によって連結ブロック170に掛っている圧力が得られる。連結ブロック170に掛っている圧力を測定圧PBとする。レンズLEが加工具62に接触していない状態では、連結ブロック170に掛っている測定圧PBは付勢力PAとなる(PB=PA)。
【0041】
キャリッジ101が加工具62側に移動され、レンズLEが加工具62(粗加工の場合は粗砥石66)に押し付けられると、レンズLEと加工具62との間に掛かる加工圧PCが発生する。このとき、変形検知センサ175によって得られる測定圧PBは、
PB=PA−
PC
となるため、加工圧PCが演算により求められる(PC=PA−PB)。これにより、レンズ加工中の加工圧を知ることができ、レンズLEを適切に加工できる。キャリッジ101はレンズチャック軸102L、102Rと加工具回転軸61aとの軸間距離が小さくなる方向及び大きくなる方向の両方に移動されるが、この両方向におけるレンズ加工中の加工圧を、変形検知センサ175の検知結果に基づいて正確に知ることができる。
【0042】
レンズの加工中、制御部50は、加工圧PCが予め設定された設定値PSを超えないようにモータ150の駆動を制御する。例えば、制御部50は、加工圧PCが設定値PSに達した場合には、軸間距離を広げるようにモータ150を駆動する。これにより、加工時にレンズLEに掛かる加工圧が過剰となるの防止し、レンズLEの軸ずれ(レンズチャック軸の回転角に対してレンズLEの回転角がずれる現象)の発生を抑え、レンズLEを適切に加工ができる。
【0043】
なお、粗加工時の軸間距離の制御データ(加工データ)は、玉型の動径長rnに所定の仕上げ代分を加えた加工軌跡に基づいて求められる。また、レンズ加工中の軸間距離は、制御部50がモータ(パルスモータ)150に指令するパルス数によって制御できる。そして、制御部50は、レンズLEの周縁が目標形状である加工軌跡まで加工された否か(すなわち、軸間距離がレンズの目標形状に対応する距離に達したか否か)の加工終了を、変形検知センサ175の検知結果に基づいて判定する。この加工終了判定は、例えば、加工圧PCが予め設定された加工終了基準値PE以下で有るか否かに基づいて行われる。また、制御部50は、この加工終了判定をレンズLEの回転角毎に行う。レンズLEの全周の回転角で加工圧PCが加工終了基準値PE以下であれば、全周の粗加工が終了したことになる。
【0044】
粗加工段階が終了すると、仕上げ加工段階に移行される。制御部50は、X方向移動ユニット100Bの駆動を制御し、仕上げ加工具である仕上げ用砥石64上にレンズLEを位置させた後、レンズLEを回転すると共に玉型データに基づいてY方向移動ユニット100C(モータ150)の駆動を制御し、レンズLEの回転角毎に軸間距離を変えながら仕上げ砥石64にレンズLEを押し当てつつ、レンズLEの周縁を仕上げ加工させる。この仕上げ段階においても、変形検知センサ175の検知結果に基づいて得られる加工圧PCが予め設定された設定値PSを超えないようにモータ150の駆動を制御する。また、制御部50は、加工圧PCが予め設定された加工終了基準値PE以下で有るか否かに基づいて加工終了を判定する。また、制御部50は、変形検知センサ175の検知結果に基づいてレンズLEの回転角毎に加工終了を判定し、レンズLEの全周の回転角で加工圧PCが加工終了基準値PE以下であれば、全周の仕上げ加工が終了したと判定する。
【0045】
なお、上記説明における設定値PS及び加工終了基準値PEは、加工段階(粗加工段階、仕上げ加工段階、等)に応じて異なる値に設定されていても良い。PS及びPEは、各加工段階の実験によって適切な値に定めることができる。また、設定値PS及び加工終了基準値PEは、入力手段としてのディスプレイ5によって入力されたレンズ材質に応じて異なる値に設定されていても良い。例えば、レンズ材質がプラスチックの場合に対してガラスの場合には、設定値PS、加工終了基準値PEは高く設定される。
【0046】
以上のように変形検知センサ175の検知結果に基づいてレンズLEの加工中の加工圧PCを得ることができるので、この加工圧に基づいてレンズLEを精度良く、また、適切に加工できる。