【実施例】
【0038】
次に本発明の実施例を比較例とともに詳しく説明する。
【0039】
<実施例1>
先ず、反応容器に酢酸鉛三水和物(Pb源)とプロピレングリコール(ジオール)とを入れ、窒素雰囲気中、150℃の温度で1時間還流した後、この反応容器に2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)、チタンテトライソプロポキシド(Ti源)及びアセチルアセトン(安定化剤)を更に加え、窒素雰囲気中、150℃の温度で1時間還流して反応させることにより、合成液を調製した。ここで、上記酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.005:0.40:0.60となるように秤量した。またプロピレングリコール(ジオール)はCeドープのPZT系前駆体100質量%に対して35質量%となるように添加し、アセチルアセトン(安定化剤)はCeドープのPZT系前駆体1モルに対して2モルとなるように添加した。次いで上記合成液100質量%中に占めるCeドープのPZT系前駆体の濃度が、酸化物濃度で35%となるように減圧蒸留を行って不要な溶媒を除去した。ここで、合成液中に占めるCeドープのPZT系前駆体の濃度における酸化物濃度とは、合成液に含まれる全ての金属元素が目的の酸化物になったと仮定して算出した、合成液100質量%に占める金属酸化物の濃度をいう。
【0040】
次いで、合成液を室温で放冷することにより25℃まで冷却した。この合成液に1−オクタノール(炭素数8の直鎖状モノアルコール)とエタノール(溶媒)とを添加することにより、ゾルゲル液100質量%中に占めるCeドープのPZT系前駆体の濃度が、酸化物濃度で25質量%であるゾルゲル液を得た。換言すれば、上記目的濃度になるまで、合成液に1−オクタノール(炭素数8の直鎖状モノアルコール)とエタノール(溶媒)とを添加した。ここで、ゾルゲル液中に占めるCeドープのPZT系前駆体の濃度における酸化物濃度とは、ゾルゲル液に含まれる全ての金属元素が目的の酸化物になったと仮定して算出した、ゾルゲル液100質量%に占める金属酸化物の濃度をいう。
【0041】
次に、上記ゾルゲル液に、ポリビニルピロリドン(PVP:k値=30)をCeドープのPZT系前駆体1モルに対して0.02モルとなるように添加し、室温(25℃)で24時間撹拌することにより、CeドープのPZT系圧電体膜形成用の組成物を得た。この組成物は、市販の0.05μm孔径のメンブランフィルタを使用し、シリンジで圧送して濾過することにより粒径0.5μm以上のパーティクル個数がそれぞれ溶液1ミリリットル当たり1個であった。また、上記組成物100質量%中に占めるCeドープのPZT系前駆体の濃度は、酸化物濃度で25質量%であった。また、1−オクタノール(炭素数8の直鎖状モノアルコール)は、上記組成物100質量%に対して4質量%含まれていた。更に、プロピレングリコール(ジオール)は、上記組成物100質量%に対して30質量%含まれていた。
【0042】
得られた組成物を、SiO
2膜、TiO
2膜、Pt膜及びLNO膜(配向制御膜:(100)面に優先的に結晶配向が制御されたLaNiO
3)が下から上に向ってこの順に積層されかつスピンコータ上にセットされたシリコン基板の最上層のLNO膜上に滴下し、2100rpmの回転速度で60秒間スピンコートを行うことにより、上記LNO膜上に塗膜(ゲル膜)を形成した。この塗膜(ゲル膜)が形成されたシリコン基板を、ホットプレートを用いて、65℃に2分間加熱保持(乾燥)することにより、低沸点溶媒や水を除去した後に、300℃のホットプレートで5分間加熱保持(一段目の仮焼)することにより、ゲル膜を加熱分解し、更に450℃のホットプレートで5分間加熱保持(二段目の仮焼)することにより、ゲル膜中に残存する有機物や吸着水を除去した。このようにして厚さ200nmの仮焼膜(CeドープのPZTアモルファス膜)を得た。上記と同様の操作を2回繰り返すことにより、厚さ400nmの仮焼膜を得た。次に、上記厚さ400nmの仮焼膜が形成されたシリコン基板を、急速加熱処理(RTA)により酸素雰囲気中で700℃に1分間保持することにより、焼成した。このときの昇温速度は10℃/秒であった。このようにしてLNO膜(配向制御膜)上に厚さ400nmのCeドープのPZT膜を形成した。更に上記操作を5回繰返すことにより最終膜厚が2000nmであるCeドープのPZT系圧電体膜を作製した。なお、圧電体膜の膜厚は、圧電体膜の断面の厚さ(総厚)を、SEM(日立社製:S4300)により測定した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.40:0.60であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.01:0.005:0.40:0.60となり、一般式:Pb
1.01Ce
0.005Zr
0.40Ti
0.60O
3で表される。
【0043】
<実施例2>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.005:0.50:0.50となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.50:0.50であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.01:0.005:0.50:0.50となり、一般式:Pb
1.01Ce
0.005Zr
0.50Ti
0.50O
3で表される。
【0044】
<実施例3>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.005:0.52:0.48となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.01:0.005:0.52:0.48となり、一般式:Pb
1.01Ce
0.005Zr
0.52Ti
0.48O
3で表される。
【0045】
<実施例4>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.005:0.55:0.45となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.55:0.45であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.01:0.005:0.55:0.45となり、一般式:Pb
1.01Ce
0.005Zr
0.55Ti
0.45O
3で表される。
【0046】
<実施例5>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.01:0.40:0.60となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.40:0.60であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.01:0.005:0.40:0.60となり、一般式:Pb
1.01Ce
0.005Zr
0.40Ti
0.60O
3で表される。
【0047】
<実施例6>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.01:0.50:0.50となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.50:0.50であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.01:0.005:0.50:0.50となり、一般式:Pb
1.01Ce
0.005Zr
0.50Ti
0.50O
3で表される。
【0048】
<実施例7>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.03:0.52:0.48となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.01:0.005:0.52:0.48となり、一般式:Pb
1.01Ce
0.005Zr
0.52Ti
0.48O
3で表される。
【0049】
<実施例8>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.05:0.55:0.45となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.55:0.45であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.01:0.005:0.55:0.45となり、一般式:Pb
1.01Ce
0.005Zr
0.55Ti
0.45O
3で表される。
【0050】
<実施例9>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.03:0.40:0.60となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.40:0.60であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.03:0.005:0.40:0.60となり、一般式:Pb
1.03Ce
0.005Zr
0.40Ti
0.60O
3で表される。
【0051】
<実施例10>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.03:0.50:0.50となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.50:0.50であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.03:0.005:0.50:0.50となり、一般式:Pb
1.03Ce
0.005Zr
0.50Ti
0.50O
3で表される。
【0052】
<実施例11>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.03:0.52:0.48となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.03:0.005:0.52:0.48となり、一般式:Pb
1.03Ce
0.005Zr
0.52Ti
0.48O
3で表される。
【0053】
<実施例12>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.03:0.55:0.45となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.55:0.45であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.03:0.005:0.55:0.45となり、一般式:Pb
1.03Ce
0.005Zr
0.55Ti
0.45O
3で表される。
【0054】
<実施例13>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.05:0.40:0.60となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.40:0.60であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.04:0.005:0.40:0.60となり、一般式:Pb
1.04Ce
0.005Zr
0.40Ti
0.60O
3で表される。
【0055】
<実施例14>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.05:0.50:0.50となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.50:0.50であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.04:0.005:0.50:0.50となり、一般式:Pb
1.04Ce
0.005Zr
0.50Ti
0.50O
3で表される。
【0056】
<実施例15>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.05:0.52:0.48となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.04:0.005:0.52:0.48となり、一般式:Pb
1.04Ce
0.005Zr
0.52Ti
0.48O
3で表される。
【0057】
<実施例16>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.05:0.55:0.45となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.005:0.55:0.45であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.04:0.005:0.55:0.45となり、一般式:Pb
1.04Ce
0.005Zr
0.55Ti
0.45O
3で表される。
【0058】
<実施例17>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.08:0.03:0.52:0.48となるように秤量し、ポリビニルピロリドン(PVP)の混合割合をCeドープのPZT系前駆体1モルに対して0.05モルとし、更にプロピレングリコール(ジオール)の混合割合を組成物100質量%に対して30質量%としたこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.08:0.03:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が0.95:0.03:0.52:0.48となり、一般式:Pb
0.95Ce
0.03Zr
0.52Ti
0.48O
3で表される。
【0059】
<実施例18>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.12:0.03:0.52:0.48となるように秤量したこと以外は、実施例17と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.12:0.03:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が0.99:0.03:0.52:0.48となり、一般式:Pb
0.99Ce
0.03Zr
0.52Ti
0.48O
3で表される。
【0060】
<実施例19>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.18:0.03:0.52:0.48となるように秤量したこと以外は、実施例17と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.18:0.03:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.05:0.03:0.52:0.48となり、一般式:Pb
1.05Ce
0.03Zr
0.52Ti
0.48O
3で表される。
【0061】
<実施例20>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.18:0.03:0.52:0.48となるように秤量したこと以外は、実施例17と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.18:0.03:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.15:0.03:0.52:0.48となり、一般式:Pb
1.15Ce
0.03Zr
0.52Ti
0.48O
3で表される。
【0062】
<比較例1>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.004:0.52:0.48となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.004:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.00:0.004:0.52:0.48となり、一般式:PbCe
0.004Zr
0.52Ti
0.48O
3で表される。
【0063】
<比較例2>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.06:0.40:0.60となるように秤量したこと以外は、実施例1と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.06:0.40:0.60であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.00:0.06:0.40:0.60となり、一般式:PbCe
0.06Zr
0.40Ti
0.60O
3で表される。
【0064】
<比較例3>
2−エチルヘキサン酸セリウム(Ce源)を添加しなかった、即ち酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0:0.52:0.48となるように秤量したこと以外は、実施例1と同様にしてPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.02:0:0.52:0.48となり、一般式:Pb
1.02Zr
0.52Ti
0.48O
3で表される。
【0065】
<比較例4>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.03:0.38:0.62となるように秤量したこと以外は、実施例1と同様にしてPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.03:0.38:0.62であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.02:0.03:0.38:0.62となり、一般式:Pb
1.02Ce
0.03Zr
0.38Ti
0.62O
3で表される。
【0066】
<比較例5>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.15:0.03:0.57:0.43となるように秤量したこと以外は、実施例1と同様にしてPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.15:0.03:0.57:0.43であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.02:0.03:0.57:0.43となり、一般式:Pb
1.02Ce
0.03Zr
0.57Ti
0.43O
3で表される。
【0067】
<比較例6>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.07:0.03:0.52:0.48となるように秤量したこと以外は、実施例17と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.07:0.03:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が0.94:0.03:0.52:0.48となり、一般式:Pb
0.94Ce
0.03Zr
0.52Ti
0.48O
3で表される。
【0068】
<比較例7>
酢酸鉛三水和物(Pb源)、2−エチルヘキサン酸セリウム(Ce源)、ジルコニウムテトラブトキシド(Zr源)及びチタンテトライソプロポキシド(Ti源)は、CeをドープしたPZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)が1.29:0.03:0.52:0.48となるように秤量したこと以外は、実施例17と同様にしてCeドープのPZT系圧電体膜を形成した。なお、PZT系前駆体の金属原子比(Pb:Ce:Zr:Ti)は1.29:0.03:0.52:0.48であったけれども、Pbの一部が焼成により蒸発して飛んでしまい、焼成後のCeドープのPZT系圧電体膜は、金属原子比(Pb:Ce:Zr:Ti)が1.16:0.03:0.52:0.48となり、一般式:Pb
1.16Ce
0.03Zr
0.52Ti
0.48O
3で表される。
【0069】
<比較試験1及び評価>
実施例1〜20及び比較例1〜7で形成したCeドープのPZT系圧電体膜について、分極量のヒステリシスのずれ、配向度、圧電定数e
31.f及びクラックの有無をそれぞれ測定した。圧電体膜の分極量のヒステリシスのずれは、TF-analyzer2000(aix ACCT社製)を用いて測定した。具体的には、先ずCeドープのPZT系圧電体膜の両面に、スパッタ法により200μmφの一対の電極をそれぞれ形成した後、RTAを用いて、酸素雰囲気中で700℃に1分間保持して、ダメージを回復するためのアニーリングを行い、MIM(Metal-Insulator-Metal)キャパシタ構造をそれぞれ作製した。次にこれらを試験用サンプルとし、1kHzの周波数で25Vの電圧を印加して圧電体膜の分極量のヒステリシスを測定し、更に得られた分極量のヒステリシスのずれを求めた。
【0070】
また、CeドープのPZT系圧電体膜の結晶の(100)面における配向度は、X線回折(XRD)装置(パナリティカル社製、型式名:Empyrean)を用いた集中法により得られた回折結果から、(100)面の強度/{(100)面の強度+(110)面の強度+(111)面の強度}を計算することにより算出した。
【0071】
また、圧電定数e
31.fの測定は、圧電評価装置(aix ACCT社製:4-Point Bending System)を用いて測定した。なお、上記測定は1kHzの周波数で行った。
【0072】
更に、クラックの有無は、上記膜厚測定に用いた走査型電子顕微鏡により膜表面及び膜断面の組織を走査型電子顕微鏡(SEM)により撮影した画像を観察し、このSEM画像からクラックの有無を観察した。そして、クラックが観察されなかった状態であったときを『クラック無し』とし、クラックが観察された状態であったときを『クラック有り』とした。これらの結果を表1及び表2に示す。
【0073】
【表1】
【0074】
【表2】
【0075】
表1から明らかなように、Ceのドープ量が0.004と少ない比較例1及びCeを全くドープしなかった比較例3では、圧電体膜にクラックが発生しなかったけれども、P−Vヒステリシスのずれが1kV/cm及び0kV/cmと小さく、圧電定数e
31.fの絶対値が4.3C/m
2及び0.3C/m
2と小さかった。またCeのドープ量が0.06と多い比較例2では、P−Vヒステリシスのずれが15kV/cmと大きかったけれども、圧電体膜にクラックが発生し、圧電定数e
31.fの絶対値が6.2C/m
2と小さかった。これらに対し、Ceのドープ量が0.005〜0.05と適切な範囲内である実施例1〜16では、圧電体膜にクラックが発生せず、P−Vヒステリシスのずれが4〜16kV/cmと大きくなり、圧電定数e
31.fの絶対値が8.2〜16.1C/m
2と大きくなった。
【0076】
また、Zr/Tiの原子比が0.38/0.62と小さい比較例4及びZr/Tiの原子比が0.57/0.43と大きい比較例5では、P−Vヒステリシスのずれが8C/m
2及び6C/m
2と大きくなり、圧電体膜にクラックが発生しなかったけれども、圧電定数e
31.fの絶対値が3.8C/m
2及び5.2C/m
2と小さかった。これらに対し、Zr/Tiの原子比が0.40/0.60〜0.55/0.45と適切な範囲内である実施例1〜16では、圧電体膜にクラックが発生せず、P−Vヒステリシスのずれが4〜16kV/cmと大きくなり、圧電定数e
31.fの絶対値が8.2〜16.1C/m
2と大きくなった。
【0077】
更に、表2から明らかなように、PZT系圧電体膜中のPbの含有割合が0.94と少ない比較例6では、圧電定数e
31.fの絶対値が7.2C/m
2と小さく、PZT系圧電体膜中のPbの含有割合が1.16と多い比較例7では、圧電定数e
31.fの絶対値が8.0C/m
2と小さかったのに対し、PZT系圧電体膜中のPbの含有割合が0.95〜1.15と適切な範囲内の実施例17〜20では、圧電定数e
31.fの絶対値が11.8〜14.2C/m
2と大きくなった。このことからPZT系圧電体膜中のPbの含有割合zが0.95≦z≦1.15になるように組成物中のPb濃度を制御することが重要であることが分かった。
【0078】
一方、実施例15及び比較例3で形成したCeドープのPZT系圧電体膜について、上記比較試験1でヒステリシスのずれを測定したときのヒステリシス曲線を
図4に描いた。この
図4に描かれたヒステリシス曲線から明らかなように、実施例15の圧電体膜が比較例3の圧電体膜より負側にシフトしていることが分かった。