(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
<第1の実施形態>
以下、本発明に係る映像表示装置について、添付図面を参照して説明する。以下では表示パネルとしてアクティブマトリクス型の反射型液晶表示素子6を備えた液晶表示装置100を用いた映像表示装置を例にして説明する。
【0012】
図1は、液晶表示装置100を用いた映像表示装置による表示を説明するための図である。映像信号源104から映像信号が液晶表示装置100に送られる。液晶表示装置100では、映像信号を所定の回路により間引いた後、時間順次の信号Aと信号Bに変換後、信号Aと信号Bを交互に所定の距離だけずらしスクリーン上に投影する。
【0013】
次に、液晶表示装置100および反射型液晶表示素子6の概略構成について説明する。
図2は、反射型液晶表示素子を用いた液晶表示装置100を示す概略構成図である。液晶表示装置100は、概略、反射型液晶表示素子6、偏光ビームスプリッタ5(以下、PBSという)、投射レンズ11を含んで構成される。反射型液晶表示素子6は、対向電極(透明電極ともいう)10と、画素電極8との間に液晶9が封止された構造を有する。
【0014】
照明光学系1から射出したS偏光3とP偏光4を含む光2はPBS5に入射する。PBS5にて偏光分離される。S偏光3はPBS5の偏光分離面で反射され、反射型液晶表示素子6側に進行する。P偏光はPBSの偏光分離面を透過する。反射型液晶表示素子6の液晶9は、画素回路7によって画素電極8と対向電極10の間に印加される電圧に応じて入射したS偏光を変調する。対向電極10に入射したS偏光は、画素電極8で反射して対向電極10から射出するまでの過程で変調を受け、P偏光とS偏光からなる光として対向電極10から射出される。対向電極10から射出された光は変調された光であるP偏光成分のみがPBS5を通過し、S偏光成分はPBS5で反射される。PBS5を通過したP偏光は投射レンズ11によって射出され、射出光12はスクリーン13上に投射されて画像が表示される。なお、後述する出力光の強度とは、スクリーン13上で測定した出力光の照度をいう。
【0015】
図3はデジタル駆動の反射型液晶表示素子6における各画素の駆動回路構成を示す図である。反射型液晶表示素子6の個々の画素は画素電極8と対向電極10の間に液晶9がはさまれた構造になっている。破線で示した画素回路7は、サンプルホールド部16と電圧選択回路17からなる。サンプルホールド部16はSRAM構造のフリップフロップよりなる。サンプルホールド部16は列データ線Dと行選択線Wとに接続されている。サンプルホールド部16の出力は電圧選択回路17へと接続されている。電圧選択回路17はブランキング電圧線V0、駆動電圧線V1に接続されている。電圧選択回路17は画素電極8へと接続され、画素電極8に所定の電圧を与える。対向電極10の電圧の値は共通電圧Vcomと呼ばれている。
【0016】
図4は以下の各の実施形態における反射型液晶表示素子6の入力電圧と出力光の強度との関係を示す図である。
図4において、横軸は入力電圧であり、画素電極8と対向電極10との間の電位差、すなわち液晶9の駆動電圧を示す。縦軸は、液晶9から射出される出力光の強度を示す。液晶9から射出される出力光の強度が大きくなり始める電圧が闇値電圧Vthである。電圧が0(たとえば、画素電極8と対向電極がともにGND)のときは、出力光の強度が少なく、黒状態(ブランキング電圧)であり、出力光が飽和し始める電圧が飽和電圧Vw(白レベルである。)である。
【0017】
図5は映像信号に関する信号処理の流れを示す図である。映像信号源104から送出される映像信号は信号処理部としての信号処理回路101へ入力される。
図5では例として、映像信号が画素数3840×2160、同期信号周波数60Hzの場合を示している。信号処理部としての信号処理回路101では、入力された映像信号は、水平、垂直それぞれ半分に間引かれた画素からなる信号Aと信号Bとに分離される。ここで信号Aを構成する画素と信号Bを構成する画素は、入力された映像信号上では水平、垂直それぞれ1画素ずれた画素から構成される。分離された信号Aと信号Bは時間的に交互に並べ替えられ、表示速度が2倍に変換される。このようにデコードされた映像信号は駆動回路102に入力する。駆動回路102はデコードされた映像信号に基づいて反射型液晶表示素子6を駆動する。
【0018】
図5では映像信号が60Hzで入力される様子を示したが、60Hzに限定されず他の周波数(例えば50Hzや24Hzなど)でもよい。また信号処理回路101は映像信号を2倍の周波数の信号に変換するが、周波数の変換は2倍に限定されず、これ以上でもよい。画面解像度も、画素数3840×2160以外であってもよい。
【0019】
図6は本発明の第1の実施形態に係る駆動回路(駆動装置)102を示すブロック図である。
図7は第1の実施形態における階調表現を説明するための図である。
図7は入力された映像信号データのビット数を8ビットとした場合における各プロセス部における階調表現の例を示している。
図8は第1の実施形態における駆動パターンを示す図である。
図9は第1の実施形態における駆動階調テーブルを示す図である。
図10は第1の実施形態における誤差拡散図を示す図である。
図11は第1の実施形態における誤差拡散フローを示す図である。
【0020】
図6において、Nビットの入力された映像信号データは、ルックアップテーブル部21にて、Nより大きい(M+F+D)ビットのデータに変換される。ここで、Mはサブフレーム数を2進数で表したときのビット数、Dは誤差拡散処理部23により補間されるビット数、Fはフレームレートコントロール部24により補間されるビット数を表している。なおN、M、F、Dは整数である。
【0021】
図7の例では、入力された映像信号データのビット数は8ビット(N=8)、誤差拡散処理部23にて補間されるビット数は4ビット(D=4)、フレームレートコントロール部24にて補間されるビット数は2ビット(F=2)としている。サブフレーム数を2進数で表した場合のビット数は4ビット(M=4)、駆動階調は12個(黒を含まない)としている。
【0022】
ここでルックアップテーブル部21の動作を説明する。一般的に映像信号はガンマ補正がかけられている。画像表示装置側ではガンマ補正がかけられた映像信号に対し逆ガンマ補正処理を施してリニアな階調に戻すことが必要である。逆ガンマ補正とは入力Xに対して出力がXの2.2乗となるような補正である。この場合、出力特性は「ガンマ2.2」であると以下表現する。ルックアップテーブル部21は反射型液晶表示素子6の入出力特性を変換してガンマ2.2の出力特性を有する液晶表示装置を実現する機能を担っている。ルックアップテーブルは、10ビットの出力が、任意の出力特性(例えばガンマ2.2)となるようにあらかじめ調整されている。例えば、第1の実施形態では
図7に示す12個の駆動階調(黒を含まない)のそれぞれの駆動による画像を
図1に示す液晶表示装置で投影し、スクリーン13上の照度を照度計等でそれぞれ測定しておく。それぞれの駆動階調間の照度を6ビット(M+D=6)(64階調)で直線補間することによって、0〜768の階調毎の照度データが予測される。それらの照度データから任意の出力特性(例えばガンマ2.2)となるような256個のデータを選び、あらかじめルックアップテーブルとして保持されているものとする。
【0023】
ルックアップテーブル部21は、256x10ビット(すなわち、「2の8乗」階調x(4+2+4)ビット)のルックアップテーブルを有している。ここで、「2の8乗」階調x(4+2+4)ビットとは、「2のN乗」階調x(M+F+D)ビットに対してN=8、M=4、F=2、D=4の値を代入したものに相当する。ルックアップテーブル部21は、入力された8ビットの画像データを、10ビットのデータに変換して出力する。
【0024】
図6に戻り、ルックアップテーブル部21にて(M+F+D)ビットに変換された映像信号データは、誤差拡散部23により下位Dビットの情報を周辺画素に拡散することによって、(M+F)ビットのデータに変換される。
図7の例では、変換された10ビットのデータは、誤差拡散部23にて、下位4ビットの情報を周辺画素に拡散し上位6ビットのデータに量子化して出力される。
【0025】
誤差拡散法とは、表示すべき映像信号と実表示値との誤差(表示誤差)を周辺の画素に拡散することで階調不足を補う方法である。第1の実施形態においては、表示すべき映像信号の下位4ビットを表示誤差とし、
図10のように右隣の画素に表示誤差の7/16を、左下の画素に表示誤差の3/16を、直下の画素に表示誤差の5/16を、右下の画素に表示誤差の1/16を加える。
【0026】
誤差拡散部23の動作を
図11でより詳しく説明する。ある座標の映像信号は上述のように誤差を拡散するとともに、以前の映像が拡散した誤差が加算される。入力された10ビットのデータは、まず、以前の映像が拡散した誤差が誤差バッファにより加算される。入力映像信号データは誤差バッファの値が加算された後、上位の6ビットと下位の4ビットに分割される。
【0027】
分割された下位の4ビットの値を以下に示す。右側の値は表示誤差である。
下位4ビット 表示誤差
0000 0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7
1000 −7
1001 −6
1010 −5
1011 −4
1100 −3
1101 −2
1110 −1
1111 0
【0028】
分割された下位の4ビットの値に対応する表示誤差は、
図11のように誤差バッファへと加算され保持される。また、分割された下位の4ビットの値に対してスレッショルド比較を行ない、値が1000より大きい場合(上記の左部の値が1000である行以降の行)、上位6ビットの値に1が加算される。そして、上位の6ビットのデータが誤差拡散部から出力される。
【0029】
図6に戻り、誤差拡散部23にて(M+F)ビットに変換された映像信号データは、フレームレートコントロール部24に入力される。ここで、フレームレートコントロールとは、表示素子の1画素の表示に対してm(m:m≧2、自然数)フレームを1周期として、その周期のn(n:n>0、m>n、自然数)フレームではオン表示を行ない、残りの(m−n)フレームではオフ表示を行うことにより疑似的に階調を表示させる技術である。言い換えると、フレームレートコントロールとは、画面の書き換えと網膜の残像効果を利用して中間階調を擬似的に作り出す技術である。たとえばあるピクセルを1フレームごとに0階調と1階調に交互に書き換えることにより、人間の眼には0階調と1階調の中間の階調に見えることになる。そして、たとえば4フレームについてのこのような0階調と1階調の交互の書き換えを1セットとして制御することによって、0階調と1階調の間に3段階の階調を擬似的に表現できるようになる。
【0030】
図12は第1の実施形態におけるフレームレートコントロールフローを示す図である。
図13は第1の実施形態におけるフレームレートコントロールテーブルを示す図である。
図6に示すフレームレートコントロール部24はフレームレートコントロールテーブルを備えている。フレームレートコントロール部24では、下位Fビットの値と、画素の位置情報及びフレームのカウント情報から、フレームレートコントロールテーブル内の位置を特定し、その値(1または0の値、以下0/1と記載する。)が上位Mビットに加えられ、Mビットのデータに変換される。
【0031】
図7の例では、誤差拡散部23により出力された6ビットのデータは、フレームレートコントロール部24に入力される。フレームレートコントロール部24は、下位2ビットの情報と、表示エリアでの位置情報およびフレームカウンタ情報より、フレームレートコントロールテーブルから0/1の値を導き、入力された6ビットから分離された上位4ビットの値に加算する。
【0032】
フレームレートコントロール部24の動作を
図12で具体的に説明する。入力された6ビットのデータは、上位の4ビットと下位の2ビットに分割される。入力された6ビットデータの下位2ビットと、画素の表示エリアでの位置情報(すなわち、座標データであるX座標の下位2ビットおよびY座標の下位2ビット)と、フレームカウンタの下位2ビットとの合計8ビットの値を用いて、
図13のフレームレートコントロールテーブルで示される“0”か“1”の値を特定する。特定された“0”か“1”の値は上位4ビットのデータに加算して、4ビットデータとして出力される。
【0033】
図14は、フレームレートコントロールを信号A・信号Bの区別をせずに適用した場合の不具合を説明するための図である。ここで上述の
図13における「X座標下位2ビットの0、1、2、3」という表記を、
図14から
図17においては、「Hscan1、Hscan2、Hscan3、Hscan4」と表記するものとする。また、
図13における「Y座標下位2ビットの0、1、2、3」という表記を
図14から
図17においては、「Vscan1、Vscan2、Vscan3、Vscan4」と表記するものとする。また、
図14から
図17において、映像信号として、信号A、信号Bの交互の繰り返し信号を考える。
【0034】
通常、フレームレートコントロールは連続する4フレームを1セットとして処理をする。通常の映像信号の場合はその処理で妥当である。しかしながら、今回の映像信号は信号A・信号Bの交互の繰り返しであるため、不具合が発生する。フレームレートコントロールテーブルを通常に適用すると、信号Aと信号Bを区別しないため、信号Aの2フレームと信号Bの2フレーム合計4フレームでフレームレートコントロールを行うことになるからである。ところが、信号Aと信号Bの信号が異なる値を採る場合、以下にて説明するような不具合が発生する。
【0035】
いまHscan1〜Hscan4およびVscan1〜Vscan4の16ドットにおいて、信号Aではその下位2ビットが01であり、信号Bではその下位2ビットが11である場合を仮定する。その場合に、フレームレートコントロールを適用した図が
図14である。信号A、信号Bと区別をしない通常のフレームレートコントロールを適用すると、
図14のようになり、フレーム平均をしたときにHscan1〜Hscan4およびVscan1〜Vscan4の16ドットの値が信号Bでは0の領域と0.5の領域となってしまい、期待される値0.25にならない。一方、信号Aでは0.5の領域と1.0の領域に分かれてしまい、期待される値0.75にならない。すなわち、同じ値であるべき16ドットの値が異なる2つの値になってしまうという不具合が発生する。
【0036】
図15は入力映像フレーム番号とフレームレートコントロールにおけるフレーム番号の対応を示した図である。
図15ではフレームレートコントロールをFRCと略記している。通常の信号での入力映像フレーム番号とフレームレートコントロールにおけるフレーム番号の対応は、
図15の上段の図のような関係であった。ところが
図15中段の図のように、信号A、信号Bを区別しない通常のフレームレートコントロールテーブルを適用すると、上記のような不具合が発生する。
【0037】
そこで、第1の実施形態に係る発明では
図15の下段の図のように信号Aと信号Bに別々のフレームレートコントロールテーブルにおけるフレーム番号を割り当てる。
図16は、信号Aと信号Bに別々のフレームレートコントロールテーブルにおけるフレーム番号を割り当てた場合のフレームレートコントロールテーブルを示した図である。下位2ビット信号が00、01、10、11の全ての場合に対してそれぞれ、0、0.25、0.5、0.75という正常な値が得られる。すなわち、上記により信号Aと信号Bに対して別々にフレームレートコントロールを適用するため、正しい階調を表示することができる。なお、
図17のように、信号Aと信号Bでフレームレートコントロールのパターンの順番を入れ替えてもよい。
図17は、
図16において信号Aと信号Bでフレームレートコントロールのパターンの順番を入れ替えた場合の図である。さらに、信号Aと信号Bに異なる種類のパターンにしても良い。
【0038】
図18は第1の実施形態においてのフレームレートコントロールフローを説明するための図である。
図18は2つの回路を並列に駆動させて信号Aと信号Bのフレーム方向の処理を独立させている。また、1つの回路を用いて信号Aと信号Bを判別して、操作を切り替えてもよい。
【0039】
図7に戻り、フレームレートコントロール部24から出力された4ビットデータは
図6で示されているリミッタ部25にて駆動階調の最大値である12に制限された後、サブフレームデータ作成部26にて、反射型液晶表示素子6へ転送されるべき12ビットのデータに変換される。12ビットのデータへの変換は駆動階調テーブル27を使用する。
【0040】
図6に戻り、サブフレームデータ作成部26から出力された12ビットのデータは、メモリ制御部28にて、サブフレーム毎に分割されたフレームバッファ29に格納される。フレームバッファ29はダブルバッファの構造になっており、フレームバッファ0にデータを格納中は、フレームバッファ1のデータがデータ転送部を経由して反射型液晶表示素子6に転送されることになり、次のフレームでは、前フレーム期間中に格納されたフレームバッファ0のデータがデータ転送部30を経由して液晶表示素子6に転送され、フレームバッファ1には入力された映像信号データのサブフレームデータ作成部26からの出力データが格納される。
【0041】
駆動制御部31は、サブフレーム毎の処理のタイミング等を制御しており、データ転送部30への転送指示およびゲートドライバ34の制御を行う。データ転送部30は、駆動制御部31からの指示に従い、メモリ制御部28に指示を行ない、指定したサブフレームのデータをメモリ制御部28から受け取りソースドライバ33へと転送する。ソースドライバ33は、1ライン分のデータをデータ転送部30より受け取る毎に、反射型液晶表示素子6の対応する画素回路7へ列データ線D0−Dnを用いて同時に転送する。この時、ゲートドライバ34では、駆動制御部31からの垂直スタート信号(VST)/垂直シフトクロック信号(VCK)により指定された行の行選択線Wyをアクティブにし、指定された行yの全ての列の画素へとデータが転送される。
【0042】
図8を用いて第1の実施形態における駆動パターンについて説明する。
図8は、映像信号が1秒あたり120フレーム、サブフレーム数が12個の場合について示している。WCは液晶表示素子内の全ての画素にサブフレーム毎のデータを転送するデータ転送期間(WC期間)を表している。DCは、液晶を駆動する際の駆動期間(DC期間)を表している。WC期間は347[μs]、DC期間を347[μs]としている。1フレームにおいて、WC期間とDC期間が交互に12回連続する。時間的に先頭からSF1、SF2、…、SF11、SF12の順番でそれぞれのサブフレームに割り当てられた0または1のデータがWC期間にて転送され、DC期間全ての画素の液晶が駆動される。画素内にサンプルホールドされたデータが0の場合は、その画素はブランキング状態となり、1の場合は駆動状態となる。
【0043】
次に、
図9に示す第1の実施形態における駆動階調テーブルについて説明する。
図8と同様、映像信号は1秒あたり120フレーム、サブフレーム数が12個、データ転送期間(WC期間)は347[μs]、駆動期間(DC期間)を347[μs]としている。
図7は駆動階調に対するサブフレーム毎のDC期間の状態を示している。
図9の縦の欄の階調とは、フレームレートコントロール部24で得た4ビットのデータであってリミッタ部25にて駆動階調の最大値である12で制限されたものである。SF1−SF12は1フレーム内のサブフレームの順番を表している。DC期間の欄が1の場合は駆動状態であることを示す。DC期間の欄が0の場合はブランク状態であることを示す。
図9の縦の欄に示す階調が1の場合、最後のサブフィールドであるSF12のみが駆動状態となる。階調が2の場合、SF11とSF12だけが駆動状態となる。以下、階調の数が増える毎に駆動状態となるサブフレームが増えていき、最も高い階調である12の場合、全てのサブフレームが駆動状態となる。言い換えると、階調の数が増えるにしたがい、駆動状態となるサブフレームが時間的に前方に増えていく。
【0044】
ところで第1の実施形態においては、表示素子としてアクティブマトリクス型の反射型液晶表示素子6を備えた投射型表示装置を例にして説明している。ここで、
図9の階調駆動テーブルで液晶を駆動する場合の特徴を説明する。
図9において、階調がKであるとする。するとSF(13−K)からSF12までが1(駆動状態)となる。SF(13−K)からSF12までの1は、ほぼ連続したオン状態とみなされる結果、K(階調数)と出力光の関係はほぼ
図4に示す反射型液晶表示素子6の入力電圧と出力光の強度との関係に近いカーブを描く。これは、ルックアップテーブル部21の動作に有利に作用する。すなわち、反射型液晶表示素子6の入力電圧と出力光の強度との関係はルックアップテーブル部21が目標としているガンマ2.2のカーブに比較的近いため、ルックアップテーブル部21にてガンマ2.2のカーブに変換する負担が少なくなる。以上の特徴は、透過型液晶素子においても同様である。
【0045】
図19は第1の実施形態における信号処理を示す図である。
図20は第1の実施形態における反射型液晶表示素子6の極性反転駆動を示す図である。
【0046】
以下
図3、
図6、
図8を参照しつつ、
図19において信号処理を説明する。
図19において、時刻T0にて垂直同期信号Vsyncがアクティブになり、最初に、時刻T0−T1の期間にてサブフレーム1(SF1)のデータを反射型液晶表示素子6に転送する。この期間(T0−T1)が転送期間WCとなる。転送期間WCの間、反射型液晶表示素子6は画素内のサンプルホールドされた値に関わらず、ブランキング状態とする必要があり、V0/V1/Vcomは同じ電圧(ここではGND)を設定する。ここで、V0はブランキング電圧、V1は駆動電圧、Vcom(共通電圧)は液晶の対向電極10の電圧である。時刻T1にて転送が終わり、次の期間(T1−T3)は駆動期間DCとなる。時刻T2は期間(T1−T3)のちょうど中間となり、期間(T1−T2)と期間(T2−T3)は同じ時間となる。期間(T1−T2)ではV1がVw、V0/VcomがGNDとなるように、また、期間(T2−T3)では期間(T1−T2)とは反対に、V1がGND、V0/VcomがVwとなるように電圧制御部32にて制御される。
【0047】
画素回路7内のサンプルホールドの値が“0”の場合、画素回路7内の電圧選択回路17にてV0が画素電極8に印加される。期間T1−T2では、画素電極電圧Vpeと対向電極電圧VcomはともにGNDとなる。液晶9にかかる電圧は0[v]となり、液晶の駆動状態はブランキング状態となる。
【0048】
画素内のサンプルホールドの値が“1”の場合、画素回路7内の電圧選択回路17にてV1が画素電極8に印加される。期間T1−T2では、画素電極電圧VpeはVw、対向電極電圧VcomはGNDとなる。液晶9にかかる電圧は+Vw(対向電極基準)となり、液晶は駆動状態となる。期間T2−T3では、画素電極電圧VpeはGND、対向電極電圧VcomはVwとなり、液晶9にかかる電圧は−Vw(対向電極基準)となり、駆動状態となる。
【0049】
液晶に同じ電圧で方向の異なる電圧(+Vw/−Vw)を同じ期間印加することにより、長時間平均して液晶に印加する電圧を+Vw+(−Vw)=0[v]とすることにより、焼き付きを防止している。SF2−SF12もSF1の期間T0−T3と同様な電圧制御を行う。
図20において、期間(T1−T2)に相当する状態、すなわち、V1がVw、V0/VcomがGNDとなるような状態をDCバランス+と表している。また、期間(T2−T3)に相当する状態、すなわち、V1がGND、V0/VcomがVwとなるような状態をDCバランス−と表している。
【0050】
また、第1の実施の形態では、
図8、
図9に示す通り、動画擬似輪郭の原因となるバイナリビットパルスを用いず、すべて同じ幅のステップビットパルスを用いている点も特徴である。バイナリビットパルスとは各サブフィールドに対して重みが2n (n=0、1、2、3…)で表されるいわゆる“バイナリの重み付け”を行うものである。一方、ステップビットパルスとは、1、2、4、8、16のバイナリビットパルスがある場合、32、32、32、32、32、32、32のような同じ重み付けのパルスのことをいう。すべてバイナリビットパルスにする場合と比較して、ステップビットパルスを併用することで動画擬似輪郭を相対的に軽減する効果がある。
【0051】
動画擬似輪郭とは、隣り合った画素の似たような階調において、片方の画素でのバイナリビットパルスの多くが駆動状態であり、もう片方の画素でのバイナリビットパルスの多くがブランキング状態である場合、視線を動かした時や、顔のアップ等が動いたときに、意図しない輝度が眼で知覚されることをいう。本実施形態では、動画擬似輪郭の原因となるバイナリビットパルスを用いず、すべて同じ幅のステップビットパルスを用いている。そのため視線方向を動かした場合でも、輝度が著しく変化しないため、動画擬似輪郭はほとんど知覚されない。
【0052】
次に、反射型液晶表示素子を用いた液晶表示装置の駆動回路にフレームレートコントロール部をもうけたことによる効果を説明する。
図21は、反射型液晶素子における横方向電界の発生メカニズムを説明する図である。
図21に示されるように反射型液晶素子の画素電極8A、8Bはシリコン基板43の上に形成されている。
【0053】
デジタル駆動の場合、隣り合った画素間で駆動状態(駆動/ブランキング)が異なることが頻繁に起こる。例えば、あるフレームにおいて隣り合った画素の階調がそれぞれ“5”(画素PA)と“6”(画素PB)の場合を仮定する。またDCバランス+で、対向電極10がV0の場合を考える。すなわち、
図15においてDCバランス+であるから、V0=Vcom=0(V)、V1=Vwである。サブフレーム6の時刻では、隣り合った画素の駆動状態が異なる。
図9からわかるように、画素PAはブランキング状態なので、画素電極8AにはV0の電圧がかかり、画素PBは駆動状態なので、画素電極8BにはV1の電圧がかかっている。
【0054】
画素電極8AにはV0の電圧がかかり、画素電極8BにはV1の電圧がかかっているときの液晶層の電界41の状態を
図21は示している。画素PBの画素電極8B(電位:Vw)と対向電極10(電位:0(V))間には電位差が生じ、液晶は所定量の回転をさせられる。このとき、画素PAの画素電極8A(電位:0(V))と画素PBの画素電極8B(電位:Vw)間にも電位差が生じ、横方向に電界が生じてしまう。このような、横方向電界42は、画素間の液晶の動きに意図しない混乱を発生させる。上記の現象は、画質劣化の一因であった。
【0055】
フレームレートコントロールを用いることで上記の不具合を解消することができる。
図22はフレームレートコントロールにより、横方向電界が均等に分散されることを説明する図である。
【0056】
図22では、フレームレートコントロール部への入力データ((M+F)ビット)の下位Fビットの値が“01”である場合が例示されている。フレーム毎に4個のテーブル(フレーム0〜3)が用いられる。それぞれのフレームにおいて、隣り合った画素間で駆動状態(駆動またはブランキング)が異なる場合、駆動状態が「1」(駆動状態)である画素から駆動状態が「0」(ブランキング状態)である画素の方向に横方向の電界が生じる。画素間の横方向電界の方向は
図22において矢印で表されている。4個のフレームでの横方向電界の状態を重ね合わせたのが、一番右の状態である。すなわち、4フレームの平均では、すべての画素間での横方向電界は打ち消しあっている。以上のように、フレームレートコントロールを用いることにより、画質劣化の一因である横方向電界を打ち消すことが可能となった。
【0057】
<第2の実施形態>
図23は本発明の第2の実施形態に係る駆動回路1020を示すブロック図である。本実施形態に係る駆動回路では、
図6に示す第1の実施形態の駆動回路102と比較すると、ルックアップテーブル部21が、信号変換部22に変更されている点が異なっている。誤差拡散部23以降の構成は第1の実施形態の駆動回路と同じである。
【0058】
図24は、第2の実施の形態における駆動パターンを示す図である。本実施形態の駆動パターンは、第1の実施形態の駆動パターンと同様、映像信号が1秒あたり120フレーム、サブフレーム数が12個、データ転送期間(WC期間)が347[μs]である。一方、第1の実施形態の場合、全サブフレームの駆動期間が同じ時間であったのに対し、
図24での各サブフレーム毎の駆動期間(DC期間)の時間は異なっている。
【0059】
図25は第2の実施の形態における各サブフレーム毎の駆動期間(DC期間)が第1の実施の形態に対して変更されていることを説明した図である。
図23、
図25では、駆動階調の設定は第1の実施形態に従っている。すなわち、第1の実施形態における
図7の縦の欄に示す階調が1の場合、最後のサブフレームであるSF12のみが駆動状態となる。階調が2の場合、SF11とSF12だけが駆動状態となる。以下、階調の数が増える毎に駆動状態となるサブフレームが増えていき、最も高い階調である12の場合、全てのサブフレームが駆動状態となる。言い換えると、階調の数が増えるにしたがい、駆動状態となるサブフレームが時間的に前方に増えていく。
【0060】
図25において各サブフレーム毎の期間が第1の実施の形態に対して変更されている点について以下に説明する。
図6のルックアップテーブル部21は反射型液晶表示素子6の入出力特性を変換してガンマ2.2の入出力特性を有する液晶表示装置を実現する機能を担っている。第2の実施形態においては、入出力特性の変換機能を「各サブフレーム毎の駆動期間(DC期間)の時間を異ならせる」ことで果たしている。以下、具体的に説明する。
図26は第2の実施の形態において、各サブフレーム期間を調節して、駆動階調毎の輝度がガンマ2.2の線上にあることを表している図である。第2の実施形態では、例えば駆動階調毎の輝度特性が
図26のようなガンマ2.2の線上になるように、あらかじめ、各サブフレーム毎のDC期間を
図24のように設定してある。
【0061】
上記の結果、ルックアップテーブル部に対して逆ガンマ補正の機能を省くことができる。その結果、ルックアップテーブルを用いるルックアップテーブル部21からルックアップテーブルを使用しない信号変換部22に変更することができる。ルックアップテーブル部21を信号変換部22に変更することは、コスト削減の効果を有する。
【0062】
以下、信号変換部22を説明する。第2の実施形態においては、補間駆動階調自体にガンマ2.2の輝度特性があるため、
入力階調X:補間駆動階調Y=255(最大入力階調):768(最大補間駆動階調)
の関係式から、下記に示す演算式を用いることが可能となっている。信号変換部22は下記演算式を用いて入力される映像信号データを演算する。
出力データY:(M+F+D)ビット=入力データX × 768 / 255
ここで、768:最大補間駆動階調(すなわち、1100000000)
255:最大駆動階調
ここで、駆動階調とは、
図6、7、18、20、21に表される、素子単体での階調を表している。また、補間駆動階調とは、誤差拡散部およびフレームレートコントロール部にて補間される擬似階調を含む階調を表している。
【0063】
また、第2の実施形態においても、第1の実施形態での効果は同等に有している。
【0064】
<第3の実施形態>
第3の実施形態では、アクティブマトリクス型の透過型液晶表示素子を用いた直視型の液晶表示装置を用いて映像表示装置としている。
図27は直視型液晶表示装置を用いた立体映像表示装置を示す図である。第1、第2の実施形態と共通する部分には同じ番号を付し、重複する説明は省略する。直視型液晶表示装置110は、バックライト111、入口偏光板112、直視型液晶表示素子113、出口偏光板114および信号処理回路101、駆動回路102を少なくとも含んで構成されている。駆動回路102に代えて駆動回路1020を用いてもよい。
【0065】
第3の実施形態においても、信号Aと信号Bに対して別々にフレームレートコントロールを適用するため、高い階調表示性能を確保できる映像表示装置を提供することができる。また、駆動回路102または1020を用いることによる効果も有する。
【0066】
第1〜第3の実施形態において、入力された映像信号データのビット数をN、表示素子の駆動可能な階調数を2進数で表したときのビット数をM、誤差拡散処理により誤差として拡散されるビット数をD、フレームレートコントロールにより擬似的な階調として表現されるビット数をFとしたとき、N=8、M=4、 D=4、F=2である場合について説明した。しかし、N、M、D、Fの値は上記の値に限定されず、種々の値を用いて実施することができる。そのなかでも、N=8〜12、M=4〜6、D=4〜8、F=2〜3であることがより好ましい。