(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0017】
以下、本技術に係る実施形態を、図面を参照しながら説明する。
【0018】
[光源装置]
図1は、本技術の一実施形態に係る光源装置100の構成例を示す斜視図である。
図2は、
図1に示す光源装置100の前方部材14を取り外した状態の図である。
図3は、
図2に示す光源装置100の、後方部材13及び蓋部材12を取り外した状態の図である。
図3では、
図1及び
図2に示すヒートシンク90の図が省略されている。
【0019】
光源装置100は、青色波長域のレーザ光、及び、そのレーザ光によって励起される蛍光物質から生じる赤色波長域から緑色波長域の光を合成して白色光を出射するタイプの、プロジェクタ用の光源装置である。この白色光は、本実施形態において合成光に相当する。
【0020】
図1に示すように、光源装置100は、底部に設けられたベース部1と、ベース部1に支持される外枠部2とを有する。これらベース部1及び外枠部2により、本実施形態に係る筐体部3が構成される。筐体部3は、1以上の固体光源を有する光源部30と、光源部30の光を受けて白色光を生成して出射する蛍光体ユニット40とを保持する。
図3に示すように、筐体部3内の空間部4にて、光源部30からの出射光Lが蛍光体ユニット40に照射される。
【0021】
ベース部1は、平面形状でなり、また一方向に延びる細長い形状を有する。ベース1の細長く延びる長手方向が光源装置100の左右方向となり、長手方向に直交する短手方向が前後方向となる。従って短手方向で対向する2つの長手部分の一方が前方側5となり、他方が後方側6となる。ベース部1の前方側5の部分が第1の縁部7となり、後方側6の部分が第2の縁部8となる。これらは、前後方向で互いに対向する。
【0022】
長手方向及び短手方向の両方に直交する方向が、光源装置100の高さ方向となる。
図1に示す例では、x軸、y軸及びz軸方向が、それぞれ左右方向、前後方向及び高さ方向となる。またxy面方向が、ベース部1の平面方向に相当する。
【0023】
外枠部2は、ベース部1の平面方向に垂直な高さ方向に延在する側壁部9と、側壁部9を覆う蓋部10とを有する。本実施形態では、2つの側壁部材11と、蓋部材12と、後方部材13と、前方部材14とで、側壁部9及び蓋部10からなる筐体部3が構成される。
図3に示すように、ベース部1に2つの側壁部材11が装着される。側壁部材11は、ベース部1の周縁部に形成された壁部15の内側に嵌め込められるようにして装着される。
【0024】
2つの側壁部材11の上部には、蓋部材12が装着される。
図2に示すように、蓋部材12は、右カバー部16と、中央部17と、左カバー部18とを有する。右カバー部16及び左カバー部18は、2つの側壁部材11をそれぞれ覆う部分となり、左右に対称の形状となっている。この形状は、ベース部1の周縁部の形状と略等しい形状である。中央部17は、左右のカバー部16及び18を連結する部分である。中央部17は、凹部となっており、その前方側に開口19を有する。この開口19は、ベース部1の第1の縁部7に保持される蛍光体ユニット40の略上方に位置する。
【0025】
左右のカバー部16及び18の周縁部には、高さ方向に沿って下方に向けて延在する折り曲げ部20が形成されている。折り曲げ部20は、左右カバー部16及び18の周縁部の略全体にわたって形成されている。この折り曲げ部20が、側壁部材11の外側で重なるようにして、蓋部材12が装着される。従って、2つの側壁部材11と、蓋部材12とは、隣接する2つの部分に互いの部材が重なるオーバーラップ部21が形成されるように配置される。オーバーラップ部21とは、一方の部材の一部分と、隣接する部材の一部分とが、重なって配置される部分のことである。ここでは、側壁部材11の上方部分と、蓋部材12の折り曲げ部20とにより、オーバーラップ部21が形成されている。
【0026】
図2に示すように、蓋部材12の中央部17の後方側と、オーバーラップ部21を形成するように、後方部材13が装着される。後方部材13は、ベース部1の第2の縁部9に配置される、2つの光源部30の間を覆うように配置される。後方部材13は、蓋部材12の中央部17に形成された開口19の後方側の部分と重なるようにして配置される。
【0027】
図1に示すように、最後に前方部材14が装着される。前方部材14は、前面部22と上面部23とを有しており、ベース部1の第1の縁部7側の上方に装着される。前方部材14は、前面部22が、第1の縁部7に配置される蛍光体ユニット40を上方から挟み込むようにして配置される。この際に前方部材14の上面部23は、蓋部材12の中央部17の全体を覆うように配置される。従って、後方部材13の中央部17に重なる部分も、前方部材14の上面部23により覆われることになる。2つの側壁部11と前面部22とによりオーバーラップ部21が形成される。また上面部23と、中央部17及び後方部材15とにより、オーバーラップ部21が形成される。
【0028】
このように本実施形態では、2つの側壁部材11、蓋部材12、後方部材13、及び前方部材14からなる複数の枠部材により、外枠部2が構成される。これら複数の枠部材は、隣接する部分にオーパーラップ部21が形成されるように組み立てられる。この結果、光源部30から蛍光体ユニット40に向かう出射光やその反射光が、外枠部2の外側に漏れてしまうことを十分に抑えることが可能となる。すなわち外枠部2による光の遮断効果を向上させることが可能となる。また外枠部2を一体的に形成する場合と比べると、例えば各枠部材を安価な板金等を加工することで準備することも可能となり、安価にまた簡単に外枠部2を組み立てることが可能となる。
【0029】
オーバーラップ部21の形状や大きさ等は限定されない。少なくとも隣接する部材が重なるように配置されればよい。隣接する部分の全体においてオーバーラップ部21が形成されると、光の遮断効果は高く維持されるが、設計上の制約等により、部分的に重ならない部分が生じてもよい。また筐体部3内の光源部30や蛍光体ユニット40の位置や、出射光の光路の位置によって、光が漏れる可能性が高い部分では、オーバーラップ部21を大きくして、遮光性を向上させるといった設計も可能である。
【0030】
例えば隣接する部材が重なり合うように配置され、それらの部材同士が当接されず、間に空間が形成されてもよい。この場合でも重なる領域の大きさを十分にとれば光の漏れを抑えることが可能となる。部材間の空間を後に説明する冷却風の流路として利用することも可能である。このように当接しないように重ねられて配置された部材同士によっても、オーバーラップ部21は形成される。
【0031】
また外枠部2を複数の枠部材で構成させることで、後に説明する冷却構造の実現が容易となる。
【0032】
複数の枠部材は、ベース部1を基準として順番に装着される。そして蓋部10を構成する蓋部材12及び前方部材14が固定された状態では、解体されないように組み立てられる。従って、蓋部材12及び前方部材14が固定された状態で、例えば側壁部材11等の途中の部材を取り外することは不可能な構成となっている。これにより容易に分解することがない筐体部3を実現することが可能となり、人体等へのレーザ光の照射等を防止可能な安全性の高い光源装置100を実現することが可能となる。またネジやビス等の締結部材やその他の固定部材を、前方部材14及び蓋部材12の固定にのみに用いて、他の部材の固定には不要とする構成を実現させることが可能である。この結果、必要な固定部材の点数を少なくすることができ、部品コストを抑えることが可能となる。
【0033】
図1に示す、前方部材14及び蓋部材12を固定するための固体部材V1には、特殊ネジが用いられる。特殊ネジとは、専用な解除部材により固定が解除可能な固定部材を意味する。例えばネジの頭頂部に特殊な形状の孔が形成されているものが用いらえる。特殊な形状としては、例えば八角形や七角形等の多めの数の多角形状や、星形の形状であって先がとがっているが根元の部分は丸みをおびている形状等が挙げられる。このような固定部材では、孔の形状に対応した専用の解除部材が必要となる。孔の形状は限定されず、また頭頂部の孔の形状が特殊なものにも限定されず、ドライバーやレンチ等の一般的に用いられる解除部材では解除されない、特殊な構造を有する固定部材が用いられればよい。
【0034】
図2に示すように、後方部材13は、蓋部材12の中央部17に固定部材V2により固定されている。この固定部材V2に特殊ネジが用いられてもよい。一方で、この部分は前方部材14により覆われて直接アクセスすることが不可能な部分であるので、ここでは一般的なネジ等の固定部材が用いられてもよい。すなわち少なくとも直接的にアクセス可能であり、筐体部3を開閉可能な位置に取り付けられる固定部材に、特殊ネジ等の特殊な固定部材が用いられればよい。これにより筐体部3が容易に分解されることを十分に防止することが可能となる。
【0035】
図3に示すように、ベース部1の第2の縁部8には、長手方向に並ぶように2つの光源部30が配置される。光源部30は、1以上の固定光源として、青色レーザ光B1を出射可能な複数のレーザ光源31を有する(
図4参照)。複数のレーザ光源31は、前後方向を光軸方向として、その方向に沿って第1の縁部7側に向けて青色レーザ光B1が出射されるように、第2の縁部8に配置される。
【0036】
2つの光源部30の前方には、それぞれ集光光学系が配置される。集光光学系は、複数のレーザ光源31からの青色レーザ光B1を蛍光体ユニット40の所定のポイントに集光させる。
図3では、光源部30の前方には支持部32が図示されている。支持部32は、光源部30と集光光学系とを1つのユニットとして支持する部材である。この支持部32により、光源部30と集光光学系とを有する集光ユニット33が構成される。
【0037】
この集光ユニット33により集光された青色レーザ光B1を励起光として、蛍光体ユニット40から白色光が光軸Aに沿って出射される。白色光の光軸Aの方向は、複数のレーザ光源31からの青色レーザ光B1の光軸方向と同じ方向に設定されている。すなわち蛍光体ユニット40は、青色レーザ光B1の光軸方向と同じ方向で白色光が出射されるように、第1の縁部7に配置されている。
【0038】
図4は、
図3に示す光源装置100を上方から見た平面図である。
図4では、支持部32の図示が省略されている。
図5は、光源装置100による光の出射を説明するための概略的な構成図である。
【0039】
集光ユニット33は、複数のレーザ光源31を含む光源部30と、複数のレーザ光源31からの出射光である青色レーザ光B1を所定のポイントPに集光する集光光学系34と、光源部30及び集光光学系34を1つのユニットとして支持する支持部32とを有する。
【0040】
複数のレーザ光源31は、例えば、400nm−500nmの波長範囲内に発光強度のピーク波長を有する青色レーザ光B1を発振可能な青色レーザ光源である。複数のレーザ光源31は、所定波長域の光を出射光として出射可能な1以上の固体光源に相当する。固体光源として、LED等の他の光源が用いられてもよい。また所定波長域の光も、青色レーザ光B1に限定されない。
【0041】
集光光学系34は、複数のレーザ光源31から出射された青色レーザ光B1を、蛍光体ユニット40の後方側から蛍光体41上に集光する。本実施形態の集光光学系34は、非球面反射面35と、平面反射部36とを有する。非球面反射面35は、複数のレーザ光源31からの出射光を反射して集光する。
【0042】
平面反射部36は、非球面反射面35により反射された複数のレーザ光源31からの光を蛍光体41へ反射する。平面反射部36は、複数のレーザ光源31からの光を反射する反射面として平面反射面37を有し、この平面反射面37を用いて光を蛍光体41へ反射する。これにより複数のレーザ光源31からの青色レーザ光B1が、蛍光体ユニット40が有する蛍光体41上の所定のポイントPに集光される。
【0043】
上記した支持部32は、光源部30、非球面反射面35、及び平面反射部36を1つのユニットとして支持することになる。
【0044】
[蛍光体ユニット]
図6は、本実施形態に係る蛍光体ユニット40の構成例を示す斜視図である。
図7は、蛍光体ユニット40の分解斜視図である。上記した
図5と、これら
図6及び
図7を参照して、本実施形態の蛍光体ユニット40について説明する。なお蛍光体ユニット40は、本実施形態において、光学ユニットに相当する。
【0045】
蛍光体ユニット40は、ホイール部701と、レンズ部702と、ホイール部701及びレンズ部702を1つのユニットとして支持すホルダー部703とを有する。ホイール部701は、蛍光体ホイール42と、蛍光体ホイール42を回転させるモータ45とを有する。
図5に示すように、蛍光体ホイール42は、青色レーザ光B1を透過させる円盤形状の基板43を有し、その基板43の配置面44上に蛍光体層41が設けられる。モータ45は、基板43の中心に接続され、その回転軸46が基板43の中心を通る法線に合わせられる。従って蛍光体ホイール42は、モータ45の回転軸46を中心として回転可能となる。
【0046】
図5に示すように、蛍光体ホイール42は、基板43の2つの主面のうち、蛍光体層41が設けられていない側の主面47を集光ユニット33側に向けるようにして配置されている。また、蛍光体ホイール42は、集光ユニット33により集光される青色レーザ光B1の焦点位置が蛍光体層41上の所定のポイントに一致するように配置されている。
【0047】
蛍光体層41は、複数のレーザ光源31からの光に励起されてその光の波長よりも長波長域の可視光を発する発光体に相当する。本実施形態では、蛍光体層41は、約445nmの中心波長を持つ青色レーザ光B1によって励起されて蛍光を発する蛍光物質を含んでいる。そして蛍光体層41は、複数のレーザ光源31が出射する青色レーザ光B1の一部を、赤色波長域から緑色波長域までを含む波長域の光(すなわち黄色光)に変換して出射する。
【0048】
蛍光体層41に含まれる蛍光物質としては、例えばYAG(イットリウム・アルミニウム・ガーネット)系蛍光体が用いられる。なお、蛍光物質の種類、励起される光の波長域、及び励起により発生される可視光の波長域は限定されない。
【0049】
また、蛍光体層41は、励起光の一部を吸収する一方、励起光の一部を透過させることにより、複数のレーザ光源31から出射された青色レーザ光B1も出射することができる。これにより、蛍光体層41から出射される光は、青色の励起光と黄色の蛍光との混色による白色光となる。このように励起光の一部を透過させるため、蛍光体層41は、例えば光透過性を有する粒子状の物質であるフィラー粒子を含んでいてもよい。
【0050】
モータ45によって基板43が回転することにより、レーザ光源31は、蛍光体層41上の照射位置を相対的に移動させながら、蛍光体層41に励起光を照射する。これにより蛍光体ユニット40により、蛍光体層41を透過した青色レーザ光B2と、蛍光体層41からの可視光である緑色光G2及び赤色光R2を含む白色光が合成光として出射される。蛍光体ホイール42が回転することで、蛍光体層41上の同一の位置に長時間励起光が照射されることによる劣化を避けることができる。
【0051】
レンズ部702は、ホイール部701より出射された白色光を集光する1以上のレンズ704と、集光された白色光を出射する出射面705とを有する。
図1−
図3に示すように、1以上のレンズ704は、出射面705を構成する出射レンズ706を有する。また出射レンズ706の後方側に複数のレンズが配置されてもよい。例えば蛍光体ホイール42の前方側に、蛍光体ホイール42から出射された白色光を集光して出射レンズ706に導く他のレンズが配置される。1以上のレンズ704として配置されるレンズの数や、大きさ、レンズの種類等は限定されない。
【0052】
図3や
図6に示すように、本実施形態では、1以上のレンズ704の中心を通る中心線Mが、出射レンズ706から出射される白色光の光軸Aと一致する。換言すれば、白色光は中心線Mの延在方向を光軸方向として、出射レンズ706から出射される。なおこの中心線Mと光軸Aとの関係は、典型的な例であり、必ずしもこれに限定されるわけではない。
【0053】
ホルダー部703は、出射面706側を前方側(前方側5と一致)として1以上のレンズ704を保持するレンズ保持部707と、レンズ保持部707の後方側(後方側6と一致)でレンズ保持部707と連結して形成された、ホイール部701を保持するホイール保持部708とを有する。
図1や
図6に示すように、レンズ保持部707は、出射レンズ706が取り付けらえる円形状の開口709を有する前面部710と、出射レンズ706を含む1以上のレンズ702を内部に収納する収納部711を有する。収納部711は、前面部710の開口709と略等しい断面形状を有し後方側に延在する円筒状でなり、前面部710の背面712に連結して形成されている。また前面部710の背面712には、ベース部1との接続に用いられる接続部713が形成される。接続部713は、背面712の高さ方向(z軸方向)における略中央の位置であって、収納部711と隣接する位置に形成されている。また収納部711の下方には、ベース部1に嵌め込まれる突起部714が形成される。
【0054】
ホイール保持部708は、収納部711の背面715に、これと連結するように設けられる。本実施形態では、
図7に示すように、ホイール保持部708は、背面715の上部側に連結された基体部716と、基体部716から鉛直方向に延在するアーム部717とを有する。またホイール保持部708は、アーム部717の先端に形成された、モータ45を保持するモータ保持部718を有する。基体部716、アーム部717、及びモータ保持部718は、これらを後方側から見た場合に、収納部711の背面715の中心(中心線Mが通る位置)を鉛直方向(z軸方向)に延びる線に対して、左右に対称となる形状を有している。すなわち中心を通る鉛直方向の線に、それぞれの部材の中心が合わせられるようにして、基体部716、アーム部717、及びモータ保持部718は形成されている。
【0055】
アーム部717は、収納部711の背面715と所定の間隔719をあけて設けられる。モータ保持部718は、アーム部717の先端から後方側に突出して形成される。モータ保持部718の背面側となる取付面720には、2つの突起部721、及び3つの取付孔722が、左右に対称となるように形成されている。
図7に示すように、取付面720には例えば板金等からなる固定部723が取り付けられる。固定部723の上部側には、2つの位置決め孔724、及び3つの貫通孔725が形成されている。2つの位置決め孔724に、取付面720の2つの突起部721が挿入される。3つの貫通孔725は、取付面720の取付孔722の位置に重なるように配置され、そこに図示しないビス等の固定部材が挿入される。これにより取付面720に固定部723が取り付けられる。
【0056】
固定部723の略中央から下部側には、モータ45の背面側に形成された中心部726が挿入される挿入孔727が形成されている。モータの中心部726が挿入孔727に挿入された状態で、ビス等の固定部材728が、固定部723に形成された貫通孔729を介して、モータの背面側に形成された取付孔730に挿入される。これによりモータ45が固定部723に固定される。本実施形態では、3つの固定部材728により、モータ45が固定部723に固定されている。
【0057】
モータ45の前面側には、蛍光体ホイール42が回転可能に取り付けられる。蛍光体ホイール42は、モータ45の回転軸46が蛍光体ホイール42の中心を通るように取り付けられる。この際、蛍光体ホイール42は、収納部711の背面715とアーム部717との間に形成された間隔719に挿入される。従って蛍光体ホイール42が保持された状態では、アーム部717は、収納部711との間で蛍光体ホイール42を挟み込むように形成されていることになる。
【0058】
図6に示すように、ホイール保持部708の背面731の略中央には、開口732が形成されている。開口732は、白色光の光軸Aが開口732内を通る位置に形成される。蛍光体ホイール42が装着された状態では、蛍光体層41の所定のポイントPは光軸A上に配置される。従って、蛍光体ホイール42が装着された状態では、所定のポイントPは開口732内に配置されることになる。集光光学系34により集光された青色レーザ光B1は、ホイール保持部708の開口732を介して、所定のポイントPに集光される。
図7に示すように、収納部711の背面715の略中央にも開口733が形成されており、この開口733を介して、蛍光体ホイール42からレンズ部702へ白色光が出射される。
【0059】
図8は、蛍光体ユニット40がベース部1に装着された状態を示す図である。レンズ保持部707に形成された接続部713と、ベース部1の第1の縁部7に形成された保持部734とが、ビス等の固定部材735を介して接続される。この際、収納部711の下方の突起部714が、ベース部1の凹部に嵌め込められる。これにより蛍光体ユニット40がベース部1に固定される。
【0060】
このように本実施形態に係る蛍光体ユニット40では、蛍光体ホイール42、及びモータ45を有するホイール部701と、1以上のレンズ704、及び出射面705を有するレンズ部702とが、1つのユニットとして支持される。そしてこのユニット化された蛍光体ユニット40がベース部1に固定される。これにより、集光のためのレンズと、発光体を有するホイールとの位置合わせを、簡単に高い精度で実現することが可能となる。
【0061】
例えば
図8に示すベース部1に、レンズ部702に相当するレンズアセンブリと、ホイール部701に相当するホイールアセンブリとがそれぞれ個別に固定されるとする。この場合、レンズアセンブリのレンズと、ホイールアセンブリの蛍光体ホイールとの位置合わせを高い精度で実現させることが難しくなる。レンズアセンブリとホイールアセンブリとが高い精度で位置合わせされるためには、これらが取り付けられるベース部1を非常に高い精度で構成させる必要がある。すなわちレンズアセンブリが取り付けられる部分、及びホイールアセンブリが取り付けられる部分の構成や互いの位置関係が高い精度で実現されなければならない。ベース部1には光源部30や集光ユニット33等の他の部品も取り付けられるため、その取り付け部分の精度も求められる。従ってレンズアセンブリ及びホイールアセンブリが個別に固定される場合、精度が必要な個所が多くなり、ベース部1としての部品の難易度が高くなってしまう。そうするとベース部1の寸法を安定させるための難易度も高くなってしまい、高精度な位置合わせが難しくなってしまう。またレンズアセンブリと、ホイールアセンブリとが個別に取り付けられる場合、取り付け自体が煩雑となってしまい、光源装置全体としての組み立て性も悪くなってしまう。
【0062】
本実施形態では、ホルダー部703により、レンズ部702とホイール部701とが1つのユニットとして構成される。すなわちレンズ部702とホイール部701とがユニット化(アセンブリ化)される。そしてその蛍光体ユニット40がベース部に装着される。これにより蛍光体ユニット40内にて、レンズ位置と蛍光体ホイール位置とを精度よく簡潔に定めることが可能となる。また互いの位置関係を精度よく調整することも容易となる。蛍光体ユニット40内にて、レンズ部702及びホイール部701の2つの部品のみの位置精度を出せばよいので、寸法安定性を向上させることも可能となり、また特性の安定化を図ることも可能となる。またレンズアセンブリとホイールアセンブリとが個別に固定される場合に比べて、部品コストも抑えることが可能となる。例えばベース部1の構成の難易度が抑えられるので、ベース部1にかかるコストを抑えることが可能となる。またユニット化により、蛍光体ユニット40自体のコストも抑えることができる。
【0063】
また蛍光体ユニット40の構成を簡単なものにすることができる。例えば本実施形態では、
図6等に示すように、ホイール保持部708により、モータ45の回転軸46が光軸Aの方向と同じ方向に延在するように、ホイール部701が保持される。またホイール保持部708により、モータ45の回転軸46が、1以上のレンズ704の中心を通る中心線Mの鉛直方向における下方に位置するように、ホイール部701が保持される。例えばこのような構成を採用することにより、蛍光体ユニット40を簡単な構成で実現することが可能となる。また蛍光体ホイール42をレンズ部702に近接して配置することも容易となり、蛍光体層41から白色光をレンズ部702に効率よく導くことが可能となる。さらに蛍光体ユニット40の小型化を図ることも可能となる。
【0064】
蛍光体ユニット40の小型化が実現すると、光源装置100の筐体部3内の空間部4における、蛍光体ユニット40が占める割合を小さくすることが可能となる。これにより、青色レーザ光B1を蛍光体層41の所定のポイントPに集光させるための集光光学系34や、蛍光体ユニット40等を冷却するための冷却構造を実現させるための空間を十分に確保することが可能となる。すなわち光路設計の制約が少ない状態で集光光学系34を構成させることが可能となり、集光光学系34の小型化を図ることも可能となる。また蛍光体ホイール42やモータ45を冷却するための冷却風の流路を確保することも可能となる。この結果、以下に説明するような、有利な効果を有する集光光学系34や冷却構造等を光源装置100内にて実現させることも容易となる。
【0065】
また
図6に示すように、本実施形態では、収納部711とアーム部717とにより、蛍光体ホイール42がその両面から挟み込まれる。これにより蛍光体ホイール42の取付の安定性を向上させることが可能となり、レンズ部702との位置合わせを高精度に行うことが可能となる。またホイール部701からの白色光を効率よくレンズ部702に導くことが可能となる。さらに、アーム部717により上方側から挟み込まれるようにして蛍光体ホイール42の中心が保持される。従って光源装置100内において、蛍光体ホイール42の露出部分を多くとることが可能となる。この結果、蛍光体ホイール42で発生した熱を、冷却風等により効果的に冷却することが可能となる。
【0066】
またレンズ部702とホイール部701とを有する蛍光体ユニット40が、1つのブロックとして完結して構成されるので、仕様の異なるものに対して汎用的に使用することが可能となる。例えばモータ45、蛍光体ホイール42、及びレンズ45等の部品のうち所定の部品のみを変更することで、所望の特性を有する蛍光体ユニット40を簡単に構成させること等が可能となる。
【0067】
図9及び
図10は、集光ユニット33の構成例を示す斜視図である。
図10では、支持部32の図示が省略されている。
図11は、
図10に示す集光ユニット33を上方から見た平面図である。
【0068】
上記したように集光ユニット33は、光源部30、非球面反射面35、平面反射部36、及びこれらを1つのユニットとして支持する支持部32を有する。これらを1つのユニットとして一体的に支持可能であるのならば、支持部32の形状や大きさは限定されない。典型的には、青色レーザ光B1が外部に漏れないように、筐体状を有する支持部32が用いられる。これにより青色レーザ光B1の利用効率が向上する。
【0069】
図10に示すように、本実施形態では、光源部30として28個のレーザ光源31を有するレーザ光源アレイが用いられる。光源部30は、開口48が形成された板状のフレーム49を有し、フレーム49の裏面50(後方側6の面)に、複数のレーザ光源31が実装された実装基板51が配置される。複数のレーザ光源31は、フレーム49の開口48を介して、前方側5に向けて光軸Aの光軸方向と同じ方向に沿って青色レーザ光B1を出射する。レーザ光源31は、光源装置100の左右方向(x軸方向)に4つ、高さ方向(z軸方向)に7つ並ぶように配置される。
【0070】
フレーム49の前面52(前方側5の面)には、複数のレーザ光源31の位置に応じて28個のコリメータレンズ53が配置される。コリメータレンズ53は、回転対称非球面レンズであり、各レーザ光源31から出射される青色レーザ光B1を略平行光束にする。本実施形態では、直線状に並ぶ4つのコリメータレンズ53が一体的に形成されたレンズユニット54が用いられる。このレンズユニット54が高さ方向に沿って7つ配列される。レンズユニット54は、フレーム49に固定された保持部材55により保持される。なお図面上においてコリメータレンズ53をレーザ光源31として説明を行う場合がある。
【0071】
光源部30の構成は限定されず、例えばフレーム49が用いられなくてもよい。レーザ光源31の数や配列、コリメータレンズ53の構成等も限定されない。例えばレンズユニット54が用いられず、レーザ光源31ごとにコリメータレンズが配置されてもよい。あるいは複数のレーザ光源31からの光束が、1つのコリメータレンズによりまとめて略平行光束にされてもよい。なお、図面上では複数のレーザ光源31(コリメータレンズ53)から出射される青色レーザ光B1の一部の光束が図示されている。
【0072】
複数のレーザ光源31の前方側5には、非球面反射面35を有する反射部材56が配置される。反射部材56は、非球面反射面35が複数のレーザ光源31と対向するように配置される。非球面反射面35は、複数のレーザ光源31が配置される配置面52の平面方向(xz面方向)に対して斜めに配置される。これにより青色レーザ光B1は、平面反射部36に向けて反射される。反射部材56としては、例えば反射ミラーが用いられる。
【0073】
非球面反射面35は、典型的には鏡面状の凹面反射面であり、複数のレーザ光源31からの青色レーザ光B1を反射して集光可能なように形状が設計される。また非球面反射面35は、回転対称非球面であってもよいし、回転対称軸を有さない自由曲面であってもよい。複数のレーザ光源31の位置、光を反射する方向及び集光の位置、非球面反射面35に入射するレーザ光B1の光束の大きさや入射角度等をもとに、非球面反射面35の形状は適宜設定される。反射部材56の材料は限定されず、例えば金属材料やガラス等が用いられる。
【0074】
反射部材56の外形や大きさは、青色レーザ光B1の照射領域の大きさに合わせて適宜設定可能である。例えば略矩形状の反射部材56が用いられてもよいし、三角形状やその他多角形状の反射部材56等が用いられてもよい。これにより、複数のレーザ光源31らの光を集光するために集光レンズが用いられる場合よりも、反射部材56の外形を適宜調整して小さくすることが可能となる。この結果、集光光学系34をコンパクトにすることが可能となり、光源装置100の大型化を抑えることが可能となる。
【0075】
図11に示すように、反射部材56は支持部材57により支持される。
図9に示すように支持部材57は、支持部32にネジ留めにより固定される。これにより反射部材56は支持部32により支持される。
【0076】
図12は、支持部32に支持された平面反射部36を拡大した拡大図である。平面反射部36は、平面反射面37を有する平面反射部材60を含む。平面反射面37は、非球面反射面35により反射された青色レーザ光B1を蛍光体層41上の所定のポイントPへ反射する。平面反射面37は、典型的には鏡面である。平面反射部材60としては、例えば反射ミラーが用いられる。平面反射部材60の材料は限定されず、例えば金属材料やガラス等が用いられる。
【0077】
また平面反射部36は、平面反射部材60を保持する部材保持部61と、部材保持部61の下部を回転可能及び傾動可能に支持する支持フレーム62と、部材保持部61の上部側で部材保持部61及び支持フレーム62を連結する連結部63とを有する。
【0078】
図12に示すように、部材保持部61は板状でなり、一方の面のほぼ全体領域に凹部64が形成されている。その凹部64に板状の平面反射部材60が嵌め込まれる。部材保持部61は、高さ方向(z軸方向)に沿って立設される。凹部64が形成された面の法線方向、すなわち平面反射面37の法線方向は、z軸に直交する方向となる。
【0079】
部材保持部61の端部には、z軸方向に延在する軸部65が形成されている。軸部65は、部材保持部61と一体的に形成されており、例えば軸部65が回転すると部材保持部61も回転する。従って部材保持部61に保持された平面反射部材60も軸部65と一体的に動く。すなわち部材保持部61は、平面反射面37を軸部65と一体的に保持している。
【0080】
図12に示すように、軸部65は、部材保持部61の上下に直線状に並ぶようにそれぞれ形成される。部材保持部61の上下には取付部66が形成され、その取付部66に軸部65が形成される。上下に形成される取付部66同士、及び軸部65同士は互いに同様の形状を有する。
【0081】
2つの軸部65のうち一方の軸部65が支持フレーム62に形成された軸支持孔67に挿入される。他方の軸部65は、平面反射面37の角度を調整する際に操作される操作部68として用いられる。操作部68側の取付部66に連結部63が取り付けられる。例えば平面反射面37の配置位置や集光ユニット33の設計等をもとに、軸支持孔67に挿入される軸部65が適宜選択される。
【0082】
部材保持部61が形成される際には、その上下となる部分に同じ形状を有する軸部65がそれぞれ形成される。すなわち軸部65と操作部68とを区別することなく同じ形状で形成すればよいので、部材保持部61の製造コストを下げることができる。また軸支持孔67に挿入される軸部65を選択することが可能なので、部材保持部61の取付に関する自由度を向上させることができる。
【0083】
支持フレーム62は、下部支持部69と、上部支持部70と、これらを連結する連結フレーム71とを有する。下部支持部69及び上部支持部70は、z軸方向において、部材保持部61の下部及び上部と略等しい位置に、互いに対向するように配置される。連結フレーム71はz軸方向に沿って延在して、下部支持部69及び上部支持部70を連結する。
【0084】
下部支持部69には、部材保持部61の軸部65を支持する軸支持孔67が形成されている。軸支持孔67に軸部65が挿入されることで、部材保持部61が回転可能及び傾動可能に支持される。例えば軸支持孔67として、短軸方向と長軸方向を有する長円形状の孔が形成される。その長円形状の軸支持孔67に、短軸方向の大きさと略等しい直径を有する円形状の挿入軸が挿入される。挿入軸は、軸支持孔67に対して回転可能なように、かつ長軸方向にて傾動可能なように挿入される。例えばこのような構成により、軸部65(軸B)を回転軸とした回転駆動系と、軸支持孔67を基準とした軸Cを回転軸とした回転駆動系(傾動駆動系)の2軸駆動機構が実現される。これにより軸部65の回転方向及び傾動方向において平面反射面37の角度を調整することが可能となる。
【0085】
なお、軸部65を回転可能及び傾動可能に支持するための構成は、上記のものに限定されず任意の構成が採用されてよい。また下部支持部69を有する支持フレーム62や軸部65を有する部材保持部61の材質等も限定されず、例えば金属やプラスチック等が適宜用いられてよい。
【0086】
図12に示すように、支持フレーム62は、フレーム支持部74により支持される。フレーム支持部74は、平面反射部36等を1つのユニットとして支持する支持部32に含まれる。本実施形態では、支持フレーム62は、フレーム支持部74に対して、光源装置100の前後方向(y軸方向)において移動可能に支持される。支持フレーム62がy軸方向に移動すると、部材保持部61と支持フレーム62とが一体的に移動する。これにより平面反射面37の位置が調整される。
【0087】
支持フレーム62を移動可能とするための移動機構の構成は限定されない。例えば支持フレーム62をガイドするガイド部等が、フレーム支持部74の上下に形成される。また移動方向に弾性力を発揮するバネ部材等が適宜用いられて移動機構が構成されてもよい。その他、任意の構成が採用されてよい。移動機構により、軸Dを駆動軸とする直線駆動機構が実現される。
【0088】
平面反射面37の位置及び角度の調整は、ネジ77が仮留めの状態で行われる。操作部68が回転されることで、軸部65を中心とした平面反射面37の角度が調整される。これにより、左右方向での集光ポイントPの位置を調整することができる。また操作部68を前後方向に移動させて軸部65を傾動させることで、平面反射面37の傾きを調整することができる。これにより、高さ方向での集光ポイントPの位置を調整することができる。また支持フレーム62の前後方向における位置を調整することで、集光ポイントPのフォーカス位置を調整することができる。調整が終了すると、ネジ77が締められて連結部63及び上部支持部70がフレーム支持部74に固定される。
【0089】
本実施形態に係る光源装置100では、2つの集光ユニット33が、蛍光体層41を通る軸Aを対称にした2つの位置にそれぞれ配置されている。このような構成により、レーザ光源31の数が倍の56個となり、蛍光体層41から出射される白色光の高輝度化を図ることができる。
【0090】
例えば56個ものレーザ光源31からの光を集光レンズにて集光させようとすると、非常に大きなレンズが必要となる。しかしながら本実施形態では、非球面反射面35を用いた集光ユニット33が用いられるので、光源装置の大型化を抑えることができる。従って、装置の大型化を抑えながら、高輝度化を図ることが可能となる。
【0091】
なお2つの集光ユニット33からの青色レーザ光B1が、1つの集光ポイントPに集光されてもよい。一方、それぞれの集光ポイントが蛍光体層41上の異なる位置に設定されてもよい。これにより蛍光体層41の劣化を抑えることができる。
【0092】
本実施形態では、蛍光体ユニット40からの白色光Wの光軸方向と、複数のレーザ光源31からの青色レーザ光B1の出射方向とが同じ方向となるので、青色レーザ光B1の取り扱いが容易となる。例えば光源装置100の組み立て等や各部材の調整等を行う場合等において、青色レーザ光B1の進行方向を把握することが容易である。従って不意のレーザ光の照射等を防止する等の安全対策を容易に行うことが可能となる。
【0093】
また本実施形態では、蛍光体41への集光に非球面反射面35が用いられる。これにより光源装置100のコンパクト化が可能となる。例えば高輝度化のためにレーザ光源31の数が増加する場合でも、集光光学系34の大きさを抑えることができる。この結果、装置の大型化を抑えつつ高輝度化を達成することが可能となる。また非球面反射面35が用いられることで、必要な輝度や形状に応じた構造を容易に実現することも可能となる。
【0094】
また本実施形態では、非球面反射面35により反射された青色レーザ光B1を、蛍光体41へ向けて反射する平面反射部材60が用いられる。このような反射部材を設けることで、集光光学系34の設計に関する自由度を増加させることができる。この結果、光源装置100の小型化や所望の形状の実現等を図ることができる。
【0095】
また本実施形態では、支持部32により、複数のレーザ光源31及び集光光学系34が1つのユニットとして支持される。従ってユニット化された集光ユニット33を複数配置することも容易となる。すなわちマルチユニットに対応することが可能となる。集光ユニット33の形状等も柔軟に変更可能であるので、種々の構成を有する集光ユニット33を、適宜組み合わせて様々な仕様に対応することも可能である。
【0096】
[冷却構造]
次に、上記のような構成を有する光源装置100の蛍光体ユニット40を冷却するための冷却構造について説明する。本技術に係る冷却構造により、蛍光体ホイール42及びモータ45を効果的に冷却することが可能である。
【0097】
図13は、
図1に示す光源装置100のC−C線での断面図である。
図14は、光源装置100の筐体部3内の空間部4に蛍光体ユニット40を冷却するための冷却風を送出するための送出ユニット170の構成例を示す図である。
【0098】
図1及び
図13に示すように、筐体部3は、冷却風を吸入するための吸気口150と、冷却風Wを排気するための排気口151とを有する。吸気口150及び排気口151は、光源部30から蛍光体ユニット40までの青色レーザ光B1の光路と対向しないようにそれぞれ形成される。吸気口150及び排気口151は、例えば吸気口150及び排気口151から筐体部3の空間部4を見た場合に、光路を進む青色レーザ光B1が見えない位置に形成される。このことは、吸気口150及び排気口151の空間部4への開口方向が、光軸と対向しない状態であることを含む。また開口方向は光軸と対向する方向であるが、光軸との間に他の部材が存在することで、光軸と直接的には対向しない状態であることも含む。
【0099】
上記したように、蛍光体ユニット40は、蛍光体層41を支持する蛍光体ホイール42と、蛍光体ホイール42を回転させるモータ45と、白色光を集光する集光レンズ79を有する。
図13に示すように、吸気口150は、吸気口150から吸入された冷却風Wが、蛍光体ホイール42及びモータ45に送風される位置に形成される。これにより蛍光体ホイール42及びモータ45を効果的に冷却することが可能となる。この結果、蛍光体ホイール42及びモータ45の長期的な信頼性を確保することが可能となる。
【0100】
本実施形態では、ベース部1の第1の縁部7に蛍光体ユニット40が配置される。この蛍光体ユニット40に対向するように、ベース部1の第1の縁部7に吸気口150が形成される。
図13に示すように、吸気口150として、第1の縁部7の底面153及び前面154の部分に、蛍光体ホイール42と対向するように開口が形成される。この吸気口150から、蛍光体ホイール42の前方側から斜め上の方向にかけて冷却風Wが送出される。蛍光体ホイール42近傍では同ホイールの回転遠心力による空気の流れが生じるので、冷却風Wの流入はスムーズに行われる。
【0101】
排気口151は、筐体部3の蓋部10側に形成される。本実施形態では、ベース部1の第2の縁部8に、2つの光源部30が配置される。排気口151は、第2の縁部8側の蓋部10の近傍に形成される。排気口151は、2つの光源部30の間の位置であって、蓋部10の左右方向における略中央の位置に形成される。この位置は、
図3に示す光軸A上となり、吸気口150の後方側の位置となる(
図15参照)。
【0102】
排気口151が2つの光源部30の間に形成されることで、冷却風の排気がスムーズに行われる。また光源部30の後方側にあるヒートシンク90には、ファン等により風が送出される。このファンからの風の流れを利用して、冷却風を排気口からより効率的に引き出すための設計等も可能となる。
【0103】
図13に示すように、外枠部2を構成する後方部材13と前方部材14とが重なる領域(オーバーラップ部21)は、互いに部材の間に空間155が形成されている。このオーバーラップ部21の最も後方側の開口部分が、排気口151となっている。従って冷却風Wは、オーバーラップ部21内の空間155を通って排気口151から排気される。
【0104】
また冷却風Wの流路となる空間部4には、吸気口150から蛍光体ユニット40を通って排気口151へと進む冷却風の流路を屈曲させる屈曲部160が形成される。屈曲部160は、例えば冷却風Wの進路に屈曲部材161を適宜配置させることで形成される。このように吸気口150から排気口151までの冷却風Wの流路を屈曲させることで、青色レーザ光B1が吸気口150または排気口151から漏れてしまうことを十分に抑えることができる。換言すると、青色レーザ光B1が漏れない位置に吸気口150及び排気口151を形成する場合に、その間を進む冷却風Wを効率的に冷却対象物に送風させるため、屈曲部160を形成することは有効である。
【0105】
屈曲部160を形成するための屈曲部材161として、筐体部3の空間部4に配置される部材が用いられてもよい。すなわち集光ユニット33や蛍光体ユニット40の部材等が屈曲部材161として適宜用いられ、これらの配置位置が適宜設計されることで、屈曲部160が形成されてもよい。本実施形態では、集光ユニット33の平面反射部36により冷却風Wの流路が曲げられている。また外枠部2を構成する後方部材13や前方部材14等により冷却風Wの流路が曲げられている。すなわちこれらの部材が屈曲部材161として利用されている。これにより部品点数を少なくすることが可能となり、また簡単に屈曲部160を構成することが可能となる。
【0106】
図14に示すように、光源装置100の前方側5には、吸気口150に冷却風Wを送る送出ユニット(送出部)170が装着されている。送出ユニット170は、ファン171と、ファンダクト172と、送出ダクト173とを有する。ファン171は、回転軸が高さ方向に沿って設定され、水平方向(xy面方向)に回転する。ファン171は、側壁部9の高さ方向における略中央の位置に配置される。ファンダクト172は、ファン171に接続されベース部1に形成された吸気口150に向けて下方に折り曲げられて配置される。そのファンダクト172の先端が送出ダクト173に接続される。送出ダクト173は、ベース部1に形成された吸気口150と接続され、送出ダクト173から吸気口150に向けて冷却風Wが送出される。このように送出ユニット170により冷却風Wが送出されることで蛍光体ホイール42及びモータ45を十分に冷却することが可能となる。なお送出ユニット170の構造や配置位置は限定されず、適宜設計されてよい。
【0107】
図13を参照して、吸気口150から排気口151までの冷却風Wの流れを説明する。まず送出ユニット170のファン171が回転され、冷却風Wがファンダクト172及び送出ダクト173を介して吸気口150に送出される。これにより、蛍光体ホイール42の前方側から斜め上の方向にかけて冷却風Wが送出される。蛍光体ホイール42及びモータ45に吹き付けられた冷却風Wは、平面反射部材36により進路を曲げられ上方に向けて進む。この際蛍光体ユニット40の後方側を沿うように冷却風Wは進む。これにより冷却ホイール42及びモータ45が十分に冷却される。冷却風Wは、
図2に示す蓋部材12の開口19から上方に進む。そして蓋部材12と重なるように配置された前方部材14の上面部23により進路を曲げられて、後方側に進む。そして上面部23と後方部材13との間を流路として、排気口151から筐体部3の外部側に排気される。
【0108】
このように本実施形態では、光軸Aの方向と直交する方向に沿うようにして、吸気口150から蛍光体ユニット40を通って排気口151へと冷却風が進んでいく。光軸方向に直交する方向に、冷却風Wの流路を設定することで、青色レーザ光B1の漏れを十分に抑えた効果的な冷却が可能となっている。また
図15に示すように、光源装置100の上方から見てみると、冷却風Wは、光軸Aの方向に沿って、青色レーザ光B1の光路と逆行する向きに進む。このような構成も光の漏れの低減に有利である。なお冷却風Wの流路を光軸に直交又は逆行させるように設定する場合に、限定されるわけではない。
【0109】
なお本実施形態では、蓋部材12の開口19から以後の流路が、排気口151に向けて所定の長さを有する光減衰路180として構成されている。光減衰路180とは、仮に排気口151から出射光が漏れてしまう場合があってとしても、その光のエネルギー(強度)を十分に抑えることを可能とする部分である。基本的な構成としては、排気口151に向けて、排気口151の大きさと略等しい断面を有する経路が所定の長さで形成される。光が排気口に向けて進む場合があっても、経路の内壁にて反射が繰り返され、その光のエネルギーが低下される。
【0110】
本実施形態では、
図13に示すように、蓋部材12の開口19と、前方部材14の上面部23と、開口19の後方に位置する後方部材13とにより光減衰部180が構成される。これにより排気口151から青色レーザ光B1が漏れてしまう場合があっても、そのエネルギーを低下させることが可能となり、漏れた光による影響を十分に抑えることが可能となる。本実施形態では、外枠部2が複数の枠部材により構成される。オーバーラップ部21の大きさや、各部材の配置位置等を適宜設計することで、光減衰部180を簡単に形成することが可能となる。なお光減衰部180の構造は限定されない。また複数の枠部材により光減衰部180が構成される場合に限定されない。
【0111】
以上、本実施形態に係る光源装置100では、光源部30と蛍光体ユニット40とを保持する筐体部3が、吸気口150と排気口151と空間部4とを有する。吸気口150から排気口151まで空間部4を流路として進む冷却風Wにより、蛍光体層41を有する蛍光体ユニット40が冷却される。吸気口150と排気口151とは、光源部30から蛍光ユニット40までの青色レーザ光B1と対向しないようにそれぞれ形成される。これにより筐体部3からの青色レーザ光B1の漏れを抑えた効果的な冷却が可能となる。また外枠部2を複数の枠部材を用いて構成することで、上記した冷却構造や光減衰部180を簡単に実現させることが可能となる。
【0112】
図16は、集光ユニットが複数配置される他の構成例を示す模式的な図である。例えば
図16A及びBに示すように、光軸Aを対称にして、4つの集光ユニット233(333)が配置されてもよい。各集光ユニット233(333)において、光軸A上の集光ポイントに光が集光するように適宜調整が行われる。配置される集光ユニットの数は限定されず、より多くの集光ユニットが配置されてもよい。
【0113】
図16Aでは、複数のレーザ光源が配置される配置面として、その平面形状が矩形状であるものが用いられる。配置面の平面形状とは、複数のレーザ光源からの出射光の出射方向からみた平面形状である。例えば
図10に示す光源部30では、板状のフレーム49の平面形状が配置面の平面形状に相当する。
図16に示すように、集光ユニット233の出射方向から見た外形も、配置面の形状に合わせて矩形状に形成されている。
【0114】
図16Bでは、複数のレーザ光源が配置される配置面として、その平面形状が三角形状であるものが用いられている。従って、集光ユニット333の外形も三角形状に形成することが可能となっている。集光光学系として非球面反射面が用いられるので、光源の数や配置等の自由度が高い。光源からの光束に応じて非球面反射面の形状や大きさ等を適宜設計することが可能だからである。その結果、
図16Bに示すような三角形状の配置面に複数の光源が配置された光源を用いることができる。そして光軸方向から見た外形が三角形状である集光ユニットを実現することができる。
【0115】
このように集光ユニットの形状を自由に設定できるので、集光ユニットの形状をマルチユニットに適したような形状にすることも容易となり、限られたスペースに複数の集光ユニットを配置することも可能となる。この結果、光源装置の小型化を図ることができる。
【0116】
また、光軸Aを中心に対称的に複数の集光ユニットを配置することで、集光ユニットの数や、種々の形状を有する集光ユニットの組み合わせに関して自由度を持たせることができる。その結果、様々な仕様に対応することが可能となる。なお、配置面の平面形状は、矩形や三角形状に限定されず、多角形状や円形状等であってもよい。必要な集光ユニットの形状に合わせて配置面の形状も適宜設定すればよい。
【0117】
[画像表示装置]
本実施形態に係る画像表示装置について説明する。ここでは、上記の実施形態で説明した光源装置を搭載可能なプロジェクタを例に挙げて説明する。
図17は、そのプロジェクタの構成例を示す模式的な図である。
【0118】
プロジェクタ300は、本技術に係る光源装置100と、照明システム400と、投射システム600とを有する。照明システム400は、照射された光をもとに画像を生成する画像生成素子410と、画像生成素子410に光源装置100からの出射光を照射する照明光学系420とを有する。投射システム600は、画像生成素子410により生成された画像を投射する。照明システム400は、本実施形態において、画像生成システムとして機能する。
【0119】
図17に示すように、照明システム400は、インテグレータ素子430と、偏光変換素子440と、集光レンズ450とを有する。インテグレータ素子430は、二次元に配列された複数のマイクロレンズを有する第1のフライアイレンズ431、及び、その各マイクロレンズに1つずつ対応するように配列された複数のマイクロレンズを有する第2のフライアイレンズ432を含んでいる。
【0120】
光源装置100からインテグレータ素子430に入射する平行光は、第1のフライアイレンズ431のマイクロレンズによって複数の光束に分割され、第2のフライアイレンズ432における対応するマイクロレンズにそれぞれ結像される。第2のフライアイレンズ432のマイクロレンズのそれぞれが、二次光源として機能し、輝度が揃った複数の平行光を、偏光変換素子440に入射光として照射する。
【0121】
インテグレータ素子430は、全体として、光源装置100から偏光変換素子440に照射される入射光を、均一な輝度分布に整える機能を有する。
【0122】
偏光変換素子440は、インテグレータ素子430等を介して入射する入射光の、偏光状態を揃える機能を有する。この偏光変換素子440は、例えば光源装置100の出射側に配置された集光レンズ450等を介して、青色レーザ光B3、緑色光G3及び赤色光R3を含む出射光を出射する。
【0123】
照明光学系420は、ダイクロイックミラー460及び470、ミラー480、490及び500、リレーレンズ510及び520、フィールドレンズ530R、530G及び530B、画像生成素子としての液晶ライトバルブ410R、410G及び410B、ダイクロイックプリズム540を含んでいる。
【0124】
ダイクロイックミラー460及び470は、所定の波長域の色光を選択的に反射し、それ以外の波長域の光を透過させる性質を有する。
図17を参照して、例えば、ダイクロイックミラー460が、赤色光R3を選択的に反射する。ダイクロイックミラー470は、ダイクロイックミラー460を透過した緑色光G3及び青色光B3のうち、緑色光G3を選択的に反射する。残る青色光B3が、ダイクロイックミラー470を透過する。これにより、光源装置100から出射された光が、異なる色の複数の色光に分離される。
【0125】
分離された赤色光R3は、ミラー480により反射され、フィールドレンズ530Rを通ることによって平行化された後、赤色光の変調用の液晶ライトバルブ410Rに入射する。緑色光G3は、フィールドレンズ530Gを通ることによって平行化された後、緑色光の変調用の液晶ライトバルブ410Gに入射する。青色光B3は、リレーレンズ510を通ってミラー490により反射され、さらにリレーレンズ520を通ってミラー500により反射される。ミラー500により反射された青色光B3は、フィールドレンズ530Bを通ることによって平行化された後、青色光の変調用の液晶ライトバルブ410Bに入射する。
【0126】
液晶ライトバルブ410R、410G及び410Bは、画像情報を含んだ画像信号を供給する図示しない信号源(例えばPC等)と電気的に接続されている。液晶ライトバルブ410R、410G及び410Bは、供給される各色の画像信号に基づき、入射光を画素毎に変調し、それぞれ赤色画像、緑色画像及び青色画像を生成する。変調された各色の光(形成された画像)は、ダイクロイックプリズム540に入射して合成される。ダイクロイックプリズム540は、3つの方向から入射した各色の光を重ね合わせて合成し、投射システム600に向けて出射する。
【0127】
投射システム600は、複数のレンズ610等を有し、ダイクロイックプリズム540によって合成された光を図示しないスクリーンに照射する。これにより、フルカラーの画像が表示される。
【0128】
本技術に係る光源装置100を備えることにより、プロジェクタ300の小型化を図ることができる。また光源装置100の形状等を適宜設定することで、プロジェクタ300の外形のデザイン性の向上等を図ることも可能となる。
【0129】
<その他の実施形態>
本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
【0130】
図17に示すプロジェクタ300では、透過型液晶パネルを用いて構成された照明システム400が記載されている。しかしながら反射型液晶パネルを用いても照明システムを構成することは可能である。画像生成素子として、デジタルマイクロミラーデバイス(DMD)等が用いられてもよい。さらには、ダイクロイックプリズム540に代わり、偏光ビームスプリッター(PBS)やRGB各色の映像信号を合成する色合成プリズム、TIR(Total Internal Reflection)プリズム等が用いられてもよい。
【0131】
また上記では、本技術に係る画像表示装置として、プロジェクタ以外の装置が構成されてもよい。また画像表示装置ではない装置に本技術に係る光源装置が用いられてもよい。
【0132】
以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。
【0133】
なお、本技術は以下のような構成も採ることができる。
(1)所定波長域の光により励起されて前記所定波長域の光よりも長波長域の可視光を発する発光体が設けられたホイールと、前記ホイールを駆動するモータとを有し、前記所定波長域の光と前記発光体からの可視光とを含む合成光を出射するホイール部と、
前記ホイール部により出射された前記合成光を集光する1以上のレンズと、前記集光された合成光を出射する出射面とを有するレンズ部と、
前記ホイール部と、前記レンズ部とを1つのユニットとして支持するホルダー部と
を具備する光学ユニット。
(2)(1)に記載の光学ユニットであって、
前記ホルダー部は、前記出射面側を前方側として前記1以上のレンズを保持するレンズ保持部と、前記レンズ保持部の後方側で前記レンズ保持部と連結して形成された、前記ホイール部を保持するホイール保持部とを有する
光学ユニット。
(3)(2)に記載の光学ユニットであって、
前記レンズ部は、所定の光軸方向に沿って前記合成光を出射し、
前記ホイール保持部は、前記モータの回転軸が前記所定の光軸方向と同じ方向に延在するように、前記ホイール部を保持する
光学ユニット。
(4)(3)に記載の光学ユニットであって、
前記モータの回転軸は、前記ホイールの中心に配置され、
前記ホイール保持部は、前記モータの回転軸が、前記1以上のレンズの中心を通る中心線の鉛直方向における下方に位置するように、前記ホイール部を保持する
光学ユニット。
(5)(2)から(4)のうちいずれか1つに記載の光学ユニットであって、
前記ホイール保持部は、前記レンズ保持部との間で前記ホイールを挟み込むように前記レンズ保持部の後方側に形成されたアーム部と、前記アーム部の先端に形成され前記モータを保持するモータ保持部とを有する
光学ユニット。