【文献】
IKEJIRI T., et al.,"Beam uniformity controllable ion source with a long slit",AIP Conference proceedings 1066,米国,American Institute of Physics,2008年,Page 320-323
(58)【調査した分野】(Int.Cl.,DB名)
前記各磁界源の前記コイルセグメントは(i)前記コアの第1の長さの周りに巻かれた主コイルセグメントおよび(ii)当該主コイルセグメントの周りに巻かれた1以上の副コイルセグメントを備えており、当該各副コイルセグメントは前記コアの第2の長さに亘っており、前記第1の長さは前記第2の長さよりも大きい、請求項2記載のイオン源。
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記努力にもかかわらず、引き出されたイオンビーム中において均一なイオン密度プロファイルを確立することの問題は、リボンビームイオン注入装置の製造業者にとって、特に100mmを超える寸法の引出し開口を有するイオン源を利用する場合に、依然として大きな関心事の一つのままである。それゆえに、比較的均一なイオンビームプロファイルを作り出すことのできる改良されたイオン源設計に対する要望が存在する。
【課題を解決するための手段】
【0008】
この発明は、均一なイオン密度プロファイルを有していて、しかも300mmまたは450mm基板などの基板に対してその長さの実質的に端から端へ注入するのに十分な寸法を持つリボンビームを発生させることができる改良されたイオン源を提供する。幾つかの実施形態では、450mmリボンビームのような拡張されたリボンビームがこの発明に係るイオン源によって発生され、当該リボンビームはその後イオン注入装置を通して輸送され、一方、輸送の間にビーム寸法は実質的に保存される。基板は、ゆっくりした水平方向の機械的走査で、静止しているリボンビームを横切って走査しても良い。
【0009】
一つの局面では、イオン化室および二つの磁界源を含むイオン源が提供されている。当該イオン化室は、それを通して伸びている縦軸を有しており、かつ二つの相対する室壁を含んでおり、各室壁は前記縦軸に平行である。前記二つの磁界源は、それぞれ、(i)コアおよび(ii)実質的に当該コアの周りに巻かれたコイルを備えている。各磁界源は、前記相対する室壁の各一つの外面に沿いかつ近接して配置されており、かつ前記縦軸に実質的に平行に向けられている。前記磁界源のコアは、互いに物理的に離されており、かつ電気的に絶縁されている。
【0010】
他の局面では、一対の磁界源を用いてイオン化室内に磁界を発生させる方法が提供されている。当該一対の磁界源の各々は、(i)コアおよび(ii)実質的に当該コアの周りに巻かれたコイルを備えている。前記イオン化室は、それを通して伸びている縦軸を有しており、かつ相対する二つの室壁を含んでおり、各室壁は前記縦軸に平行である。前記方法は、各磁界源を前記相対する室壁の各一つの外面に沿って配置するステップと、前記磁界源を前記縦軸に実質的に平行に向けるステップとを含んでいる。前記方法はまた、前記磁界源のコアを互いに電気的に絶縁しかつ物理的に離すステップと、前記コイルの各々と関連づけられた複数のコイルセグメントに供給される電流を独立して制御するステップとを含んでいる。前記方法は更に、各コイルセグメントに供給された電流に基づいて前記イオン化室内に磁界を発生させるステップを含んでいる。当該磁界は、前記縦軸に実質的に平行に向けられる。
【0011】
更に他の局面では、イオン源が提供されている。当該イオン源は、イオン化室と、一対の磁界源と、複数のコイルセグメントと、制御回路とを含んでいる。前記イオン化室は、それを通して伸びている縦軸を有しており、かつ二つの相対する室壁を含んでおり、各室壁は前記縦軸に平行である。前記一対の磁界源は、それぞれ、(i)コアおよび(ii)実質的に当該コアの周りに巻かれたコイルを備えている。各磁界源は、前記対向する室壁の各一つの外面に沿いかつ近接して配置されており、かつ前記縦軸に実質的に平行に向けられている。前記複数のコイルセグメントは、前記磁界源の各コイルと関連づけられている。前記制御回路は、前記コイルの前記複数のコイルセグメントの各々に供給される電流を独立して調整することに用いられる。
【0012】
他の例においては、どの上記局面も、次の特徴の1以上を含んでいても良い。幾つかの実施形態では、各磁界源の前記コイルは、複数のコイルセグメントを備えている。例えば、三つのコイルセグメントが、各磁界源のコイルと関連づけられていても良い。磁界源の中央のコイルセグメントの電流は、当該磁界源の端のコイルセグメントの電流の約半分の電流を有していても良い。
【0013】
幾つかの実施形態では、各磁界源の前記コイルセグメントは、(i)前記コアの第1の長さの周りに巻かれた主コイルセグメントおよび(ii)当該主コイルセグメントの周りに巻かれた1以上の副コイルセグメントを備えている。各副コイルセグメントは、前記コアの第2の長さに亘っていても良く、ここで前記第1の長さは前記第2の長さよりも大きい。
【0014】
幾つかの実施形態では、各コイルセグメントに供給される電流を別個に調整する制御回路が提供されている。当該制御回路は、各コイルセグメントの電流を独立して制御して、前記イオン化室から引き出されたイオンの均一な密度プロファイルを作り出すことができる。
【0015】
幾つかの実施形態では、各磁界源はソレノイドを備えている。
【0016】
幾つかの実施形態では、イオン化室内の前記磁界は、前記二つの磁界源によって作られ、前記縦軸に実質的に沿う方向に向けられる。
【0017】
幾つかの実施形態では、各磁界源の縦の長さは、前記イオン化室の縦の長さと少なくとも同じくらいである。
【0018】
幾つかの実施形態では、前記二つの磁界源は、前記イオン化室の前記縦軸に関して対称である。
【0019】
幾つかの実施形態では、前記イオン化室は長方形の形状を有している。
【0020】
幾つかの実施形態では、前記イオン化室は、引出し開口であってそれを通して当該イオン化室内のイオンが引き出される引出し開口を画定している。
【0021】
この発明の他の局面および利点は、この発明の原理を例のみのために説明している添付図面と共に読むと、以下の詳細な説明から明らかになるであろう。
【0022】
また、上述した技術の利点は、更なる利点と共に、以下の図面の簡単な説明を添付図面と共に参照することによって、より良く理解できるであろう。図面は必ずしも一定の縮尺比ではなく、代わりに、技術の原理を説明するために通常は強調が成されている。
【発明を実施するための形態】
【0024】
図1は、この発明の実施形態による例示的なイオン源の概略図を示している。イオン源100は、イオン注入室へ輸送するためのイオンビームを生成するように構成されており、当該イオン注入室においてイオンビームを例えば半導体ウェーハなどの基板へ注入する。図示のように、イオン源100は、イオン化室102の長手寸法に沿う縦軸118を規定しているイオン化室102と、一対の電子銃104と、プラズマ電極106と、引出し電極108と、複数のガス入口110および複数の流量調節器(MFC)112を備えるガス配送システムと、ガス源114と、結果として生じるイオンビーム116とを含んでいる。動作の際には、ガス源114からのガス状の原料がガス入口110を経由してイオン化室102内に供給される。各ガス入口110を通してのガス流は、入口110に接続された各流量調節器112によって制御することができる。イオン化室102において、一対の電子銃104のそれぞれによって発生された電子ビームによる電子衝撃によって電離されたガス分子から第1プラズマが生じる。一対の電子銃104は、イオン化室102の相対する面に配置されている。幾つかの実施形態では、電子銃104は、付加的なイオンをイオン化室102へ供給することもできる。イオン化室102内のイオンは、引出し開口(図示せず)を経由して引き出すことができ、プラズマ電極106および引出し電極108を備える引出し系を用いてエネルギー値の高いイオンビーム116を形成することができる。縦軸118は、イオンビーム116の伝搬方向と実質的に垂直にすることができる。幾つかの実施形態では、1以上の磁界源(図示せず)をイオン化室102および/または電子銃104に近接して配置しても良く、それによって、電子銃104によって発生された電子ビームを電子銃104内およびイオン化室102内に閉じ込める外部磁界を発生させることができる。
【0025】
ガス源114は、例えばAsH
3 、PH
3 、BF
3 、SiF
4 、Xe 、Ar 、N
2 、GeF
4 、CO
2 、CO、CH
3 、SbF
5 およびCH
6 などの1以上の入力ガスをイオン化室102内に導入することができる。入力ガスは、ガス配送システムを経由してイオン化室102に入ることができる。当該ガス配送システムは、(i)縦軸118に沿ってイオン化室102の側壁に間隔をあけて配置された複数のガス入口110、および(ii)各ガス入口110に接続された複数の流量調節器112を含んでいる。イオン化室102内の第1プラズマのイオン密度は入力ガスの密度に依存するので、各流量調節器112を別個に調節することによって、縦方向118におけるイオン密度分布の改善された制御を実現することができる。例えば、制御回路(図示せず)は、引き出されたイオンビーム116のイオン密度分布をモニターして、引き出されたイオンビーム116中の縦方向に沿うより均一なイオン密度プロファイルを達成するように、1以上のガス流量調節器112を経由する入力ガスの流量割合を自動的に調節することができる。幾つかの実施形態では、ガス源114は、B
10H
14、B
18H
22、C
14H
14および/またはC
16H
10などの固体供給原料を蒸発させて、イオン化室102内へ供給する蒸気入力を発生させる蒸発器を含んでいても良い。この場合は、前記蒸気入力をイオン化室102内へ導入するために1以上の別個の蒸気入口(図示せず)を用いて、入口110に接続された流量調節器を迂回させても良い。前記1以上の別個の蒸気入口は、縦軸118の方向において、イオン化室102の側壁に沿って均等に分散させても良い。幾つかの実施形態では、ガス源114は、1以上の液相ガス源を備えている。液相原料は、ガス入口110および流量調節器112を備える前記ガス配送システムを用いてガス化してイオン化室102内へ導入することができる。流量調節器112は、液相原料から放出されたガスの流れを容易にするように適切に調節することができる。
【0026】
一般的に、イオン化室102は、横方向(図示せず)よりも縦方向118において長い長方形の形状を有していても良い。イオン化室102はまた、例えば円筒形状などの他の形状を有していても良い。イオン化室102の縦軸118に沿う長さは、約450mmでも良い。引出し開口(図示せず)は、イオン化室102の細長い面上に位置していても良く、一方、各電子銃102は横の面に位置している。引出し開口は、イオン化室102の長さに沿って伸びていても良く、例えば長さが約450mmである。
【0027】
イオン化室102からイオンを引き出しかつ注入イオンのエネルギーを決定するために、イオン源100は、イオン源電源(図示せず)によって、例えば1kVから80kVなどの高い正のイオン源電圧に保持される。プラズマ電極106は、イオン化室102の縦軸118に沿う面上に引出し開口板を備えていても良い。幾つかの実施形態では、プラズマ電極106は、当該プラズマ電極106にバイアス電圧を印加することができるように、イオン化室102から電気的に絶縁されている。バイアス電圧は、イオン化室102内に生成されるプラズマの特性に、例えばプラズマ電位、イオンの滞留時間および/またはプラズマ内のイオン種の相対拡散特性などの特性に影響を及ぼすように印加される。プラズマ電極106の長さは、イオン化室102の長さと実質的に同じであっても良い。例えば、プラズマ電極106は、イオン化室102からのイオン引き出しを可能にする形状をした450mm×6mm開口を含む板を備えていても良い。
【0028】
引出し電極108のような1以上の付加的な電極が、イオンビーム116の引出し効率を高めかつその集束を改善するために用いられる。引出し電極108は、プラズマ電極106と同様に構成されていても良い。これらの電極は、絶縁物によって互いに間隔をあけて配置し(例えば5mm間隔)、かつ異なった電位に保たれても良い。例えば、引出し電極108は、プラズマ電極106またはイオン源電圧に対して約−5kVまでだけバイアスをかけても良い。しかし、これらの電極は、特定の注入プロセスのための所望のイオンビームを発生させる際の性能を最適化するために、広範囲の電圧に亘って動作させても良い。
【0029】
図2は、この発明の実施形態による例示的なイオンビーム引出し系の概略図を示す。図示のように、当該イオンビーム引出し系は、イオン化室102に近接して配置されたプラズマ電極202と、それに続く引出し電極204と、抑制電極206と、接地電極208とを含んでいる。これらの電極の開口は、イオン化室102の縦軸118に実質的に平行である。プラズマ電極202および引出し電極204は、それぞれ、
図1のプラズマ電極106および引出し電極108と同様のものである。幾つかの実施形態では、プラズマ電極202は、イオンビーム116の空間電荷拡散を打ち消すためにピアス(Pierce) 角に従って形作られており、それによって引き出し時に実質的に平行なビーム軌道を可能にしている。幾つかの実施形態では、プラズマ電極202の開口は、イオン化室102中のプラズマに最も近い面に切り込み(アンダーカット)を有しており、当該切り込みは鋭い端(以下「ナイフエッジ」と言う)を取り入れることによってプラズマ境界を画定するのを助けている。プラズマ電極開口の幅は、ナイフエッジの分散面に沿う幅と実質的に同じでも良い。この幅は
図2中にW1で示されている。幅W1の値は、約3mmから約12mmの範囲でも良い。更に、
図2に示すように、引出し電極204の分散面における開口の幅W2は、プラズマ電極202の幅W1より広くても良く、例えば約1.5倍広い。接地電極208は、ターミナル(始端装置)電位に保持されても良く、当該ターミナル電位は、ある種のイオン注入装置の場合のようにターミナルを接地電位より下に浮かせることが望ましい場合を除いて、接地電位にある。抑制電極206は、接地電極208に対して約−3.5kVなどの負にバイアスされて、もしそうしなければ正帯電のイオンビーム116を発生させたときに正にバイアスされたイオン源100に引きつけられるであろう不所望な電子を押し戻したり抑制したりする。一般的に、引出し系は、二つの電極(例えば抑制電極206および接地電極208)に限定されるものではなく、必要に応じて更なる電極を付け加えても良い。
【0030】
幾つかの実施形態では、制御回路(図示せず)は、イオンビーム116の焦点合せを高めるために、1以上の電極の間隔をイオンビーム116の伝搬方向に沿って(即ち縦軸118と垂直に)自動的に調整することができる。例えば、制御回路は、引出し電界を変えるために、イオンビーム116のビーム特性を監視し、かつ当該監視に基づいて、抑制電極206または接地電極208の少なくとも一方を互いにより近づける又はより離すように動かすことができる。幾つかの実施形態では、制御回路は、電極の配置による機械的誤差を補償するために、イオンビーム116の経路に関して、抑制電極206または接地電極208の少なくとも一方を傾ける又は回転させる。幾つかの実施形態では、制御回路は、抑制電極206および接地電極208(第1群電極)を共に特定のビーム経路に沿って、プラズマ電極202および引出し電極204を含む残りの電極(第2群電極。これらは静止状態に保持されても良い)に関して動かす。第1群電極と第2群電極との間のギャップは、イオンビーム形状、イオンビームの所要エネルギーおよび/またはイオン質量などの幾つかの要素に基づいて決定しても良い。
【0031】
図3は、この発明の実施形態による例示的な電子銃104の概略図を示す。図示のように、電子銃104は、陰極302と、陽極304と、接地要素306と、制御回路(図示せず)とを含んでいる。陰極302によって熱電子が放出される。陰極302は、例えばタングステンまたはタンタルなどの高融点金属で構成されていても良く、そして直接または間接的に加熱しても良い。陰極302を間接的に加熱する場合は、間接加熱を行うためにフィラメント311を用いても良い。具体的に言えば、フィラメント311を加熱するためにフィラメント311に電流が流され、その結果フィラメント311は熱電子的に電子を放出する。フィラメント311に陰極302の電位よりも低い数百V(例えば陰極に対して600Vまでの負の電圧)のバイアスをかけることによって、フィラメント311によって作られ熱電子的に放出された電子は、エネルギー値の高い電子衝撃によって陰極302を加熱することができる。陰極302は、熱電子的に電子を放出するように構成されており、陰極302に対して正電位に保持される陽極304の位置でエネルギー値の高い電子ビーム308を形成する。電子ビーム308は、イオン化室102の開口312を経由してイオン化室102内へ入るように構成されており、そしてイオン化室102内で当該室内のガスを電離させることによって第1プラズマ(図示せず)を発生させる。電子銃104は、更に、少なくとも陽極302および接地要素306によって画定されたプラズマ領域を含んでおり、当該プラズマ領域は、開口312を経由して受け取ったガスからプラズマ(具体的には第2プラズマ310)を生成するように構成されている。当該第2プラズマ310は、例えば、電子ビーム308の少なくとも一部分によって維持される。
【0032】
更に、制御回路は、電子銃104内で陽極304と接地要素306との間のプラズマ領域に第2プラズマ310を生成することができる。具体的に言えば、電子ビーム308によって第2プラズマ310を生成するのに十分な電界を確立するような電位を陽極304と接地要素306との間に作り出しても良い。第2プラズマ310は、イオン化室102から開口312を経由して電子銃104に入るガスの電離によって作り出される。当該ガスは入口110を経由して供給することができる。電子ビーム308は、第2プラズマ310を長時間維持することができる。第2プラズマ310のプラズマ密度は、陽極304のアーク電流に比例しており、当該アーク電流は正の陽極電圧の増大に依存する。それゆえに、第2プラズマ310を制御しかつ安定させるために、制御回路によって、陽極電源406によって供給される電流の閉ループ制御と共に、陽極電圧の制御を用いても良い。第2プラズマ310は、正帯電のイオンを発生させるのに適しており、当該イオンは開口312を経由してイオン化室102内へ前進させることができ、それによって、引き出されたイオンビーム116のイオン密度を増大させることができる。当該前進運動は、第2プラズマ310によって生成された正帯電のイオンが正にバイアスされた陽極304によって跳ね返されてイオン化室102の方へ進むときに発生する。
【0033】
制御回路は、正電圧を陽極304に印加することによって電子銃104内で第2プラズマ310を生成することができる。制御回路は、第2プラズマ310によって生成されるイオンの量を制御すると共に、陽極電源406によって供給される電流の閉ループ制御によって第2プラズマ310をある程度安定させることができる。この電流は、陽極304と接地要素306との間のプラズマ放電によって維持されるアーク電流である。以下において、この動作モードを「イオンポンピングモード」と呼ぶ。イオンポンピングモードにおいては、イオンに加えて、電子ビーム308もまた、開口312を経由してイオン化室102へ進み、イオン化室102内で第1プラズマを生成する。イオンポンピングモードは、増大させた引出し電流が必要な状況において有利であろう。あるいは、制御回路は、陽極304の電圧を適切に調整することによって、例えば陽極304の電圧をゼロに設定することなどによって、電子銃104内の第2プラズマ310を実質的に消すことができる。この場合、有意な量の正帯電のイオンを伴うことなく、電子ビーム308のみが電子銃104からイオン化室102へ流入する。以下において、この動作のモードを「電子衝撃モード」と呼ぶ。
【0034】
更に他の動作モードでは、制御回路は、電子ビーム308をイオン化室102へ供給することなしに、電子銃104内に第2プラズマ310を生成することができる。これは、エミッター(即ち陰極302)の電圧を適切に調整することによって、例えば陰極302をそれがイオン化室102と同電位になるように接地することなどによって、達成することができる。その結果、電子ビーム308中の電子はイオン化室102へ入る時に低エネルギーを有していることになり、遥かに弱い電子ビームがイオン化室102へ入ること、またはそこへ入る電子ビームやイオン化室102内で有用な電子衝撃電離を生じさせる電子ビームが少しもないことを効果的に可能にする。この動作のモードでは、第2プラズマ310は、イオン化室102内への推進のための正イオンを発生させることができる。この動作モードでは、電子銃104はプラズマ源の働きをする。以下において、この動作のモードを「プラズマ源モード」と呼ぶ。プラズマ源モードは幾つかの利点を有している。例えば、典型的には2kV、1Aの電源であるエミッター電源430を省くことによって、コストおよび複雑さが低減される。プラズマ源モードは、プラズマフラッドガン、プラズマドーピング装置、プラズマ化学気相成長(CVD)などにおいて用いることができる。幾つかの実施形態では、プラズマ源モードにおいて第2プラズマ310を発生させるのに高周波放電を用いることができる。しかし、一般的に、電子銃104は、プラズマ源および/またはイオン源の働きをすることができる。
【0035】
一般的に、電子銃104において第2プラズマ310を作動させることによって、イオン源100の使用可能寿命を長くすることができる。長いイオン源寿命を達成することにおける主要な制限要因は、主としてイオンスパッタリングによって引き起こされる陰極浸食による陰極302の損傷である。陰極302のイオンスパッタリングの程度は、(i)局所的なプラズマまたはイオンの密度と、(ii)陰極302に到達するときのイオンの運動エネルギーとを含む幾つかの要因に依存している。陰極302はイオン化室102内の第1プラズマから離れているので、イオン化室102内で生成されたイオンが陰極302に達するためにはイオン化室102から流出しなければならない。そのようなイオンの流れは、陽極304の正電位によって大きく妨げられる。陽極304の電位が十分に高い場合、低エネルギーイオンは、この電位障壁に打ち勝って負帯電の陰極302に到達することはできない。しかし、陽極304と接地要素306との間のアーク中に生成されたプラズマイオンは、陽極304の電位と同じくらい高い初期運動エネルギー(例えば数百eV)を持つことができる。イオンスパッタ率は、イオンエネルギーKの増加に依存するものである。具体的に言えば、電子銃104付近のイオンエネルギーKの最大値は、K=e(Ve −Va )で与えられ、ここでVa は陽極304の電圧であり、Ve は陰極302の電圧であり、eは電子電荷である。この関係によれば、イオンエネルギーKは、陰極302と陽極304との間の電位差と同じくらい大きくなることができる。このように、陰極302の寿命を最大にするためには、この電位差を最小にしても良い。幾つかの実施形態では、陰極302付近のプラズマまたはイオン密度を低く保つために、プラズマ源モードのアーク電流もまた低く調整される。そのような条件は、プラズマ源モードよりも電子衝撃モードにより密接に合致している。もっとも、両モードは陰極寿命を犠牲にすることなく有効に採用することができる。一般的に、高融点金属のイオンスパッタ率は、約100eV未満では最小であり、イオンエネルギーが増大するにつれて急速に増大する。それゆえに、幾つかの実施形態では、イオンエネルギーKを約200V未満に維持することは、イオンスパッタリングを最小にしかつ長寿命運転を実現することに貢献する。
【0036】
幾つかの実施形態では、制御回路は、「クラスター」または「モノマー」モードのどちらかで動作することができる。上述したように、イオン源100は、二つの別個の領域のプラズマを維持する能力がある。それは、(i)陽極304と接地要素306との間のアーク放電から生成された第2プラズマ310および(ii)イオン化室102内におけるガスの電子衝撃電離から生成された第1プラズマ(図示せず)である。これら二つのプラズマ生成メカニズムの電離特性は異なっている。第2プラズマ310に対しては、陽極304と接地要素306との間のアーク放電は、分子ガス種を効率的に解離させて、負帯電種に加えて、解離された断片のイオンを生成する(例えば、BF
3 ガスをB
+ 、BF
+ 、BF
2+ およびF
+ に効率的に転換する)。それと対照的に、電子ビーム308の電子衝撃電離によってイオン化室102内に生成される第1プラズマは、分子種を、実質的な解離(例えばB
10H
14をB
10H
x+ イオンに転換すること。ここで「x」は水素種の範囲を示し、例えばB
10H
9+ 、B
10H
10+ などである。)を伴わずに保存する傾向がある。これらの異種類の電離特性を考慮して、制御回路は、ユーザーの所望のイオン種に合せて電離特性を少なくとも部分的に調整するようにイオン源100を運転することができる。制御回路は、特定のガス種の「分解パターン」(即ち、中性ガス種から生成される特定イオンの相対存在度)を変更して、所定の注入プロセスに必要な特定イオンの存在度を増大させることができる。
【0037】
具体的に言えば、モノマーモードの動作では、制御回路は、イオン励起モードまたはプラズマ源モードのどちらかを始めることができ、その場合、第2プラズマは、より解離されたイオンの相対存在度を生み出すように生成される。これと対照的に、クラスターモードの動作では、制御回路は、電子衝撃モードを始めることができ、その場合、第1プラズマが支配的となり、第2プラズマは存在しない状態まで弱くなり、親イオンの相対存在度を生み出す。従って、モノマーモードは、より多くの正帯電イオンが電子銃104の第2プラズマ310からイオン化室102内へ推進されることを可能にする一方、より弱い電子ビーム308がイオン化室102内へ入ること、またはそこへ入る電子ビームが少しもないことを可能にする。これと対照的に、クラスターモードの動作は、より少ない正帯電イオンと、電子銃104からのより強い電子ビーム308がイオン化室102内に入ることを可能にする。
【0038】
一例として、分子C
14H
14を考える。この分子の電離(イオン化)は、その結合構造における対称性のためにC
14H
x+ およびC
7H
x+ の両者を生じさせる。親分子はモノマーモードにおいてより容易に分解されるであろうから、イオン源をクラスターモードで運転することによってC
14H
x+ イオンの相対存在度を増大させ、一方、イオン源をモノマーモードで運転することによってC
7H
x+ イオンの相対存在度を増大させる。幾つかの実施形態では、AsH
3 、PH
3 、BF
3 、SiF
4 、Xe 、Ar 、N
2 、GeF
4 、CO
2 、CO、CH
3 、SbF
5 、P
4 およびAs
4などのような気相または液相原料から所望のモノマー種が得られる。幾つかの実施形態では、B
10H
14、B
18H
22、C
14H
14およびC
16H
10などのような蒸発させた固体供給原料、および、C
6H
6 およびC
7H
16などのような気相または液相原料のいずれかから、所望のクラスター種が得られる。これらの原料は、所望の原子(これらの例ではBおよびC)の数がイオン化の間に十分に保存され得る場合は、イオン化された注入種として有益である。
【0039】
制御回路は、電子銃104の動作電圧を適切に設定することによって、上記二つモードの内の一つを始めることができる。一例として、モノマーモードを始めるために、制御回路は、(i)陰極302の電圧のようなエミッターの電圧(Ve )を約−200Vに設定し、かつ(ii)陽極304の電圧(Va )を約200Vに設定することができる。モノマーモードはまた、電圧Ve が約0V(即ちプラズマ源モード)に設定されているときに始めることができ、この場合、電子衝撃解離によってイオン化室102内に生成されるイオンは実質的に少しもない。クラスターモードを始めるためには、制御回路は、(i)電圧Ve を約−400Vに設定し、かつ(ii)電圧Va を約0Vに設定することができる。
【0040】
各イオンのタイプはそれぞれ利点を有している。例えば、低エネルギーのイオン注入ドーピングまたは物質の改質(例えば非晶質化注入)のためには、所望の多数の原子を含む重い分子種が好ましいであろう。これは、上述した例におけるホウ素および炭素などである。それと対照的に、シリコン基板にドーピング(イオン注入)を行ってトランジスタ構造(例えばソースおよびドレイン)を作るためには、B
+ などのようなモノマー種が好ましいであろう。
【0041】
異なった動作モード間で電子銃104の動作を制御するために、制御回路は、フィラメント311、陰極302および陽極304にそれぞれ関連付けられている電流および/または電圧を調整することができる。
図4は、この発明の実施形態によるものであって、
図3の電子銃104の例示的な制御回路400の概略図を示している。図示のように、制御回路400は、フィラメント311の両端間に電圧(Vf )を供給してフィラメント放出を調整するフィラメント電源402と、フィラメント311を陰極302に対してバイアスする陰極電源404(電圧Vc )と、陽極304に電圧(Va )を供給する陽極電源406と、陰極302の電圧のようなエミッターの電圧(Ve )を供給するエミッター電源430とを備えている。一般的に、各電源402、404、406は、制御された電流モードで動作することができ、各電源は設定値電流に対処するのに十分な出力電圧を設定する。図示のように、制御回路400は、二つの閉ループ制御器を含んでいる。即ち、(1)フィラメント311による電子流放出を制御することに用いられる閉ループ制御器408、および(2)第2プラズマ310内に生成されたアーク電流(これは陽極電源406によって供給された電流である)を調整することに用いられる閉ループ制御器418である。
【0042】
制御動作の最初に、制御回路400は、陰極電源404および陽極電源406をそれぞれの初期電圧値に設定する。制御回路400はまた、例えばオペレータインターフェースを通して利用可能なフィラメントウォームアップユーティリティーを用いて、フィラメント311を電子放出の状態に至らせる。ひとたび電子放出が得られると、制御回路400のオペレータは、制御器408および418を介して閉ループ制御を始めることができる。
【0043】
閉ループ制御器408は、フィラメント311に対する設定放出電流値を維持しようと努める。この設定放出電流値は、陰極302に届けられる電子ビーム加熱電流である。閉ループ制御器408は、フィラメント電源402を調整してフィラメント電圧すなわちフィラメント311の両端間の電圧を調整することによって、上記設定放出電流値を維持する。具体的に言えば、制御器408は、入力として、設定フィラメント放出電流値410を受け取る。当該設定電流値は、陰極電源404によって供給される電流である。この設定電流値410は、例えば約1.2Aでも良い。応答の際には、制御器408は、出力信号412を経由してフィラメント電源402を制御し、それによってフィラメント電源402は、当該電源402を出る電流が設定電流値410に近くなるのを可能にするのに十分な出力電圧を供給する。フィラメント電源402を出る実際の電流はモニターされて、フィードバック信号416として制御器408に返される。フィードバック信号416中の実際の電流と設定電流値410との間の差が誤差信号を作り出し、当該誤差信号は、制御器408の比例−積分−微分(PID)フィルターによって適切な状態に調整することができる。制御器408はその後、前記差を最小化するために、出力信号412をフィラメント電源402へ送る。
【0044】
閉ループ制御器418は、電子ビーム308によって発生された電流を調整することによって、設定陽極電流値を維持しようと努める。これは、当該陽極電流は当該電子ビーム電流に比例しているからである。閉ループ制御器418は、フィラメント311による陰極302の電子ビーム加熱を調整することによって上記設定陽極電流値を維持し、それによって陰極302によって放出される電子の量を調整する。具体的に言えば、制御器418は、入力として設定陽極電流値420を受け取る。応答の際には、制御器418は、出力信号422を経由して陰極電源404を調整し、それによって陰極電源404は、陽極電源406での電流が設定陽極電流値420に近くなることを可能にするのに十分な出力電圧を供給する。上述したように、陰極電源404の電圧を調整することによって、陰極302の電子加熱の程度が調整され、それに従って電子ビーム308の電流が調整される。陽極304のアーク電流は電子ビーム308によって供給されるので、陽極電流はそれゆえに電子ビーム308の電流に比例している。更に、陽極電源406を出る実際の電流はモニターされて、フィードバック信号426として制御器418へ返される。フィードバック信号426中の実際の電流と設定陽極電流値420との間の差が誤差信号を作り出し、当該誤差信号は、制御器418のPIDフィルターによって適切な状態に調整される。制御器418はその後、上記差を最小化するために、出力信号422を陰極電源404へ送る。
【0045】
幾つかの実施形態では、電子ビーム308の運動エネルギーは、エミッター電源430の電圧の測定に基づいて、制御回路によって決定することができる。例えば、電子ビームエネルギーは、エミッター電源電圧(Ve )と電子電荷(e)との積として計算することができる。エミッター電源430はまた、電子ビーム電流(これはエミッター電源430を出る電流に相当する)を供給し、かつフィラメント電源402を浮かせている陰極電源404のための基準電位として働くことができる。
【0046】
図3を引き続き参照して、電子銃104の接地要素306は、電子ビーム308がイオン化室102に入る前に電子ビーム308の最終エネルギーを減少させることによって、電子ビーム308を減速させるように構成されている。具体的に言えば、接地要素306は、逆ピアス構造に従った形状をしていて減速レンズとして働く1以上のレンズ(例えば二つのレンズ)を含んでいても良い。一例として、電子ビーム308は、500eVで接地要素306に近づき、接地要素306を通過した後に100eVに減速されても良い。結果として、このようにしない場合に比べて、より低エネルギーの電子流がイオン化室102に導入される。更に、電子ビーム308を螺旋軌道に閉じ込めるために、外部の実質的に均一な磁界320を加えても良い。磁界320はまた、第1プラズマ(図示せず)および第2プラズマ310をイオン源100内に閉じ込めることができる。磁界320についての詳細は、
図5−
図7を参照して以下に説明する。
【0047】
図3の少なくとも一つの電子銃104は、開口312を経由して電子ビームおよび/またはイオンをイオン化室102内へ導入することに用いることができる。開口312は、イオン化室102から電子銃104へのガスの輸送を許容することができ、当該ガスから、イオンポンピングモードの間に、電子銃104内の第2プラズマ310を生成することができる。幾つかの実施形態では、
図1に示すように、二つの電子銃104が用いられていて、それぞれはイオン化室102の相対する面に配置されている。各電子銃104によって導入された電子ビームは、イオン化室102の内部で縦方向118に進むように構成されている。各電子銃104からの電子ビームは、イオン化室102内でガスを電離させてイオン化室102内にイオンを生成する。イオンポンピングモードを作動させている場合は、電子銃104によって付加的なイオンをイオン化室102内へ導入することができる。
【0048】
一つの局面では、イオン源100の1以上の構成要素は、例えば高い動作温度、イオンスパッタリングによる浸食およびフッ素化化合物との反応などによる何らかの有害な効果を最小にするために、グラファイトで構成されている。グラファイトの使用はまた、引き出されたイオンビーム116中において、高融点金属や遷移金属などの有害な金属成分の生成を制限する。幾つかの例では、電子銃104の陽極304および接地要素306はグラファイトで作られている。更に、イオン化室102からイオンを引き出すことに用いられる1以上の電極であって、プラズマ電極106および引出し電極108を含む電極も、グラファイトで作られていても良い。更に、アルミニウムで作られていても良いイオン化室102は、グラファイトでその内側を覆っておいても良い。
【0049】
他の局面では、イオン源100は、イオン化室102および/または電子銃104に近接して配置されていて、各電子銃104によって発生された電子ビームを電子銃104およびイオン化室102の内側に閉じ込める外部磁界を発生させる1以上の磁界源を含んでいても良い。当該磁界源によって生成された磁界はまた、引き出されたイオンビーム116がより均一なイオン密度分布を達成することを可能にする。
図5は、この発明の実施形態によるものであって、一組の磁界源を含む例示的なイオン源の概略図を示している。図示のように、外部磁界は、一組の磁界源502によって提供することができ、当該磁界源502は、イオン化室102の両側に、電子ビーム308の経路に平行に、即ちイオン化室102の縦軸118に平行に配置されている。当該一組の磁界源502は、それぞれ、二つの相対する室壁504の外面に沿いかつ近接させて配置しておいても良く、ここで上記相対する室壁504は縦軸118に平行である。幾つかの実施形態では、イオン化室102の面の少なくとも一部に、上記相対する室壁504および電子銃104に対向する面を除いて、引出し開口を形成することができる。
図5は、イオン化室102の一つの面に形成した引出し開口510の例示的な配置を示している。二つの磁界源502は、イオン化室102の中心軸であって縦軸118に平行な中心軸512を含む平面に関して対称であっても良い。各磁界源502は、少なくとも一つのソレノイドを備えていても良い。
【0050】
上記相対する室壁の一つは、引出し開口を画定することができる。二つの磁界源502は、縦軸118に関して対称でも良い。各磁界源502は、少なくとも一つのソレノイドを備えていても良い。
【0051】
磁界源502の縦の長さは、イオン化室102の縦の長さと少なくとも同じくらいである。幾つかの実施形態では、各磁界源502の縦の長さは、少なくとも、二つの電子銃104の長さにイオン化室102の長さを加えたのと同じくらいの長さである。例えば、各磁界源502の縦の長さは、約500mm、600mm、700mmまたは800mmでも良い。磁界源502は、実質的に、イオン化室102の引出し開口510(それからイオンが引き出される)の長さに亘っていても良い。磁界源502は、長手経路長に亘って電子ビーム308を閉じ込めるように構成されている。当該長手経路長は、
図5に示すように、(2X+Y)で与えられる。ここで、Xは電子銃104の大きさであり、Yはイオン化室102の大きさである(Yはまた、おおよそ、イオン引出し開口510の長さや、引き出されたリボンイオンビーム116の所望長さである)。
【0052】
図6は、この発明の実施形態によるものであって、
図5の磁界源502の例示的な構成の概略図を示している。図示のように、各磁界源502は、(i)磁気コア602、および(ii)一般的に磁気コア602の周りに巻かれている電磁コイル組立体604を含んでいる。イオン源構造体601は、イオン化室102および電子銃104を含んでいて、電磁コイル組立体604によって作られる軸方向磁界に浸される。幾つかの実施形態では、一対の磁界源502はどちらも磁気ヨークに結合されておらず、従って、磁界源502によって発生された磁束は空間に消散し、イオン源構造体601から遠く離れて戻る。この構成は、イオン源構造体601内に、引き出されたイオンビーム116の縦方向118におけるイオン密度分布の改善された均一性を実現することが見出された磁束を発生させる。更に、イオン源構造体601内の磁束は、縦方向118に向けられていても良い。幾つかの実施形態では、二つの磁界源502は、互いに物理的に離されており、かつそれらの磁気コア602は互いに電気的に絶縁されている。即ち、一対の磁気コア602間に電気的接続はない。
【0053】
各コイル組立体604は、縦軸118に沿って分散配置されていて、制御回路608によって独立して制御される複数のコイルセグメント606を備えていても良い。具体的に言えば、制御回路608は、コイルセグメント606のそれぞれに異なる電圧を供給することができる。一例として、コイル組立体604aは、独立していて部分的に重なっている磁界をイオン源構造体601の頂部、中間部および底部の部分に亘って発生させる三つのコイルセグメント606a−606cを備えていても良い。その結果として得られる磁界は、各電子銃104によって発生された電子ビーム308の閉じ込めを実現することができ、従って縦軸118に沿って、十分に画定されたプラズマ柱を作り出すことができる。
【0054】
各コイルセグメント606によって作られる磁束密度は、引き出されたイオンビーム116のイオン密度プロファイルにおける不均一性を修正するために独立して調整しても良い。一例として、コイル組立体604aに対して、中央のコイルセグメント606bは端のコイルセグメント606a、606cに供給される電流の半分の電流を有していても良い。幾つかの実施形態では、一対の磁界源502に対する対応する一対のコイルセグメント606には同一の電流が供給される。例えば、コイルセグメント606aと606dは同一電流を有していても良く、コイルセグメント606bと606eは同一の電流を有していても良く、コイルセグメント606cと606fは同一の電流を有していても良い。幾つかの実施形態では、各コイルセグメント606a−606fには異なった電流が供給される。幾つかの実施形態では、複数の制御回路が1以上のコイルセグメント606を制御するために用いられる。
図6は各コイル組立体604が三つのコイルセグメント606を有していることを示しているけれども、各コイル組立体604はそれよりも多い、または少ないコイルセグメントを有していても良い。更に、一対のコイル組立体604は、同じ数のコイルセグメント606を有している必要はない。各コイル組立体604に対するコイルセグメント606の数および配置は、引き出されたイオンビーム116における特定のイオン密度分布を達成するように適切に構成しても良い。
【0055】
図7は、この発明の実施形態によるものであって、
図5の磁界源502の他の例示的な構成の概略図を示している。図示のように、各磁界源502のコイル組立体704は、1)対応する磁気コア702の周りに実質的に巻かれた主コイルセグメント708、および2)主コイルセグメント708の周りに巻かれた複数の副コイルセグメント710を含んでいても良い。各コイル組立体704の主コイルセグメント708および副コイルセグメント710の各々は、少なくとも一つの制御回路(図示せず)によって独立して制御される。この構成は、オペレータに、磁界源502によって作られる磁束を調整することにおいてより大きい柔軟性を提供し、その結果、イオンビーム116は、縦方向118における所望のイオン密度分布を有することができる。例えば、主コイルセグメント708は、イオン源構造体601内の磁界の粗い制御を実現することに使用することができ、一方、副コイルセグメント710は、当該磁界の細かい制御に使用することができる。幾つかの実施形態では、各主コイルセグメント708の縦の長さは、少なくともイオン化室102の当該長さと同じであり、一方、各副コイルセグメント710の前記長さは、主コイルセグメント708の前記長さよりも小さい。
【0056】
図8は、イオン源100によって発生されたイオンビームの例示的なイオン密度プロファイルの図を示している。このプロファイルは、縦軸118に沿う電流密度を示している。図示のように、この例示的なイオンビームの全イオンビーム電流800は約96.1mAであり、かつ電流密度は、縦軸118に沿って400mmの長さに亘って実質的に均一であり、その均一性は約±2.72%以内である。
【0057】
図9は、この発明の実施形態による他の例示的なイオン源の概略図を示している。イオン源900は、陽極904と、接地要素906と、磁界源組立体908と、ガス供給部910とを含んでいる。陰極902は、
図3の陰極302と実質的に同様のものでも良く、それは直接または間接的に加熱しても良い。陰極902を間接的に加熱する場合は、当該間接加熱を行うためにフィラメント913を用いることができる。陰極902は、熱電子的に電子を放出するように構成されており、陽極904の位置でエネルギー値の高い電子ビーム914を形成する。陽極904は陰極902に対して正電位に保たれる。更に、
図3の電子銃104と同様に、イオン源900内において陽極904と接地要素906との間にプラズマ916を生成することができる。プラズマ916は、ガス供給部910を経由しかつ接地要素906を通してイオン源900内に直接導入されたガスの電離によって作られる。電子ビーム914は、プラズマ916を長時間維持することができる。プラズマ916は、正帯電のイオン918を発生させるのに適しており、当該イオン918は、開口912の部分で引出し系(図示せず)によって引き出され、かつ注入用の基板へ輸送することができる。このイオン源900にイオン化室は必要ではない。それゆえに、イオン源900は設計および配置において比較的コンパクトである。
【0058】
幾つかの実施形態では、イオン源900の動作を制御するために、フィラメント913、陰極902および陽極904と関連づけられた電流および/または電圧を制御するために少なくとも一つの制御回路(図示せず)を用いても良い。当該制御回路は、イオン源900を、前述したようなイオンポンピングモードまたはプラズマ源モードの内の一つで動作させることができる。上記制御回路はまた、ガス供給部910の流量を調節して、引き出されたイオンビーム(図示せず)の特性を調整することができる。
図9中のフィラメント電源932、陰極電源934、陽極電源936およびエミッター電源938は、それぞれ、
図3中のフィラメント電源402、陰極電源404、陽極電源406およびエミッター電源430に相当するものである。
【0059】
オプションとして、イオン源900は、電子ビーム914をイオン源900内に閉じ込めるための外部磁界922を発生させる磁界源組立体908を含んでいても良い。図示のように、磁界源組立体908は、強力かつ局在化させた磁界922を発生させるために、永久磁石に結合されたヨーク組立体を備えており、当該磁界922は電子ビーム914の方向と平行でも良い。それの代わりに、ヨーク構造の周りに巻かれた電磁コイル組立体を用いても良い。従って、多くのイオン源装置に典型的な大型の外部電磁コイルの組み込みは必要ではない。上記のような磁界源組立体908は、イオン源900に近い磁界を終結させ、従って当該磁界はイオンの引出し領域の中へ遠くまで入り込むことはない。このことは、イオンが実質的に無磁界の領域から引き出されることを可能にする。
【0060】
図9のイオン源設計は多くの利点を有している。例えば、イオン源900のイオン化領域をエミッター組立体内に局在化させることによって(即ち大型のイオン化室を用いずに)、イオン源900の寸法をかなり縮小することができる。更に、ガスを、大型のイオン化室へ導入する代わりに、プラズマ916へその使用部分で導入することによって、ガス効率がかなり向上し、このことはイオン源900のコンパクトでモジュール方式の設計に寄与する。更に、適切な磁界クランプでプラズマ916の局所的な磁気閉じ込めを作り出すことは、イオン電流が実質的に無磁界の領域から引き出されることを可能にする。
【0061】
当業者は、この発明の精神または本質的特性から離れることなしに、この発明が他の特定の態様で実施され得ることを理解できるであろう。前述した実施形態はそれゆえに、ここに記載されている発明の制限よりもむしろ例示として全ての態様において考慮されるべきである。この発明の範囲は、前述した記載よりもむしろ付属の特許請求の範囲によって示されており、かつ特許請求の範囲の均等の意味および範囲内にある全ての変更はそれゆえに、特許請求の範囲内に包含されることが意図されている。