特許第6237417号(P6237417)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社JVCケンウッドの特許一覧

<>
  • 特許6237417-分析装置及び分析方法 図000002
  • 特許6237417-分析装置及び分析方法 図000003
  • 特許6237417-分析装置及び分析方法 図000004
  • 特許6237417-分析装置及び分析方法 図000005
  • 特許6237417-分析装置及び分析方法 図000006
  • 特許6237417-分析装置及び分析方法 図000007
  • 特許6237417-分析装置及び分析方法 図000008
  • 特許6237417-分析装置及び分析方法 図000009
  • 特許6237417-分析装置及び分析方法 図000010
  • 特許6237417-分析装置及び分析方法 図000011
  • 特許6237417-分析装置及び分析方法 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6237417
(24)【登録日】2017年11月10日
(45)【発行日】2017年11月29日
(54)【発明の名称】分析装置及び分析方法
(51)【国際特許分類】
   G01N 21/64 20060101AFI20171120BHJP
   G01N 33/543 20060101ALI20171120BHJP
   G01N 37/00 20060101ALI20171120BHJP
【FI】
   G01N21/64 F
   G01N33/543 521
   G01N33/543 531
   G01N33/543 595
   G01N37/00 102
【請求項の数】7
【全頁数】14
(21)【出願番号】特願2014-72536(P2014-72536)
(22)【出願日】2014年3月31日
(65)【公開番号】特開2015-194403(P2015-194403A)
(43)【公開日】2015年11月5日
【審査請求日】2016年4月25日
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成24年度 独立行政法人科学技術振興機構 研究成果展開事業(先端計測分析技術・機器開発プログラム)産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】308036402
【氏名又は名称】株式会社JVCケンウッド
(74)【代理人】
【識別番号】100083806
【弁理士】
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100101247
【弁理士】
【氏名又は名称】高橋 俊一
(72)【発明者】
【氏名】小野 雅之
(72)【発明者】
【氏名】柳生 慎悟
(72)【発明者】
【氏名】糸長 誠
(72)【発明者】
【氏名】長谷川 祐一
(72)【発明者】
【氏名】辻田 公二
【審査官】 伊藤 裕美
(56)【参考文献】
【文献】 特開2012−237711(JP,A)
【文献】 特開2005−156538(JP,A)
【文献】 特開2013−064722(JP,A)
【文献】 特開2004−309288(JP,A)
【文献】 米国特許出願公開第2003/0035352(US,A1)
【文献】 Koji Tsujita et al., Ultrahigh-Sensitivity Biomarker Sensing System Based on the Combination of Optical Disc Technologie,Japanese Journal of Applied Physics,2013年,Vol.52,pp.09LB02-1〜09LB02-4
(58)【調査した分野】(Int.Cl.,DB名)
G01N21/00−21/83
G01N15/00−15/14
G01N33/48−33/98
G02B21/00−21/36
JSTPlus/JMEDPlus/JST7580(JDreamIII
(57)【特許請求の範囲】
【請求項1】
表面に粒子が固定された基板を光学的に走査する光走査部と、
前記光走査部が前記基板を走査することにより前記光走査部から取得される検出信号に含まれるパルス波及び前記パルス波のパルス幅を検出するパルス検出部と、
前記パルス検出部により第1基準値未満のパルス幅をそれぞれ有する2つのパルス波が2回連続して検出されると、前記2つのパルス波のパルス間隔を、前記光走査部が互いに隣接する複数の前記粒子を走査した場合に検出された第1パルス幅で割った数に基づいて、前記粒子の数を計数する計数部と、
を備えることを特徴とする分析装置。
【請求項2】
前記第1基準値は、前記第1パルス幅と前記検出信号が有する所定値との和であることを特徴とする請求項に記載の分析装置。
【請求項3】
前記計数部は、前記パルス検出部において、前記第1基準値以上かつ第2基準値未満のパルス幅を有するパルス波が検出されると、前記粒子の数を1として計数することを特徴とする請求項1または2に記載の分析装置。
【請求項4】
前記第2基準値は、第2パルス幅と前記検出信号が有する所定値との和であることを特徴とする請求項に記載の分析装置。
【請求項5】
前記計数部は、前記パルス検出部において、前記第1基準値未満のパルス幅を有するパルス波が検出された次に、前記第1基準値以上前記第2基準値未満のパルス幅を有するパルス波が検出された場合において、先に検出された前記第1基準値未満のパルス幅を有するパルス波を計数しないことを特徴とする請求項3または4に記載の分析装置。
【請求項6】
前記計数部は、前記パルス検出部において、前記第2基準値以上のパルス幅を有するパルス波が検出された場合において、前記第2基準値以上のパルス幅を有するパルス波を計数しないことを特徴とする請求項3〜5のいずれか1項に記載の分析装置。
【請求項7】
光走査部が、表面に粒子が固定された基板を光学的に走査
前記光走査部が前記基板を走査することにより前記光走査部から取得される検出信号に含まれるパルス波及び前記パルス波のパルス幅を検出
前記パルス波及びパルス幅の検出の結果、第1基準値未満のパルス幅をそれぞれ有する2つのパルス波が2回連続して検出されると、前記2つのパルス波のパルス間隔を、前記光走査部が互いに隣接する複数の前記粒子を走査した場合に検出された第1パルス幅で割った数に基づいて、前記粒子の数を計数す
とを特徴とする分析方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、抗体、抗原等の生体物質を分析するための分析装置及び分析方法に関する。
【背景技術】
【0002】
疾病に関連付けられた特定の抗原または抗体をバイオマーカーとして検出することで、疾病の発見や治療の効果等を定量的に分析する免疫検定法(immunoassay)が知られている。酵素により標識された抗原または抗体を検出するELISA法(Enzyme-Linked ImmunoSorbent Assay)は、免疫検定法の一つであり、コスト等のメリットから広く普及している。ELISA法は、前処理、抗原抗体反応、B/F(bond/free)分離、酵素反応等を合計した時間が、数時間から1日程度であり、長時間を要する。
【0003】
これに対して、光ディスクに固定された抗体と試料中の抗原を結合させ、抗原と抗体を有する粒子とを結合させ、光ヘッドで走査することにより、ディスク上に捕捉された粒子を短時間に計数する技術が提案されている(特許文献1)。また、光ディスクのトラッキング構造が形成される面に生体試料や粒子を付着させ、光ピックアップで信号の変化を検出する技術が提案されている(特許文献2)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平5−5741号公報
【特許文献2】特表2002−530786号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1及び2に記載の技術は、粒子の種類及び配置等により、粒子に対応した検出信号が得られない可能性がある。すると、粒子の計数結果が不正確となり、検出対象に対する定量性が悪化するおそれがある。
上記問題点を鑑み、本発明は、検出対象に対する定量性を向上できる分析装置及び分析方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本発明の第1の態様は、表面に粒子が固定された基板を光学的に走査する光走査部と前記光走査部が前記板を走査することにより前記光走査部から取得される検出信号に含まれるパルス波及び前記パルス波のパルス幅を検出するパルス検出部と前記パルス検出部により第1基準値未満のパルス幅をそれぞれ有する2つのパルス波が2回連続して検出されると、前記2つのパルス波のパルス間隔を、前記光走査部が互いに隣接する複数の前記粒子を走査した場合に検出された第1パルス幅で割った数に基づいて、前記子の数を計数する計数部とを備える分析装置であることを特徴とする。
【0007】
本発明の第2の態様は、光走査部が、表面に粒子が固定された基板を光学的に走査前記光走査部が前記板を走査することにより前記光走査部から取得される検出信号に含まれるパルス波及び前記パルス波のパルス幅を検出前記パルス波及びパルス幅の検出の結果、第1基準値未満のパルス幅をそれぞれ有する2つのパルス波が2回連続して検出されると、前記2つのパルス波のパルス間隔を、前記光走査部が互いに隣接する複数の前記粒子を走査した場合に検出された第1パルス幅で割った数に基づいて、前記子の数を計数する分析方法であることを特徴とする。
【発明の効果】
【0008】
本発明によれば、検出信号のパルス幅に応じて、加算する数を変更することにより、検出対象に対する定量性を向上できる分析装置及び分析方法を提供することができる。
【図面の簡単な説明】
【0009】
図1】本発明の実施の形態に係る分析装置の基本的な構成を説明する模式的なブロック図である。
図2】(a)〜(f)は、本発明の実施の形態に係る分析装置の基板に抗体、抗原、ビーズを固定する方法の一例を説明する模式的な基板の拡大断面図である。
図3】基板を走査する時のスポット位置と信号強度との特性を隣接するビーズの数毎に示すシミュレーション結果である。
図4】本発明の実施の形態に係る分析装置の基板を走査する際のスポット位置と信号強度との特性を説明する隣接するビーズの数毎に示す図である。
図5】本発明の実施の形態に係る分析装置の基板を走査する際のスポット位置と信号強度との特性を説明する隣接するビーズの数毎に示す図である。
図6】本発明の実施の形態に係る分析装置の記憶部が記憶する基準値の決定方法を説明する図である。
図7】本発明の実施の形態に係る分析装置の記憶部が記憶する基準値の決定方法を説明する図である。
図8】本発明の実施の形態に係る分析装置の動作を説明するフローチャートである。
図9】本発明の実施の形態に係る分析装置の動作を説明する図である。
図10】本発明の実施の形態に係る分析装置の動作を説明する図である。
図11】本発明の実施の形態に係る分析装置におけるバイオマーカー濃度とビーズ計数結果との特性を従来装置と比較する図である。
【発明を実施するための形態】
【0010】
次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略している。
【0011】
(分析装置)
本発明の実施の形態に分析装置は、図1に示すように、基板100と、基板100を回転させるモータ2と、基板100を光学的に走査する光走査部3と、モータ2及び光走査部3を制御する制御部5とを備える。
【0012】
基板100は、例えば、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、ブルーレイディスク(BD)等の光ディスクと同等の寸法を有する円盤状である。基板100は、表面に光走査部3が走査可能なトラック構造を有する。トラック構造は、グルーブ、ランド、ピット等からなり、内周側から外周側にスパイラル状に形成される。基板100は、例えば、一般の光ディスクに用いられるポリカーボネート樹脂やシクロオレフィンポリマー等の疎水性を有する樹脂材料からなる。また、基板100表面には必要に応じて、薄膜形成やシランカップリング剤などによる表面処理を施すこともできる。
【0013】
基板100は、図2に示すように、検出対象の生体物質である抗原62と特異的に結合する抗体61が表面に固定される。抗原62が、表面に抗原62と特異的に結合する抗体65が固定されたビーズ(粒子)66によって標識されることにより、抗原62及びビーズ66は、基板100の表面に対して相対的に固定される。抗原62は、抗体61及び抗体65と特異的に結合することにより、疾病等の指標となるバイオマーカーとして用いられる。
【0014】
図2(a)に示すように、基板100は、予め、表面に抗体61が固定される。抗体61は、疎水結合や共有結合により基板100の表面に結合される。抗体61は、アビジン等の物質を介して基板100の表面に固定されてもよい。次に、図2(b)に示すように、抗原62を含む試料液63が基板100の表面に滴下される。抗原62は、ブラウン運動により試料液63中を移動することにより抗体61と接触し、抗原抗体反応により、抗体61と特異的に結合する。図2(c)に示すように、基板100に滴下された試料液63を、純水等を用いてスピン洗浄することにより、抗体61と結合しない余剰の抗原62を含む試料液63が除去される。
【0015】
図2(d)に示すように、ビーズ66を含む緩衝液64が基板100の表面に滴下される。緩衝液64は、試料液63が残存するまま基板100に滴下されてもよい。ビーズ66の表面に固定された抗体65は、抗原抗体反応により、抗原62と特異的に結合する。次に、ビーズ66は、抗原62と結合することにより、抗原62を標識する。
【0016】
ビーズ66は、例えば、フェライト等の磁性材料を内包するポリスチレン等の合成樹脂により略球形に形成される。ビーズ66の直径は、数十nm〜数百nm程度であり、例えば直径200nmである。ビーズ66は、緩衝液64が滴下される際に基板100の反対側に磁石が配置されることにより、迅速に基板100の表面に集合され、抗原62との反応を促進することができる。また、抗原62とビーズ66とが同時に投入されることにより、基板100に固定された抗原62を標識するまでの時間を数分程度に短縮することができる。
【0017】
抗体61及び抗体65とは、抗原62と特異的に結合する特異性生体物質であればよく、それぞれが別の部位と結合する組み合わせを選択する。例えば、複数種類の抗原62が表面に発現しているエキソソーム等の膜小胞を検出対象とする場合は、抗体61及び抗体65は異なる種類とすることにより、2種類の抗原62を有する生体試料を検出することができる。これに限らず、エキソソーム等は通常の抗原とは異なり、表面に同種のたんぱく質である抗原が複数存在していることから、抗体61及び抗体65は、同じ種類とされてもよい。
【0018】
図2(e)に示すように、基板100に滴下された緩衝液64を、純水等を用いて洗浄することにより、抗原62と結合しない余剰のビーズ66を含む緩衝液64が除去される。図2(f)に示すように、基板100が光走査部3により光学的に走査され、ビーズ66が検出されることにより、ビーズ66に標識された抗原62を分析することができる。
【0019】
光走査部3は、図1に示すように、レーザ発振器31と、コリメータレンズ32と、ビームスプリッタ33と、アクチュエータ34と、対物レンズ35と、集光レンズ36と、光検出部37とを備える。光走査部3は、基板100を光学的に走査する光ピックアップである。
【0020】
レーザ発振器31は、制御部5の制御に応じて、コリメータレンズ32に向けてレーザ光を出射する。レーザ発振器31は、例えば、波長がBDの再生用と同一の405nmであり、出力が1mW程度のレーザ光を出射する半導体レーザ発振器である。コリメータレンズ32は、レーザ発振器31から出射されたレーザ光を平行にする。ビームスプリッタ33は、コリメータレンズ32により平行にされたレーザ光を対物レンズ35に向けて反射する。
【0021】
対物レンズ35は、制御部5の制御に応じたアクチュエータ34の駆動により、ビームスプリッタ33を経由したレーザ光を、抗体61が固定された基板100の表面に集光してスポットSを結像する。対物レンズ35は、例えば開口数が0.85である。対物レンズ35に集光されたレーザ光は、基板100において反射し、ビームスプリッタ33に入射する。ビームスプリッタ33は、入射したレーザ光は、ビームスプリッタ33を透過し、集光レンズ36を介して光検出部37に入射する。集光レンズ36は、基板100において反射したレーザ光を光検出部37に集光する。光検出部37は、例えばフォトダイオードからなり、基板100から反射したレーザ光の光量に対応する検出信号を制御部5に出力する。
【0022】
制御部5は、回転制御部21を介して、モータ2の駆動を制御する。モータ2は、制御部5の制御により、線速度一定(CLV)方式で基板100を回転させる。線速度は、例えば4.92m/sである。
【0023】
制御部5は、光学系制御部4を介して、レーザ発振器31及びアクチュエータ34の駆動を制御する。アクチュエータ34は、制御部5の制御により、回転する基板100の表面をスパイラル状に走査するように、光走査部3を基板100の半径方向に移動させる。その他、制御部5は、光検出部37から出力された検出信号から、フォーカスエラー(FE)やトラッキングエラー(TE)を等のエラーを検出する。制御部5は、検出したエラーに応じて、基板100の表面を適正に走査するようにアクチュエータ34等を制御する。
【0024】
制御部5は、パルス検出部51と、記憶部52と、計数部50とを備える。パルス検出部51は、光検出部37により出力された検出信号を入力する。パルス検出部51は、光走査部3から取得される検出信号に含まれるパルス波及びパルス波のパルス幅を検出する。パルス検出部51は、デジタルシグナルプロセッサ(DSP)等の信号処理装置から構成される。記憶部52は、半導体メモリ等の記憶装置から構成される。記憶部52は、パルス検出部51が検出するパルス波及びパルス幅に対する基準値等を記憶する。
【0025】
計数部50は、パルス検出部51により検出されたパルス波と、記憶部52が記憶する基準値に基づいて、基板100の表面に固定されたビーズ66の個数を計数する。計数部50は、中央演算処理装置(CPU)等から構成される。計数部50は、第1カウンタ501と、第2カウンタ502と、対象カウンタ503とを論理構造として有する。
【0026】
第1カウンタ501は、パルス検出部51により検出されたパルス波のパルス幅Taを測定する。第2カウンタ502は、パルス検出部51により検出されたパルス波のパルス幅Taに応じて、次に検出されるパルス波との間のパルス間隔Tbを測定する。対象カウンタ503は、第1カウンタ501及び第2カウンタ502の測定結果と、記憶部52に記憶される基準値とに基づいて、ビーズ66の個数を計数する。
【0027】
−基準値−
図3に示す3つの検出信号DS1〜DS3は、基板100上のビーズ1個を想定した凸ピット1個、ビーズ2個を想定した隣接した凸ピット2個、隣接ビーズ3個を想定した隣接した凸ピット3個をそれぞれ走査する際の検出信号をシミュレーションした結果である。横軸はある区間における先頭のビーズ66に対するスポットSの位置、縦軸は検出信号をビーズ66が存在しないときの検出信号で正規化した信号強度である。検出信号DS1〜DS3は、孤立する1個のビーズ66から、2個、3個とビーズ66の個数が増加する従い、パルス幅が大きくなると考えられる。
【0028】
しかしながら、図4に示すように、互いに隣接する2個のビーズ66を走査する際の実際の検出信号D2は、パルス幅が、孤立するビーズ66を走査する際の検出信号D1よりもそれぞれ小さく、互いに同程度の2つのパルス波を含む。また、図5に示すように、実際に互いに隣接する3個のビーズ66を走査する際の検出信号D3は、検出信号D2のパルス幅とほぼ等しく、検出信号D2よりパルス間隔が大きい2つのパルス波を含む。なお、4個のビーズ66が互いに隣接する場合の検出信号も同様に、検出信号D2のパルス幅とほぼ等しく、検出信号D3よりパルス間隔が大きい2つのパルス波を含む。
【0029】
このように、ビーズ66の直径が走査するレーザ光の波長の1/2程度であり、隣接する複数のビーズ66が存在する場合、ビーズ66の個数を正確に計数することができず、検出対象に対する定量性が悪化する可能性がある。発明者らは、以上のような、一般の光ディスクのピットと異なる、光の波長以下の大きさの構造体(粒子)に対する光の作用を、有限差分時間領域(FDTD)法によりマクスウェル方程式を時間と空間変数に関して解くことにより明らかにした。計数部50は、ビーズ66の計数に際して予め設定された記憶部52の基準値に基づいて、隣接する複数のビーズ66が基板100上に存在する場合であっても、高精度にビーズ66の個数を計数することができる。
【0030】
記憶部52は、図6に示すように、光走査部3が互いに隣接する複数のビーズ66を走査する場合の検出信号D2,D3の第1パルス幅T1と、第1パルス幅T1に応じて決定される第1基準値T2とを予め記憶する。第1基準値T2は、例えば、第1パルス幅T1と所定値の和である。第1パルス幅T1に加算される所定値は、検出信号が有するジッタ値とすればよい。第1パルス幅T1に加算される所定値は、ジッタ値の100%〜130%程度としてもよい。その他、第1基準値T2は、第1パルス幅T1の所定の比率としてもよい。第1基準値T2の比率は、例えば第1パルス幅T1の100%〜130%程度である。
【0031】
記憶部52は、図7に示すように、光走査部3が他のビーズ66から孤立するビーズ66を走査する場合の検出信号D1の第2パルス幅T3と、第2パルス幅T3に応じて決定される第2基準値T4とを予め記憶する。第2基準値T4は、例えば、第2パルス幅T3と所定値の和である。第2パルス幅T3に加算される所定値は、検出信号が有するジッタ値とすればよい。第2パルス幅T3に加算される所定値は、ジッタ値の100%〜130%程度としてもよい。その他、第2基準値T4は、第2パルス幅T3の所定の比率としてもよい。第2基準値T4の比率は、例えば第2パルス幅T3の100%〜130%程度である。
【0032】
(分析方法)
図8のフローチャートを用いて、本発明の実施の形態に係る分析装置において、光走査部3が基板100を光学的に走査することにより、計数部50が基板100に固定されたビーズ66を計数し、ビーズ66に標識された検出対象を分析する方法を説明する。
【0033】
先ず、オペレータの操作により、制御部5の制御に応じた回転制御部21及び光学系制御部4が、モータ2及び光走査部3の駆動をそれぞれ開始する。抗原抗体反応等により抗原62及びビーズ66が表面に固定された基板100は、モータ2により線速度一定に回転され、光走査部3により光学的に走査される。光走査部3は、レーザ発振器31から出射され基板100の表面において反射したレーザ光を、光検出部37において検出する。光検出部37は、検出したレーザ光の光量に応じた検出信号をパルス検出部51に出力する。
【0034】
ステップS1において、パルス検出部51は、光検出部37から出力された検出信号を取得し、取得した検出信号の立ち下がりを検出する。パルス検出部51は、ビーズ66が走査される際の検出信号のピーク値の1/2程度の強度に設定された閾値を予め保持し、検出信号が閾値を下回る時点を検出信号の立ち下がりとして検出する。
【0035】
次に、ステップS2において、第1カウンタ501は、図9に示すように、ステップS1において立ち下がりが検出された時点から、時間Taの測定を開始する。
【0036】
次に、ステップS3において、パルス検出部51は、光検出部37から取得した検出信号の立ち上がりを検出する。パルス検出部51は、ビーズ66が走査される際の検出信号のピーク値の1/2程度の強度に設定された閾値を予め保持し、検出信号が閾値を上回る時点を検出信号の立ち上がりとして検出する。
【0037】
次に、ステップS4において、第1カウンタ501は、ステップS1において立ち下がりが検出された時点からステップS3において立ち上がりが検出された時間までの時間Taを確定し、リセットする。対象カウンタ503は、第1カウンタ501により確定された時間Taを取得し、ステップS1〜S3において検出されたパルス波のパルス幅(半値幅)Taとして保持する。
【0038】
次に、ステップS5において、対象カウンタ503は、記憶部52から第1基準値T2を読み出し、ステップS4において保持したパルス幅Taが第1基準値T2未満であるか否かを判定する。対象カウンタ503は、パルス幅Taが第1基準値T2未満である場合、ステップS6に処理を進め、パルス幅Taが第1基準値T2以上である場合、ステップS9に処理を進める。
【0039】
ステップS5においてパルス幅Taが第1基準値T2未満である場合、ステップS6において、対象カウンタ503は、隣接フラグがハイ(High:1)であるか否かを判定する。隣接フラグは、対象カウンタ503において、第2カウンタ502に連動して設定されるフラグである。対象カウンタ503は、ステップS6において隣接フラグがハイである場合、ステップS7に処理を進め、隣接フラグがロー(Low:0)である場合、ステップS12に処理を進める。
【0040】
仮に、図9に示す例において、検出信号D3がパルス検出部51に入力され、1回目のパルス波の立ち上がりをステップS3においてパルス検出部51が検出したとする。この場合、ステップS6において隣接フラグはローであり、計数部50は、ステップS12に処理を進める。
【0041】
ステップS12において、第2カウンタ502は、ステップS3において立ち上がりが検出された時点から、時間Tbの測定を開始する。対象カウンタ503は、第2カウンタ502に連動して、ステップS3において立ち上がりが検出された時点から隣接フラグをハイに設定し、ステップS8に処理を進める。
【0042】
ステップS8において、制御部5は、予め設定された基板100のトラック範囲の光走査部3による走査が終了したか否かを判定する。制御部5は、走査が終了している場合、処理を終了し、未だ走査が終了していない場合、ステップS1に処理を戻す。
【0043】
仮に、図9に示す例において、検出信号D3がパルス検出部51に入力され、2回目のパルス波の立ち上がりをステップS3においてパルス検出部51が検出したとする。この場合、ステップS6において隣接フラグはハイであり、計数部50は、ステップS7に処理を進める。
【0044】
ステップS7において、第2カウンタ502は、ステップS3において1回目の立ち上がりが検出された時点から次のステップS3において2回目の立ち上がりが検出された時間までの時間Tbを確定した後、リセットする。対象カウンタ503は、第2カウンタ502により確定された時間Tbを取得し、2回のステップS1〜S3において検出された2つのパルス波のパルス間隔Tbとして保持し、隣接フラグをローに設定する。
【0045】
また、対象カウンタ503は、ステップS7において、光走査部3が互いに隣接する複数のビーズ66を走査したと判断し、記憶部52から第1パルス幅T1を読み出し、ビーズ66の個数を、1+(Tb/T1)として計数する。このとき、Tb/T1は、例えば四捨五入などにより、整数に丸められる。すなわち、図9に示す例において、検出信号D3がパルス検出部51に入力された場合、ビーズ66の個数は、1+2=3となる。このように、対象カウンタ503は、第1基準値T2未満のパルス幅Taをそれぞれ有する2つのパルス波が2回連続して検出されると、ビーズ66の個数を1+(Tb/T1)として計数する。対象カウンタ503は、ステップS7の後、ステップS8に処理を進める。
【0046】
ステップS5においてパルス幅Taが第1基準値T2以上である場合、ステップS9において、対象カウンタ503は、記憶部52から第2基準値T4を読み出し、ステップS4において保持したパルス幅Taが第2基準値T4未満か否かを判定する。対象カウンタ503は、パルス幅Taが第2基準値T4未満である場合、ステップS10に処理を進め、パルス幅Taが第2基準値T4以上である場合、ステップS11に処理を進める。
【0047】
仮に、図10に示すように、検出信号D1がパルス検出部51に入力され、パルス波の立ち上がりをステップS3においてパルス検出部51が検出したとする。この場合、ステップS5においてパルス幅Taが第1基準値T2以上、ステップS9においてパルス幅Taが第2基準値T4未満であり、計数部50は、ステップS10に処理を進める。
【0048】
ステップS10において、対象カウンタ503は、光走査部3が他のビーズ66から孤立する1個のビーズ66を走査したと判断し、ビーズ66の個数を1として計数する。このように、対象カウンタ503は、第1基準値T2以上第2基準値T4未満のパルス幅Taをパルス波が検出されると、ビーズ66の個数を1として計数する。また、対象カウンタ503は、隣接フラグをローに設定し、ステップS8に処理を進める。
【0049】
ステップS9においてパルス幅Taが第2基準値T4以上である場合、ステップS11において、対象カウンタ503は、第2基準値T4以上のパルス幅を有するパルス波を、異物、凝集塊等に起因するノイズであると判断し、計数に際して無視する。また、対象カウンタ503は、隣接フラグをローに設定し、ステップS8に処理を進める。
【0050】
また、一回目のステップS1〜S3において第1基準値T2未満のパルス幅Taを有するパルス波が検出された次に、2回目のステップS1〜S3において第1基準値T2以上第2基準値T4未満のパルス幅Taを有するパルス波が検出されたとする。この場合、対象カウンタ503は、先に検出されたパルス波を異物、凝集塊等に起因するノイズであると判断し、計数に際して無視する。
【0051】
以上のように、対象カウンタ503は、検出信号に第1基準値T2未満のパルス幅Taを有するパルス波が検出されると、パルス幅Ta及び第1パルス幅T1に基づいた数を加算していくことにより、ビーズ66の個数を計数する。また、対象カウンタ503は、検出信号に第1基準値T2以上第2基準値T4未満のパルス幅Taをパルス波が検出されると、1を加算していくことにより、ビーズ66の個数を計数する。
【0052】
(比較例)
図11用いて、本発明の実施の形態に係る分析装置によるビーズ66の計数結果と、従来方法による計数結果との比較例を説明する。横軸は、検出対象となるバイオマーカーの濃度であり、縦軸はビーズ66の計数結果である。本発明の実施の形態に係る分析装置による計数結果を曲線P1に、従来方法による計数結果を曲線P2に示す。
【0053】
曲線P1に対して、曲線P2はバイオマーカーの濃度に関わらず計数結果が少なくなっており、最大数十%の差が生じている。曲線P1及び曲線P2に沿う破線のように、理想的にはバイオマーカー含有量が0であれば計数結果も0となるべきである。しかしながら、抗原抗体反応を用いた検出方法では、基板100上に、抗原抗体反応による結合の他に非特異吸着が生じる。このため、バイオマーカーの濃度が0であっても、非特異吸着により基板100の表面に固定されたビーズ66が計数されてしまう。
【0054】
曲線P1,P2において、誤差下限と曲線P1,P2のバックグラウンドノイズレベルQとの接点(交点)をそれぞれ最小検出感度R1,R2という。本発明の実施の形態に係る分析装置の最小検出感度R1は、従来方法の最小検出感度R2に比べて向上しており、バイオマーカー検出の感度が向上していることが分かる。よって、本発明の実施の形態に係る分析装置によれば、疾病等の検出感度を向上することができる。
【0055】
本発明の実施の形態に係る分析装置は、基板100上にビーズ66が隣接して固定される場合であっても、検出信号のパルス幅に応じて、加算する数を変更してビーズ66の個数を計数する。よって、本発明の実施の形態に係る分析装置によれば、ビーズ66の配置により検出信号に不規則なパルス波が検出された場合であっても、ビーズ66の個数を高精度に計数することが可能となり、検出対象に対する定量性を向上することができる。
【0056】
また、本発明の実施の形態に係る分析装置によれば、第1基準値T2及び第2基準値T4が検出信号のジッタ値を考慮されて決定されることにより、パルス幅Taの類別に際してジッタの影響を低減することができ、ビーズ66の個数を更に高精度に計数することができる。
【0057】
(その他の実施の形態)
上記のように、本発明を実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
【0058】
例えば、既に述べた実施の形態において、検出対象である生体物質と、検出対象と特異的に結合する特異性生体物質との組み合わせは、抗原62と、抗体61及びビーズ66に固定された抗体65との組み合わせに限るものでない。特異的に結合する組み合わせは、例えば、リガンドと受容体(酵素タンパク質、レクチン、ホルモン等)との組み合わせ、互いに相補的な塩基配列を有する核酸の組み合わせ等であってもよい。
【0059】
さらに、基板100表面にシリコーンゴム等で作製された井戸型のウェルを設置し、そのウェル内のみの領域において、対象の抗体61、抗原62、ビーズ66などの反応、未反応物の洗浄を行うことで、スピン洗浄、乾燥などのプロセスを簡略化できたり、基板100の面積が許す範囲で複数のウェルを同一半径上に設置することにより、複数検体の同時計測も可能である。
【0060】
また、本発明は、既に述べた実施の形態に係る通知装置の機能をコンピュータに実行させるためのプログラムを含む。プログラムは、記録媒体から読み取られコンピュータに取り込まれてもよく、電気通信回線を介して伝送されてコンピュータに取り込まれてもよい。
【0061】
その他、上述の構成を相互に応用した構成等、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【符号の説明】
【0062】
2 モータ
3 光走査部
4 光学系制御部
5 制御部
21 回転制御部
31 レーザ発振器
32 コリメータレンズ
33 ビームスプリッタ
34 アクチュエータ
35 対物レンズ
36 集光レンズ
37 光検出部
50 計数部
51 パルス検出部
52 記憶部
61 抗体
62 抗原
63 試料液
64 緩衝液
65 抗体
66 ビーズ(粒子)
100 基板
501 第1カウンタ
502 第2カウンタ
503 対象カウンタ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11