【実施例】
【0034】
<実施例1>
図1の形態において、接合部コア14の形状(面積と厚み)およびギャップ15の有無を変化させて特性を比較した。
【0035】
(実施例1−1〜1−5、比較例1−1〜1−2)
ヨーク部コアには直方体のMnZnフェライトコア(TDK製PE22材)を使用し、その寸法を長さ80mm、幅45mm、厚さ20mmとしたものを2個用意した。
【0036】
巻回部コアには鉄圧粉コアを使用した。鉄圧粉コアの寸法は高さ25mm、巻回部の直径が24mmとした。鉄粉はヘガネスAB社製Somaloy110iを使用し、潤滑剤としてステアリン酸亜鉛を塗布した金型に充填し、成形圧780MPaで加圧成形して、所定形状の成形体を得た。成形体を500℃でアニールを行い、鉄圧粉コアを得た。得られた2個の鉄圧粉コアを接着して1組の巻回部コアとしたものを2組用意した。
【0037】
接合部コアには板状の鉄圧粉コアを使用した。接合部コアは表1に示した形状(面積および厚み)とし、4枚の接合部コアを用意した。厚みに対して面積が大きなコアは、成形時の粉末充填が不均一となるため、実施例1−4と1−5については面積が半分のコアを2枚、接着剤で貼り合わせることにより表1の形状寸法に作製した。接合部コアに使用した鉄圧粉コアも形状以外は巻回部コアに使用した鉄圧粉コアと同様に作製した。
【0038】
2個の対向するヨーク部コアの間に、2組の巻回部コアを配置し、ヨーク部コアと巻回部コアが対向する4箇所の間隙に接合部コアを配置した。接合部コアの面積が巻回部コアのコア断面積よりも大きい場合には、巻回部コアの端部全体が接合部コアに対向するように接合部コアを配置した。接合部コアとヨーク部コアが対向する部分は、接合部コアの面積全体がヨーク部コアに対向するように、接合部コアを配置した。
【0039】
巻回部コアの巻回部に巻数44ターンのコイルを巻回してリアクトル(実施例1−1〜1−5、比較例1−1〜1−2)とした。
【0040】
(比較例1−3)
また、
図3の形態において、ヨーク部コアと巻回部コアとの間隙に接合部コアを配置しない従来の構造での特性を評価した。なお、
図3の(b)は、
図3の(a)をC−C´で切った断面図である。ヨーク部コアと巻回部コアとの間隙に接合部コアを配置しないこと以外は比較例1−2と同じ形態でリアクトル(比較例1−3)を作製した。
【0041】
(比較例1−4)
図1の形態において、接合部コアとして積層電磁鋼板を使用した場合の特性を評価した。積層電磁鋼板は厚さ0.1mmの無方向性電磁鋼板を30mmx30mmの寸法に切断し、それを10枚積層することで1個の接合部コアとした。接合部コアの材質以外は実施例1−3と同じ形態でリアクトル(比較例1−4)を作製した。
【0042】
得られたリアクトル(実施例1−1〜1−5、比較例1−1〜1−4)について、インダクタンスと高周波鉄損の評価を行った。
【0043】
LCRメータ(アジレント・テクノロジー社製4284A)と直流バイアス電源(アジレント・テクノロジー社製42841A)を用いて、インダクタンスの直流重畳特性を測定した。必要に応じて直流電流を印加しない状態の初期インダクタンスが600μHとなるように、実施例1−2および1−4では、ヨーク部コアと接合部コアの間の4箇所にギャップ材を挿入した。ギャップ材は厚さ0.15mmのPETフィルムを一辺40mmの四角形に切断したものを用いた。直流重畳特性は定格電流20Aのときのインダクタンスを測定した。ギャップ材の厚みおよび、直流重畳特性を表1に示した。
【0044】
BHアナライザ(岩通計測社製SY−8258)を用いて、高周波の鉄損を測定した。コアロスの測定条件は、f=20kHz、Bm=50mTとした。励磁コイルは25ターン、サーチコイルは5ターンとして、片方の巻回部コアに巻回して測定を行った。鉄損の測定結果を表1に示した。
【0045】
【表1】
【0046】
表1から明らかなように、従来の構造の比較例1−3においては、直流重畳電流20Aにおけるインダクタンスが初期インダクタンス(600μH)よりも40%近く低下し、370μHの低いインダクタンスしか得られない。比較例1−1〜1−2においては接合部コアを配置しているが、接合部コアの面積が、巻回部コアのコア断面積の1.3倍よりも小さいため、直流重畳下(直流重畳電流20A)でのインダクタンスが低下し、初期インダクタンス(600μH)に対し30%以上低下している。実施例1−1〜1−5のリアクトルでは接合部コアを配置し、その接合部コアの面積が1.3〜4.0の範囲にあることから、直流重畳電流20Aにおけるインダクタンスの改善効果が十分であり、インダクタンス値は500μH以上得られ、初期インダクタンスの30%以内の低下に抑えられている。また、高周波鉄損の増大も見られないことも確認された。
【0047】
比較例1−4は接合部コアの材質が積層電磁鋼板の場合である。比較例1−4ではギャップを挿入していないにもかかわらず、初期インダクタンスが270μHしか得られず、設計値の600μHに到達していない。また、比較例1−4の高周波鉄損は、実施例1−3の高周波鉄損の約10倍に増大している。積層電磁鋼板で板状コアを作製することは比較的容易であるが、鋼板の面内方向では電気抵抗が低いという問題がある。高周波では磁束に垂直な面内に非常に大きな渦電流が流れるため、その渦電流によってインダクタンスが低下し、損失も増大する。これに対して実施例1−3は鉄圧粉コアで同形状の接合部コアとした場合であるが、直流重畳電流20Aにおけるインダクタンス値は500μH以上得られ、初期インダクタンスの30%以内の低下に抑えられており、高周波鉄損の増大も見られない。よって接合部コアには、電気抵抗が等方的に比較的高い軟磁性金属圧粉コアを用いることが必要である。
【0048】
実施例1−1は接合部コアの形状が円板の場合、実施例1−2〜1−5は接合部コアの形状が角板の場合である。いずれの場合においても直流重畳下のインダクタンスは500μH以上得られ、初期インダクタンス(600μH)の30%以内の低下に抑えられている。接合部コアの形状によらず、インダクタンスの改善効果が得られることが確認できる。
【0049】
実施例1−3および1−5は接合部コアの厚みが1.0mmの角板の場合、実施例1−2および1−4は接合部コアの厚みが2.0mmの角板の場合である。いずれの場合においても直流重畳下のインダクタンスは500μH以上得られ、初期インダクタンス(600μH)の30%以内の低下に抑えられている。接合部コアの厚みによらず、インダクタンスの改善効果が得られることが確認できる。
【0050】
実施例1−4の接合部コア(35mmx40mm)は、2枚の板状コア(35mmx20mm)を、接着剤で貼り合わせて構成したものである。このような場合でも直流重畳下のインダクタンスは500μH以上得られ、初期インダクタンス(600μH)の30%以内の低下に抑えられている。よって、接合部コアは小さな面積の板状コアを2枚以上貼り合わせて所定の面積の板状コアとしてもよい。
【0051】
実施例1−5の接合部コア(一辺40mm)をヨーク部コアに対向して配置した場合には、ヨーク部コアの長さが80mmであるため、2個の接合部コア同士が接触するような配置となる。このような場合でも直流重畳下のインダクタンスは500μH以上得られ、初期インダクタンス(600μH)の30%以内の低下に抑えられている。よって、接合部コア同士が接触するような配置であってもよい。
【0052】
なお、接合部コアの面積が巻回部コアのコア断面積の4.0倍を超える場合には接合部コアの面積が1810mm
2を超える。2個合わせると3620mm
2を超えるため、ヨーク部コアの底面積3600mm
2(=長さ80mm×幅45mm)よりも大きくなってしまうことから、ヨーク部コアを大きくしなければ組立できず、小型化の要求を満たしえなくなる。
【0053】
実施例1−2および1−4はヨーク部コアと接合部コアの間にギャップ(ギャップ量0.15mm)を挿入した場合、実施例1−3および1−5はギャップを挿入しない場合である。いずれの場合においてもインダクタンスは500μH以上得られ、初期インダクタンス(600μH)の30%以内の低下に抑えられている。よって、ヨーク部コアと接合部コアとの間隙にギャップを設けることで、インダクタンスの改善効果を損なうことなく、容易に初期インダクタンスを調整することができる。
【0054】
<実施例2>
図2の形態において、接合部コア14の有無による特性の比較を行った。
【0055】
(実施例2−1)
ヨーク部コア11はコの字状のMnZnフェライトコア(TDK製PC90材)であり、背面部は長さ80mm、幅60mm、厚さ10mmとし、脚部は長さ14mm、幅60mm、厚さ10mmとした。
【0056】
巻回部コアにはFeSi合金圧粉コアを使用した。FeSi合金粉の組成はFe−4.5%Siとし、水アトマイズ法にて合金粉を作製し、篩い分けによって粒子径を調整して、平均粒径を50μmとした。得られたFeSi合金粉にシリコーン樹脂を2質量%添加し、これを加圧ニーダーにて室温で30分間混合し、軟磁性粉末表面に樹脂をコーティングした。得られた混合物を目開き355μmのメッシュにて整粒し、顆粒を得た。潤滑剤としてステアリン酸亜鉛を塗布した金型に充填し、成形圧980MPaで加圧成形して高さ24mm、直径24mmの成形体を得た。これを700℃、窒素雰囲気でアニールを行い、得られたFeSi合金圧粉コアを2個接着して1組の巻回部コアとした。
【0057】
接合部コアには鉄圧粉コアを使用した。形状は面積900mm
2(30mmx30mm)、厚さ1mmの角板とした。鉄圧粉コアの作製方法は実施例1と同様である。
【0058】
図2のようにロの字状の磁気回路を形成するように対向させたヨーク部コアの中央部に、1組の巻回部コアを配置し、ヨーク部コアと巻回部コアが対向する2箇所の間隙に接合部コアを配置した。巻回部コアの端部全体が接合部コアに対向するように接合部コアを配置した。接合部コアの面積全体がヨーク部コアに対向するように、接合部コアを配置した。巻回部コアに巻数38ターンのコイルを巻回してリアクトル(実施例2−1)とした。
【0059】
(比較例2−1)
接合部コアを配置しないこと以外は実施例2−1と同様の形態でリアクトル(比較例2−1)を作製した。
【0060】
得られたリアクトル(実施例2−1、比較例2−1)について、インダクタンスと高周波鉄損の評価を行った。
【0061】
実施例1と同様にインダクタンスの直流重畳特性を測定した。直流電流を印加しない状態の初期インダクタンスが570μHとなるように、実施例2−1の場合は接合部コアと巻回部コアの間の2箇所に、比較例2−1の場合はヨーク部コアと巻回部コアの間の2箇所に、ギャップ材を挿入した。ギャップ材は厚さ0.1mmのPETフィルムを重ねて用いた。ギャップ材を挿入するにあたっては、対向するフェライトコアの脚部の間隙がなくなるように、脚部の高さを研削で調整した。直流重畳特性は定格電流20Aのときのインダクタンスを測定し、表2に示した。
【0062】
実施例1と同様に高周波の鉄損を測定した。コアロスの測定条件は、f=20kHz、Bm=50mTとした。励磁コイルは25ターン、サーチコイルは5ターンとして、巻回部コアに巻回して測定を行った。鉄損の測定結果を表2に示した。
【0063】
【表2】
【0064】
表2から明らかなように比較例2−1のリアクトルでは直流重畳電流20Aにおけるインダクタンスが、初期インダクタンス(570μH)から50%以上低下し、280μHの低いインダクタンスしか得られていない。一方、実施例2−1のリアクトルでは直流重畳電流20Aにおけるインダクタンスが490μHとなり、初期インダクタンス(570μH)からの低下率は30%以内に抑えられている。また、高周波鉄損の増大も見られないことも確認された。
【0065】
面積比が同等となる(S2/S1=1.99)実施例1−3と実施例2−1を比較すると実施例2−1では高周波損失の低減が認められる。
図2の形態のように、巻回部コアを1組で構成する場合には、複合磁心の磁路に占めるフェライトコアの割合が大きくなるため、フェライトの低損失を活かして損失を低減することが可能となる。
【0066】
実施例2−1は巻回部コアと接合部コアの間にギャップ(ギャップ量0.5mm)を挿入した場合である。直流電流重畳下のインダクタンスは、初期インダクタンス(600μH)の30%以内の低下に抑えられている。よって、巻回部コアと接合部コアとの間隙にギャップを設けることで、インダクタンスの改善効果を損なうことなく、容易に初期インダクタンスを調整することができる。