特許第6237791号(P6237791)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

▶ 三洋電機株式会社の特許一覧
<>
  • 特許6237791-非水電解質二次電池用負極 図000003
  • 特許6237791-非水電解質二次電池用負極 図000004
  • 特許6237791-非水電解質二次電池用負極 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6237791
(24)【登録日】2017年11月10日
(45)【発行日】2017年11月29日
(54)【発明の名称】非水電解質二次電池用負極
(51)【国際特許分類】
   H01M 4/13 20100101AFI20171120BHJP
   H01M 4/62 20060101ALI20171120BHJP
   H01M 4/134 20100101ALI20171120BHJP
   H01M 4/48 20100101ALI20171120BHJP
   H01M 4/36 20060101ALI20171120BHJP
【FI】
   H01M4/13
   H01M4/62 Z
   H01M4/134
   H01M4/48
   H01M4/36 C
   H01M4/36 E
【請求項の数】8
【全頁数】16
(21)【出願番号】特願2015-554527(P2015-554527)
(86)(22)【出願日】2014年12月12日
(86)【国際出願番号】JP2014006195
(87)【国際公開番号】WO2015098021
(87)【国際公開日】20150702
【審査請求日】2017年2月6日
(31)【優先権主張番号】特願2013-271272(P2013-271272)
(32)【優先日】2013年12月27日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000001889
【氏名又は名称】三洋電機株式会社
(74)【代理人】
【識別番号】100104732
【弁理士】
【氏名又は名称】徳田 佳昭
(74)【代理人】
【識別番号】100116078
【弁理士】
【氏名又は名称】西田 浩希
(72)【発明者】
【氏名】杉森 仁徳
(72)【発明者】
【氏名】柳田 勝功
【審査官】 青木 千歌子
(56)【参考文献】
【文献】 特開2011−192539(JP,A)
【文献】 特開2009−289585(JP,A)
【文献】 特開2007−80827(JP,A)
【文献】 特開2013−229163(JP,A)
【文献】 特開2013−137955(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00− 4/62
(57)【特許請求の範囲】
【請求項1】
負極集電体と、前記負極集電体上に接するように設けられた負極合剤層とを備える非水電解質二次電池用負極であって、
前記負極合剤層は、負極活物質と結着剤と導電剤とが混合された層であり、
前記結着剤は、ゴム系高分子化合物からなる結着剤Aと、水溶性高分子化合物からなる結着剤Bを含み、
前記負極合剤層の厚み方向の断面を集電体側領域と表面側領域とに半分に分割したとき、
前記結着剤Aの量が前記表面側領域よりも前記集電体側領域に多く、
前記導電剤の量が前記表面側領域よりも前記集電体側領域に多い、非水電解質二次電池用負極。
【請求項2】
前記負極活物質は、ケイ素を含む、請求項1に記載の非水電解質二次電池用負極。
【請求項3】
前記負極活物質は、ケイ素酸化物(ただし、ケイ素の総量に対する酸素の原子比xは、0.5≦x≦1.5である)を含む、請求項1又は2に記載の非水電解質二次電池用負極。
【請求項4】
前記ケイ素酸化物は、その表面が炭素で被覆されている、請求項3に記載の非水電解質二次電池用負極。
【請求項5】
前記集電体側領域に含有されたケイ素の量が、前記負極合剤層中に含有されたケイ素の総量に対して50質量%以上100質量%以下である、請求項1〜4のいずれか1項に記載の非水電解質二次電池用負極。
【請求項6】
前記負極合剤層中における前記導電剤の含有量が、0.1質量%以上20質量%以下である、請求項1〜5のいずれか1項に記載の非水電解質二次電池用負極。
【請求項7】
前記集電体側領域に含有された結着剤Aの量が、前記負極合剤層中に含有された結着剤Aの総量に対して50%以上70%以下である、請求項1〜6のいずれか1項に記載の非水電解質二次電池用負極。
【請求項8】
前記負極活物質は、さらに炭素材料を含む、請求項1〜7のいずれか1項に記載の非水電解質二次電池用負極。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非水電解質二次電池用負極に関する。
【背景技術】
【0002】
近年、携帯電話、ノートパソコン、スマートフォン等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正、負極間を移動することにより充放電を行う非水電解質二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。
【0003】
更に最近では、非水電解質二次電池は電動工具や電気自動車等の動力用電源としても注目されており、さらなる用途拡大が見込まれている。このような分野では、高容量、かつ、優れたサイクル特性が求められるようになってきている。
【0004】
上記非水電解質二次電池の負極活物質として、例えば、ケイ素を含む材料を用いることが検討されている。ケイ素を含む材料を活物質として用いた場合には、高容量化が期待される一方で、充放電の際に、リチウムイオンの吸蔵・放出に伴い活物質が大きく膨張収縮するため、電極内で活物質の微粉化や接触不良による活物質の孤立が生じ、電極内で電子伝導性が低下することで、サイクル特性が悪くなるという問題がある。
【0005】
下記特許文献1には、SiまたはSnとOとを構成元素に含む化合物(ただし、SiとSnの総量に対するOの原子比xは、0.5≦x≦1.5である)を含むコアとその表面を被覆する炭素の被覆層とで構成された負極活物質が開示されている。また、負極は、上記負極活物質と、バインダ(結着剤)等とを含む混合物に、溶剤を加えて混練して得た負極合剤ペーストを集電体に塗布することにより形成でき、上記混合物には、さらに導電助剤を添加してもよいことが示唆されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008−210618号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1に開示された技術では、充放電を繰り返した際、負極活物質の膨張・収縮により、電極内で電子伝導性だけでなくイオン拡散性も低下し、サイクル特性が低下するという問題が明らかになった。
【課題を解決するための手段】
【0008】
上記課題を解決すべく、本発明の一局面の非水電解質二次電池用負極は、負極集電体と、前記負極集電体上に接するように設けられた負極合剤層とを備え、前記負極合剤層は、負極活物質と結着剤と導電剤とが混合された層であり、前記結着剤は、ゴム系高分子化合物からなる結着剤Aと、水溶性高分子化合物からなる結着剤Bを含み、前記負極合剤層の厚み方向の断面を集電体側領域と表面側領域とに半分に分割したとき、前記結着剤Aの量が前記表面側領域よりも前記集電体側領域に多く、前記導電剤の量が前記表面側領域よりも前記集電体側領域に多い。
【発明の効果】
【0009】
本発明の一局面によれば、電極内における電子伝導性とイオン拡散性が向上することで、サイクル特性に優れた非水電解質二次電池用負極が提供される。
【図面の簡単な説明】
【0010】
図1】本発明の実施形態の一例である負極の一部分を拡大した模式的断面図である。
図2】本発明の実施形態の一例である非水電解質二次電池の略図的平面図である。
図3図1のII−II線に沿った断面を示す略図的断面図である。
【発明を実施するための形態】
【0011】
本発明の実施形態について以下に説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法などは、現物と異なる場合がある。
【0012】
本発明の実施形態の一例である負極を用いた非水電解質二次電池は、正極と、負極と、非水電解質と、を備える。正極と負極との間には、セパレータを設けることが好適である。非水電解質二次電池の一例としては、例えば、正極及び負極がセパレータを介して巻回もしくは積層された電極体と、液状の非水電解質である非水電解液とが電池外装缶に収納された構造が挙げられるが、これに限定されるものではない。以下に、本実施形態の一例である非水電解質二次電池の各構成部材について説明する。
【0013】
[負極]
本実施形態の一例である負極は、負極集電体と、負極集電体上に接するように設けられた負極合剤層とを備え、負極合剤層は、負極活物質と結着剤と導電剤とが混合された層であり、結着剤は、ゴム系高分子化合物からなる結着剤Aと、水溶性高分子化合物からなる結着剤Bを含み、負極合剤層の厚み方向の断面を集電体側領域と表面側領域とに半分に分割したとき、結着剤Aの量が表面側領域よりも集電体側領域に多く、導電剤の量が表面側領域よりも集電体側領域に多く存在するものである。また、結着剤Bは、少なくとも前記負極活物質の周囲に存在していることが好ましい。
【0014】
本実施形態の一例である負極では、結着剤と導電剤を集電体側領域に共に多く配置し、表面側領域に共に少なく配置することで、負極活物質の膨張収縮により低下しがちな電極集電体側の電子伝導性と、電極内におけるイオン拡散性を向上することができ、電極集電体側と電極表面側とで負極活物質の充放電反応を均一にすることができる。これにより、サイクル特性に優れた非水電解質二次電池用負極を提供するものである。また、上述の電極集電体側と電極表面側とで負極活物質の充放電反応を均一にできることと、導電剤を表面側領域に少なく配置することで、電極表面側で導電剤と電解液による副反応を抑制できることにより、サイクル後の出力特性に優れた非水電解質二次電池用負極を提供するものである。このような負極が得られる理由としては、以下の説明によるものと考えられる。
【0015】
上記構成であれば、負極合剤層の集電体側に導電剤と結着剤Aを共に多く配置しているので、集電体側に配置された導電剤と結着剤Aとが絡み合い分散することで、集電体側で結着剤Aが凝集して抵抗となり電子の移動が阻害されるのが抑制される。このため、集電体側における電子伝導性(電子の移動)を向上できると考えられる。
【0016】
また、集電体側で結着剤Aが導電剤と絡み合い分散することで、合剤スラリーの塗工乾燥時に結着剤Aが表面側に移動する現象(マイグレーション)が抑制されるため、捕液性を有する結着剤Aを集電体側に保持することができる。これにより、充放電に伴い負極活物質が膨張し、電極内の空隙量が低下した状態でも、集電体側で不足しがちな電解液の捕液性能を高めることができるため、集電体側におけるイオン拡散性(リチウムイオンの移動)を向上できると考えられる。加えて、上記構成では、表面側に導電剤と結着剤Aを共に少なく配置しているので、電極の厚み方向への電解液の液浸透性を高めることができ、電極内におけるイオン拡散性(リチウムイオンの移動)を向上できると考えられる。これらにより、電極内においてリチウムイオンの移動経路が確保される。
【0017】
即ち、上記により、集電体側で電子伝導性が向上することと、電極内でイオン拡散性が向上することにより、電子の移動とリチウムイオンの移動の両方が円滑になることで、集電体側と表面側とで負極活物質の充放電反応を均一にすることができ、サイクル特性及びサイクル後の出力特性が向上すると考えられる。また、上記構成では、表面側に導電剤を少なく配置しているので、表面側で導電剤と電解液による副反応が抑制されることによっても、サイクル後の出力特性が向上すると考えられる。
【0018】
ここで、上記構成において、集電体側に配置された量と同じ量の導電剤と結着剤Aを表面側にも配置した場合には、電極内に占める導電剤や結着剤の割合が多くなり過ぎるため、容量が低下する。また、この場合には、表面側と集電体側とで負極活物質の充放電反応が不均一となるため、サイクル特性及びサイクル後の出力特性が低下する。
【0019】
上記負極14は、例えば、図1に示すように、負極集電体14aと、負極集電体上に接するように設けられた第1の負極合剤層14bと、第1の負極合剤層上に設けられた第2の負極合剤層14cとから構成されることが好ましい。本実施形態では、2層からなる負極合剤層について述べたが、負極合剤層は複数層からなってもよい。
【0020】
負極合剤層の厚み方向の断面を集電体側領域と表面側領域とに半分に分割した、とは、負極集電体14aと負極合剤層(第1の負極合剤層14b、第2の負極合剤層14c)の積層方向を負極合剤層の厚み方向としたとき、負極合剤層の厚み方向の断面を、負極合剤層の厚みdの中間点で半分に分割することを意味する。そして、半分に分割したうち、集電体から見て近くに位置する合剤層の断面を集電体側領域とし、集電体から見て遠くに位置する合剤層の断面を表面側領域とするものである。
【0021】
結着剤Aの量を表面側領域よりも集電体側領域に多くし、導電剤の量を表面側領域よりも集電体側領域に多くさせる具体的な手段を説明する。例えば、まず、負極活物質と、表面側よりも多い量の結着剤Aと、表面側と同量の結着剤Bと、表面側よりも多い量の導電剤と、水等の溶媒とを混合して、集電体側用の負極合剤スラリーを調製する。これとは別に、負極活物質と、集電体側よりも少ない量の結着剤Aと、集電体側と同量の結着剤Bと、集電体側よりも少ない量の導電剤と、水等の溶媒とを混合して、表面側用の負極合剤スラリーを調製する。そして、負極集電体の両面に、集電体側用の負極合剤スラリーを塗布、乾燥した後、集電体側用の負極合剤スラリーによる層の上に、表面側用の負極合剤スラリーを両面に塗布、乾燥することにより、負極合剤層を形成することができる。ただし、結着剤Bは、表面側と集電体側とで異なる量が混合されてもよい。
【0022】
上記方法では、集電体側用の負極合剤スラリーを塗布後、乾燥させてから表面側用の負極合剤スラリーを塗布したが、集電体側用の負極合剤スラリーを塗布後、乾燥しきる前に、表面側用の負極合剤スラリーを塗布する方法でもよい。後者の方法を用いた場合には、集電体側用の負極合剤スラリーと表面側用の負極合剤スラリーとが混合した合剤層が形成されやすい。また、前者の方法では、結着剤A及び結着剤Bの量が不連続に変化する構成となるが、後者の方法では、結着剤A及び結着剤Bの量が連続的に変化する構成となる。
【0023】
負極活物質としては、リチウムを可逆的に吸蔵放出できるものであれば特に限定されず、例えば、炭素材料や、リチウムと合金化する金属又は合金材料や、金属酸化物等を用いることができる。
【0024】
負極活物質は、ケイ素を含むことが好ましい。負極活物質にケイ素を含む材料が含まれる場合は、負極活物質として炭素材料のみを用いた場合と比べて、充放電に伴う活物質の体積変化が大きく、充放電に伴いケイ素を含む負極活物質が膨張することで電極内の空隙量が著しく低下するため、集電体側で電解液が不足しがちである。従って、上述の集電体側と表面側とで負極活物質の充放電反応が均一になることにより得られる、サイクル特性及びサイクル後の出力特性の向上効果は、負極活物質としてケイ素を含む場合により一層発揮されると考えられる。また、負極活物質にケイ素が含まれる場合は、負極活物質として炭素材料のみを用いた場合と比べて、高容量化が達成できる。
【0025】
さらに、ケイ素を含む負極活物質を用いた場合において、集電体側と表面側とで負極活物質の充放電反応が均一になると、充放電によって抵抗上昇率(DCIR上昇率)が大きくなるのがより抑制されるので、これによっても、サイクル後の出力特性を向上できると考えられる。
【0026】
ここで、上述の抵抗上昇の抑制効果は、負極活物質として炭素材料のみを用いた場合よりも、ケイ素を含む負極活物質を用いた場合により発揮される効果である。負極活物質として炭素材料のみを用いた場合には、導電剤の添加有無や配置は、負極起因の抵抗変化に殆ど影響がないことがわかっている。これは、負極活物質として炭素材料のみを用いた場合には、ケイ素を含む負極活物質を用いた場合に比べて、充放電に伴う膨張収縮が小さく、電極内での負極活物質の充放電反応が不均一になりにくいためと考えられる。
【0027】
ケイ素を含む材料としては、例えば、ケイ素粒子、ケイ素合金粒子、ケイ素化合物粒子から選択される少なくとも1種が挙げられる。
【0028】
ケイ素合金としては、ケイ素と他の1種以上の元素との固溶体、ケイ素と他の1種以上の元素との金属間化合物、ケイ素と他の1種以上の元素との共晶合金などが挙げられる。合金の合成方法としては、アーク溶解法、液体急冷法、メカニカルアロイング法、スパッタリング法、化学気相成長法、焼成法等が挙げられる。特に、液体急冷法としては、単ロール急冷法、双ロール急冷法、及びガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法等の各種アトマイズ法が挙げられる。
【0029】
ケイ素化合物粒子としては、ケイ素が含まれている化合物であれば特に限定されないが、ケイ素と酸素を含有するものが好ましく、このようなものとして、ケイ素酸化物(ただし、ケイ素の総量に対する酸素の原子比xは、0.5≦x≦1.5である)が挙げられる。
【0030】
ケイ素酸化物は、その表面が非晶質炭素で被覆されていることが好ましい。ケイ素酸化物は、電子抵抗が高く、そのため負荷特性が低下する。表面を非晶質炭素で被覆することにより、電子伝導性を付与することができ、合剤層の電導度を向上させることが可能である。
【0031】
負極活物質としては、さらに炭素材料を含むことが好ましい。炭素材料は、リチウムを可逆的に吸蔵・放出できるものであれば特に限定されず、天然黒鉛や難黒鉛化性炭素、人造黒鉛等のグラファイト類を用いることができる。この場合、負極合剤層に存在するケイ素を含む材料の含有量は、負極合剤中に存在する負極活物質の総量(炭素材料とケイ素を含む材料との合計量)に対して、1質量%以上50質量%以下であることが好ましく、1
質量%以上20質量%以下であることがより好ましい。ケイ素を含む材料の含有量が50質量%を超えると、ケイ素を含む材料の膨張・収縮の影響が大きくなりすぎるためである。一方、ケイ素を含む材料の含有量が1質量%未満であると、電池の高容量化の効果が得難くなるためである。
【0032】
ケイ素を含む材料は、導電剤の配置と同様に、表面側よりも集電体側へ多く配置されることが好ましい。例えば、集電体側領域に存在するケイ素の含有量は、負極合剤中に存在するケイ素の総量に対して、50質量%以上100質量%以下であることが好ましい。集電体側は、導電剤と結着剤Aの効果により、電解液の捕液性能が高く、電子伝導性も高い。また、表面側に導電剤と結着剤Aが少ないことから、集電体側へのリチウムイオン移動の閉塞が起こりにくい。従って、集電体側にケイ素を含む材料を多くすると、表面側と集電体側とでの反応の不均一化をより小さくできるためである。
【0033】
導電剤としては、例えば、炭素系導電剤を用いることができ、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどのカーボンブラックやグラファイト等が挙げられる。導電剤の平均粒子径は、0.0001μm以上30μm以下であることが好ましく、0.001μm以上10μm以下であることがより好ましく、0.01μm以上1μm以下であることが特に好ましい。これは、平均粒子径が大きすぎると、リチウムイオンの拡散を阻害しやすくなり、本構成での効果が得難くなるためと、平均粒子径が小さすぎると、比表面積が大きくなることから吸油量が上がり、合剤スラリーの固形分が上がりにくいため生産性が悪化するという問題が生じやすいためである。
【0034】
導電剤としては、上記以外にも、カーボンナノファイバーやカーボンナノチューブといった繊維状の炭素等も用いることができる。
【0035】
負極合剤層中の導電剤の含有量は、高容量の観点から、0.1質量%以上20質量%以下であることが好ましく、0.1質量%以上6質量%以下であることがより好ましい。導電剤の含有量が0.1質量%未満であると、電極内の電子伝導性とイオン拡散性の向上効果が十分に得られなくなるためである。導電剤の含有量が20質量%を超えると、電池容量が低下するという問題が生じるためである。
【0036】
ゴム系高分子化合物を含む結着剤Aとしては、弾性を有する高分子化合物であればよく、特に制限はないが、スチレンブタジエンゴム、ハイスチレンゴム、エチレンプロピレンゴム、ブチルゴム、クロロプレンゴム、ブタジエンゴム、イソプレンゴム、アクリロニトリルブタジエンゴム、アクリロニトリルゴム、フッ素ゴム、アクリルゴム、シリコーンゴム等のゴムバインダを1種単独で、または2種以上を混合して使用することができる。
【0037】
負極合剤層の質量に占める結着剤Aの質量割合は、0.5〜2質量%であることが好ましい。そして、集電体側領域に存在する結着剤Aの量が、負極合剤層中に存在する結着剤Aの総量の50%以上70%以下であることが好ましい。集電体側に結着剤Aが多いことで、密着性や電解液の捕液性能が向上する優れた効果がある一方で、表面側で結着剤Aが少なすぎると、静止時にもリチウムイオンが動きやすくなることから、自己放電が進行してしまう問題が発生しやすいためである。
【0038】
結着剤Aは、負極合剤スラリーの乾燥過程において、溶媒とともに電極の表面側領域に結着剤が浮上していき、乾燥後は表面側領域に結着剤が偏在するという性質があるが、結着剤Aを予め集電体側領域へ多めに仕込むことで、乾燥後の集電体側領域における結着剤Aの量を上述の範囲に調整することができる。
【0039】
結着剤Aの定量方法としては、クロスセクションポリッシャによる断面作製後、四酸化オスミウムで染色し、電子プローブマイクロアナライザ(Electron Probe Micro Analyzer、略称:EPMA)や、エネルギー分散型蛍光X線分析装置(Energy Dispersive x−ray Spectroscopy、略称:EDX,EDS)で検出する方法等が挙げられる。
【0040】
水溶性高分子化合物を含む結着剤Bとしては、水溶性の高分子化合物であればよく、特に制限はないが、ポリマ系水溶性高分子化合物(以下「ポリマ系化合物」とする)、多糖系水溶性高分子化合物(以下「多糖系化合物」とする)等の1種単独で、または2種以上を混合して使用することができる。ポリマ系化合物としては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキシド、これらの誘導体等を使用することができ、多糖系化合物としては、セルロース、カルボキシメチルセルロース等を使用することができる。中でも、電気化学的な安定性等の観点から、カルボキシメチルセルロースが好適である。また、負極合剤層の質量に占める結着剤Bの質量割合は、0.5〜2質量%であることが好ましい。
【0041】
ただし、結着剤Bにおいては、負極合剤層内の負極活物質同士の密着性の確保と、SEI皮膜(Solid Electrolyte Interface)の形成を略均一にするために、少なくとも負極活物質の周囲に存在していることが好ましい。
【0042】
負極合剤スラリーとしては、スチレンブタジエンゴム等の結着剤と水等の溶媒を混合した水系負極合剤スラリーを用いる以外に、PVdF等の結着剤と非水系の溶媒を混合した非水系負極合剤スラリーを用いることも考えられるが、ケイ素を含む材料のような膨張収縮の大きい活物質が混合される場合には、集電性を保つために大量の結着剤の添加が必要となるため、上記非水系負極合剤スラリーを用いた場合には高容量が達成されにくくなるため、上記水系負極合剤スラリーを用いることが好ましい。
【0043】
[正極]
正極としては、非水電解質二次電池の正極として用いることができるものであれば特に限定されるものではない。正極活物質としては、遷移金属として、コバルト、ニッケル、マンガンまたはアルミニウム等を含むリチウム含有遷移金属複合酸化物等が挙げられる。ニッケルおよびマンガンを含むリチウム含有遷移金属複合酸化物としては、リチウム−ニッケルの複合酸化物、リチウム−ニッケル−コバルトの複合酸化物、リチウム−ニッケル−コバルト−アルミニウムの複合酸化物、リチウム−ニッケル−コバルト−マンガンの複合酸化物等が挙げられる。
【0044】
ただし、リチウム含有遷移金属酸化物の種類は上記のものに限定するものではなく、一般式LiMePO(MeはFe、Ni、CoおよびMnからなる群から選ばれる少なくとも一種)で表されるオリビン構造を有するリチウム含有遷移金属酸化物からなるもの、一般式LiMe(MeはFe、Ni、CoおよびMnからなる群から選ばれる少なくとも一種)で表されるスピネル構造を有するリチウム含有遷移金属酸化物からなるもの等であってもよい。なお、リチウム含有遷移金属酸化物は、マグネシウム、アルミニウム、チタン、クロム、バナジウム、鉄、銅、亜鉛、ニオブ、モリブデン、ジルコニウム、錫、タングステン、ナトリウムおよびカリウムからなる群から選ばれる少なくとも一種をさらに含んでいてもよい。
【0045】
[非水電解質]
非水電解質の溶媒は特に限定するものではなく、非水電解質二次電池に従来から用いられてきた溶媒を使用することができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートや、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン等のエステルを含む化合物や、プロパンスルトン等のスルホン基を含む化合物や、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,2−ジオキサン、1,4−ジオキサン、2−メチルテトラヒドロフラン等のエーテルを含む化合物や、ブチロニトリル、バレロニトリル、n−ヘプタンニトリル、スクシノニトリル、グルタルニトリル、アジポニトリル、ピメロニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル等のニトリルを含む化合物や、ジメチルホルムアミド等のアミドを含む化合物等を用いることができる。特に、これらのHの一部がFにより置換されている溶媒が好ましく用いられる。また、これらを単独で使用しても、複数を組み合わせて使用してもよく、特に環状カーボネートと鎖状カーボネートとを組み合わせた溶媒や、さらにこれらに少量のニトリルを含む化合物やエーテルを含む化合物が組み合わされた溶媒が好ましい。
【0046】
また、非水電解質の非水系溶媒としてイオン性液体を用いることもでき、この場合、カチオン種、アニオン種については特に限定されるものではないが、低粘度、電気化学的安定性、疎水性等の観点から、カチオンとしては、ピリジニウムカチオン、イミダゾリウムカチオン、4級アンモニウムカチオンを、アニオンとしては、フッ素含有イミド系アニオンを用いた組み合わせが特に好ましい。
【0047】
さらに、上記の非水電解質に用いる溶質としても、従来から非水電解質二次電池において一般に使用されている公知のリチウム塩を用いることができる。そして、このようなリチウム塩としては、P、B、F、O、S、N、Clの中の一種類以上の元素を含むリチウム塩を用いることができ、具体的には、LiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CSO、LiAsF、LiClO等のリチウム塩およびこれらの混合物を用いることができる。特に、非水電解質二次電池における高率充放電特性や耐久性を高めるためには、LiPFを用いることが好ましい。
【0048】
[その他]
セパレータとしては、従来から用いられてきたセパレータを用いることができる。具体的には、ポリエチレンを含むセパレータのみならず、ポリエチレンの表面にポリプロピレンを含む層が形成されたものや、ポリエチレンのセパレータの表面にアラミド系の樹脂等が塗布されたものを用いてもよい。
【0049】
正極とセパレータとの界面、および、負極とセパレータとの界面には、従来から用いられてきた無機物のフィラーを含む層を形成してもよい。該フィラーとしても、従来から用いられてきたチタン、アルミニウム、ケイ素、マグネシウム等を単独または複数用いた酸化物やリン酸化合物、またその表面が水酸化物等で処理されているものを用いることができる。また、上記フィラー層の形成は、正極、負極、またはセパレータに、フィラー含有スラリーを直接塗布して形成する方法や、フィラーで形成したシートを、正極、負極、またはセパレータに貼り付ける方法等を用いることができる。
【実施例】
【0050】
以下、実験例を挙げ、本発明の実施例をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
【0051】
(実験例1)
[負極の作製]
負極活物質として、黒鉛粉末95質量部と、炭素の被覆層を有するSiO(x=1)5質量部と、結着剤Bであるカルボキシメチルセルロース(CMC)1質量部と、水と、を混合した。この混練物に結着剤Aであるスチレンブタジエンゴム(SBR)1.5質量部と、水と、を混合し、負極合剤スラリー(1)を調製した。つまり、負極活物質:CMC:SBR=100:1:1.5の質量比である。
【0052】
また、黒鉛粉末95質量部と、炭素の被覆層を有するSiO(x=1)5質量部と、結着剤Bであるカルボキシメチルセルロース(CMC)1質量部と、水と、を混合した。この混練物に結着剤Aであるスチレンブタジエンゴム(SBR)0.5質量部と、水と、を混合し、負極合剤スラリー(2)を調製した。つまり、負極活物質:CMC:SBR=100:1:0.5の質量比である。
【0053】
次に、図1に示すように、負極合剤スラリー(1)を、厚みが8μmの銅箔製の負極集電体14a(図1参照)に両面に塗布、乾燥して第1の負極合剤層14bを形成した。この後、負極合剤スラリー(1)による層の上に、負極合剤スラリー(2)を、両面に塗布、乾燥して第2の負極合剤層14cを形成した。
【0054】
この際、負極合剤スラリー(1)による層に含まれる負極活物質の質量と、負極合剤スラリー(2)による層に含まれる負極活物質の質量とを同じとした。合剤塗布量は両面合計で、282g/mであった。
【0055】
そして、圧延ローラーを用いて極板厚みで175μmまで圧延し、所定の電極サイズに切り取り、負極を作製した。
【0056】
[正極の作製]
LiNi0.82Co0.15Al0.03で表されるニッケルコバルトアルミニウム酸リチウムの粒子100質量部に、炭素導電剤としてのカーボンブラック0.8質量部と、結着剤としてのポリフッ化ビニリデン0.7質量部とを混合し、さらに、NMP(N−メチル−2−ピロリドン)を適量加えることにより正極合剤スラリーを調製した。次に、該正極合剤スラリーを、アルミニウムを含んでなる厚み15μmの正極集電体の両面に塗布、乾燥した。合剤塗布量は両面合計で、578g/mとした。そして、ローラーを用いて極板厚みで164μmまで圧延し、所定の電極サイズに切り取り、正極を作製した。
【0057】
[電極体の作製]
偏平状の巻回電極体の作製には、上記正極を1枚、上記負極を1枚、ポリエチレン製微多孔膜からなるセパレータを2枚用いた。まず、正極と負極とをセパレータを介して互いに絶縁した状態で対向させた。次に、円柱型の巻き芯を用いて、渦巻き状に巻回した。この際、正極集電タブ、及び負極集電タブは、共にそれぞれの電極内における最外周側に位置するように配置した。その後、巻き芯を引き抜いて巻回電極体を作製した後、押し潰して、偏平状の巻回電極体を得た。この偏平状の巻回電極体は、正極と負極とがセパレータを介して積層された構造を有している。
【0058】
[非水電解液の調製]
EC(エチレンカーボネート)とDMC(ジメチルカーボネート)とEMC(エチルメチルカーボネート)を20:60:20の体積比で混合した混合溶媒に、VC(ビニレンカーボネート)が3質量%となるように加え、そして溶質としてのLiPFを1.3モル/リットルの割合で溶解させて、非水電解液を調製した。
【0059】
[電池の作製]
このようにして調製された非水電解液及び上述の偏平状の巻回電極体を、アルゴン雰囲気下のグローブボックス中にて、アルミニウム製のラミネート外装体11内に挿入し、図2及び図3に示される構造を有する、厚さd=3.6mm、幅3.5cm、長さ6.2cmのラミネート形非水電解質二次電池10を作製した。実験例1に係る非水電解質二次電池を電池電圧が4.2Vとなるまで充電した場合の電池の設計容量は、1250mAhであった。このようにして作製した電池を、以下、電池A1と称する。
【0060】
ここで、実験例1で作製したラミネート形の非水電解質二次電池10の構成について、図2及び図3を用いて説明する。非水電解質二次電池10は、外周囲を覆うラミネート外装体11と、偏平状の巻回電極体12と、非水電解液とを備えている。巻回電極体12は、正極13と、負極14とがセパレータ15を介して互いに絶縁された状態で偏平状の巻回された構成を有している。巻回電極体12の正極13には正極集電タブ16が接続され、同じく負極14には負極集電タブ17が接続されている。巻回電極体12は、外周囲を覆うラミネート外装体11の内部に非水電解液とともに封入されており、ラミネート外装体11の外周縁部はヒートシール部18により密閉されている。
【0061】
尚、実験例1で作製した非水電解質二次電池10では、巻回電極体12のサイド側の一方に非水電解液を注入し易くするために形成されたラミネート外装体11の延在部19が残された状態とされている。この延在部19は、充放電時に発生したガスの成分や非水電解液中に形成した成分の分析等に利用するためのものであり、製品として非水電解質二次電池とするには、図2におけるA−A線に沿った位置でヒートシールすればよい。
【0062】
(実験例2)
負極合剤スラリー(2)を作製する際に、黒鉛粉末95質量部と、炭素の被覆層を有するSiO(x=1)5質量部と、結着剤Bであるカルボキシメチルセルロース(CMC)1質量部と、水と、導電剤としてのカーボンブラック2質量部を混合した。この混練物に結着剤Aであるスチレンブタジエンゴム(SBR)0.5質量部と、水と、を混合したこと以外は、実験例1と同様にして、非水電解質二次電池を作製した。このようにして作製した電池を、以下電池A2と称する。
【0063】
(実験例3)
負極合剤スラリー(1)を作製する際に、黒鉛粉末95質量部と、炭素の被覆層を有するSiO(x=1)5質量部と、結着剤Bであるカルボキシメチルセルロース(CMC)1質量部と、水と、導電剤としてのカーボンブラック1質量部を混合した。この混練物に結着剤Aであるスチレンブタジエンゴム(SBR)1.5質量部と、水と、を混合した。
【0064】
また、負極合剤スラリー(2)を作製する際に、黒鉛粉末95質量部と、炭素の被覆層を有するSiO(x=1)5質量部と、結着剤Bであるカルボキシメチルセルロース(CMC)1質量部と、水と、導電剤としてのカーボンブラック1質量部を混合した。この混練物に結着剤Aであるスチレンブタジエンゴム(SBR)0.5質量部と、水と、を混合した。
【0065】
上記負極合剤スラリー(1)と上記負極合剤スラリー(2)を用いたこと以外は、実験例1と同様にして、非水電解質二次電池を作製した。このようにして作製した電池を、以下、電池A3と称する。
【0066】
(実験例4)
負極合剤スラリー(1)を作製する際に、黒鉛粉末95質量部と、炭素の被覆層を有するSiO(x=1)5質量部と、結着剤Bであるカルボキシメチルセルロース(CMC)1質量部と、水と、導電剤としてのカーボンブラック2質量部を混合した。この混練物に結着剤Aであるスチレンブタジエンゴム(SBR)1.5質量部と、水と、を混合したこと以外は、実験例1と同様にして、非水電解質二次電池を作製した。このようにして作製した電池を、以下、電池A4と称する。
【0067】
(実験例5)
負極合剤スラリー(1)を作製する際に、黒鉛粉末92.5質量部と、炭素の被覆層を有するSiO(x=1)7.5質量部と、結着剤Bであるカルボキシメチルセルロース(CMC)1質量部と、水と、導電剤としてのカーボンブラック1質量部を混合した。この混練物に結着剤Aであるスチレンブタジエンゴム(SBR)1.5質量部と、水と、を混合した。
【0068】
また、負極合剤スラリー(2)を作製する際に、黒鉛粉末97.5質量部と、炭素の被覆層を有するSiO(x=1)2.5質量部と、結着剤Bであるカルボキシメチルセルロース(CMC)1質量部と、水と、導電剤としてのカーボンブラック1質量部を混合した。この混練物に結着剤Aであるスチレンブタジエンゴム(SBR)0.5質量部と、水と、を混合した。
【0069】
上記負極合剤スラリー(1)と上記負極合剤スラリー(2)を用いたこと以外は、実験例1と同様にして、非水電解質二次電池を作製した。このようにして作製した電池を、以下、電池A5と称する。
【0070】
(実験例6)
負極合剤スラリー(1)を作製する際に、黒鉛粉末92.5質量部と、炭素の被覆層を有するSiO(x=1)7.5質量部と、結着剤Bであるカルボキシメチルセルロース(CMC)1質量部と、水と、導電剤としてのカーボンブラック2質量部を混合した。この混練物に結着剤Aであるスチレンブタジエンゴム(SBR)1.5質量部と、水と、を混合した。
【0071】
また、負極合剤スラリー(2)を作製する際に、黒鉛粉末97.5質量部と、炭素の被覆層を有するSiO(x=1)2.5質量部と、結着剤Bであるカルボキシメチルセルロース(CMC)1質量部と、水と、を混合した。この混練物に結着剤Aであるスチレンブタジエンゴム(SBR)0.5質量部と、水と、を混合した。
【0072】
上記負極合剤スラリー(1)と上記負極合剤スラリー(2)を用いたこと以外は、実験例1と同様にして、非水電解質二次電池を作製した。このようにして作製した電池を、以下、電池A6と称する。
【0073】
(実験)
<サイクル特性試験>
[容量維持率の算出]
上記電池A1〜A6を、25℃の温度条件下、以下の条件で充放電し、下記式(1)により150サイクル目の容量維持率を求めた。その結果を表1に示す。
【0074】
(充放電条件)
・初期の充放電条件
0.5It(625mA)の電流で電池電圧が4.2Vとなるまで、定電流充電を行った。さらに、4.2Vの電圧で電流値が0.02It(25mA)となるまで定電圧充電を行った。そして、0.5It(625mA)の電流で電池電圧が2.5Vとなるまで定電流放電を行った。
・2サイクル目〜200サイクル目の充放電条件
0.3It(375mA)の電流で電池電圧が4.2Vとなるまで、定電流充電を行った。さらに、4.2Vの電圧で電流値が0.02It(25mA)となるまで定電圧充電を行った。そして、0.5It(625mA)の電流で電池電圧が2.5Vとなるまで定電流放電を行った。
(150サイクル目の容量維持率の算出式)
容量維持率(%)=(150サイクル目の放電容量/4サイクル目の放電容量)×100・・・(1)
【0075】
<出力特性試験>
[DCIR上昇率の算出]
上記電池A1〜A6について、上記初期充放電の後に、以下の条件で充放電を行い、下記式(2)により初期の直流内部抵抗(DCIR)の値を調べた。また、上記200サイクル目の充放電後に、以下の条件で充放電を行い、下記式(2)により200サイクル目の直流内部抵抗(DCIR)の値を求めた。
【0076】
(充放電条件)
25℃の温度条件下、0.3It(375mA)の電流で電池電圧が3.79Vとなるまで、定電流充電を行った。さらに、3.79Vの定電圧で電流値が0.02It(25mA)となるまで定電圧充電を行った。そして、2時間休止した後、0.2It(250mA)の電流で10秒間放電した。
(DCIRの算出式)
抵抗値(mΩ)=(放電開始直前の電圧−放電開始10秒後の電圧)/(放電電流密度×電極面積)・・・(2)
【0077】
そして、初期の抵抗値と、200サイクル目の抵抗値から、下記式(3)によりDCIR上昇率を求めた。その結果を表1に示す。
(200サイクル後のDCIR上昇率の算出式)
DCIR上昇率(%)=((200サイクル目の抵抗値−初期の抵抗値)/初期の抵抗値)×100・・・(3)
【0078】
[SBR存在比率]
上記電池A1〜A6の負極極板の状態解析を行った。負極極板それぞれにおいて、クロスセクションポリッシャ(日本電子製)にて断面を作製した。断面を走査型電子顕微鏡(SEM)により観察し、500倍の画像を得た。次に、四酸化オスミウムで染色し、エネルギー分散型蛍光X線分析装置(略称:EDX,EDS)を用いて、負極合剤層を負極合
剤層の厚み方向に半分に分割したときの、表面側領域と集電体側領域それぞれの同一面積での結着剤A(SBR)の含有量を求め、負極合剤層全体に対しての存在比率を算出した。その結果を表1に示す。
【0079】
【表1】
【0080】
上記表1から明らかなように、導電剤を集電体側にのみ添加した電池A4及びA6は、導電剤を添加しなかった電池A1、導電剤を表面側にのみ添加した電池A2、導電剤を表面側と集電体側に同量添加した電池A3及びA5に比べて容量維持率が高く、サイクル特性に優れていることが認められる。加えて、電池A4及びA6は、電池A1〜A3及びA5に比べて、DCIR上昇率が小さくなっており、サイクル後の出力特性に優れていることが認められる。
【0081】
また、導電剤を集電体側にのみ添加した電池A4と電池A6を比較した場合には、ケイ素を含む材料を表面側よりも集電体側に多く混合した電池A6は、ケイ素を含む材料を表面側と集電体側とで同量混合した電池A4に比べて、高い容量維持率を示しており、DCIR上昇率も小さくなっていることが認められる。このことからわかるように、ケイ素を含む材料は、導電剤と同様に、表面側より集電体側に多く混合することが好ましい。
【0082】
導電剤を表面側にのみ添加した電池A2は、導電剤を添加しなかった電池A1に比べて、容量維持率が低下しており、DCIR上昇率も大幅に大きくなっている。また、導電剤を表面側と集電体側に同量添加した電池A3及びA5は、導電剤を添加しなかった電池A1に比べて、容量維持率は向上しているものの、DCIR上昇率が大きくなっている。
【0083】
上記結果が得られた理由について定かではないが、以下の説明によるものと推察される。電池A4及びA6では、導電剤と結着剤Aの量を、電極表面側に共に少なくし、電極集電体側に共に多くしている。電池A4及びA6では、集電体側に多く配置された導電剤と結着剤Aとが絡み合い分散することで、塗工乾燥時に結着剤Aが表面側に移動する現象が抑制される。そして、集電体側に捕液性を有する結着剤Aが保持されるようになると、集電体側で不足しがちな電解液の捕液性能が高められるために、集電体側でリチウムイオンの移動が円滑になったと考えられる。また、電池A4及びA6では、表面側に配置された導電剤と結着剤Aが少ないことで、電極の厚さ方向への電解液の液浸透性が高められるために、電極の厚さ方向でリチウムイオンの移動が円滑になったと考えられる。さらに、電池A4及びA6では、集電体側に多く配置された導電剤と結着剤Aとが絡み合い分散することで、集電体側で電子の移動が円滑になり、集電性が改善したと考えられる。
【0084】
上記により、集電体側で電子伝導性(電子の移動)が向上したことと、電極内においてイオン拡散性(リチウムイオンの移動)が向上したことで、電極表面側と電極集電体側で負極活物質の充放電反応が均一になったこと、即ち、電極全体で負極活物質の充放電反応が均一になったことにより、他の電池に比べて高い容量維持率が得られ、結果、サイクル特性が向上したと考えられる。
【0085】
加えて、電池A4及びA6では、上述した電極全体で負極活物質の充放電反応が均一になったことと、表面側に配置された導電剤が少ないことで、表面側で導電剤と電解液による副反応が抑制されたことにより、他の電池に比べてサイクル後のDCIR上昇率が大きくなるのが抑制され、結果、サイクル後の出力特性が向上したと考えられる。
【0086】
電池A1では、結着剤Aの量を表面側に少なく、集電体側に多くしており、導電剤は添加していない。電池A1では、電極内に導電剤が添加されていないので、集電体側で結着剤Aが凝集し、これが抵抗となるため、集電体側で電子伝導性が阻害されて集電性が低下する。また、塗工乾燥時に捕液性を有する結着剤Aが表面側に移動する現象を抑制できないために、集電体側で電解液の捕液性能が低下し、集電体側においてイオン拡散性が阻害される。これらにより、電極内における電子伝導性及びイオン拡散性が阻害されたことで、電極全体における負極活物質の充放電反応が、電池A4及びA6に比べて不均一化したと考えられる。これにより、電池A4及びA6に比べて低い容量維持率と大きなDCIR上昇率を示したと考えられる。
【0087】
電池A2では、結着剤Aの量を表面側に少なく、集電体側に多くしており、導電剤を表面側に多く配置している。電池A2では、導電剤が表面側に多く配置されているので、上記電池A1で説明した理由により、電子伝導性とイオン拡散性の向上による効果は得られない。加えて、電池A2では、表面側に多く配置された導電剤により、結着剤Aが表面側に移動する現象が加速されるために、電池A1に比べて集電体側に存在する結着剤量が少なくなっていることがわかる。集電体側に存在する結着剤量が減少すると、電極厚さ方向への電解液の液浸透性が低下するため、電極厚さ方向でイオン拡散性が低下する。これにより、電極全体で負極活物質の充放電反応が電池A1よりもさらに不均一化したことで、電池A1よりも容量維持率が小さく、DCIR上昇率が大きくなったと考えられる。さらに、電池A2では、表面側に導電剤が多く配置されているので、表面側に配置された導電剤と電解液による副反応が生じ、抵抗が上昇したことで、電池A1に比べてDCIR上昇率が大幅に大きくなったと考えられる。
【0088】
電池A3及びA5では、結着剤Aの量を表面側に少なく、集電体側に多くしており、導電剤を表面側と集電体側とで同量配置している。電池A3及びA5では、集電体側に配置された導電剤と結着剤Aにより、集電体側において電子伝導性とイオン拡散性が向上する。しかしながら、集電体側に配置されたのと同量の導電剤が表面側にも配置されているので、電極の厚さ方向への電解液の液浸透性が低下し、電極厚さ方向でイオン拡散性が阻害される。これらにより、電極全体における負極活物質の充放電反応は、電池A1よりは均一になっていると考えられるが、電池A4及びA6よりは不均一であると考えられる。従って、容量維持率は電池A1より高く、電池A4及びA6より低い結果となっている。一方、DCIR上昇率は、電池A1や電池A4及びA6に比べて大きくなっている。これは、電池A3及びA5では、表面側に導電剤が配置されているので、表面側に配置された導電剤と電解液による副反応が生じ、抵抗が上昇するためであると考えられる。
【符号の説明】
【0089】
10 非水電解質二次電池
11 ラミネート外装体
12 巻回電極体
13 正極
14 負極
14a 負極集電体
14b 第1の負極合剤層
14c 第2の負極合剤層
15 セパレータ
16 正極集電タブ
17 負極集電タブ
18 ヒートシール部
19 延在部
図1
図2
図3