(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6238376
(24)【登録日】2017年11月10日
(45)【発行日】2017年11月29日
(54)【発明の名称】呼吸努力を検出する方法及び睡眠時無呼吸監視装置
(51)【国際特許分類】
A61B 5/08 20060101AFI20171120BHJP
【FI】
A61B5/08ZDM
【請求項の数】9
【全頁数】19
(21)【出願番号】特願2015-541894(P2015-541894)
(86)(22)【出願日】2013年11月7日
(65)【公表番号】特表2016-504064(P2016-504064A)
(43)【公表日】2016年2月12日
(86)【国際出願番号】US2013068962
(87)【国際公開番号】WO2014074723
(87)【国際公開日】20140515
【審査請求日】2016年11月4日
(31)【優先権主張番号】61/723,682
(32)【優先日】2012年11月7日
(33)【優先権主張国】US
(31)【優先権主張番号】13/830,736
(32)【優先日】2013年3月14日
(33)【優先権主張国】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】515121601
【氏名又は名称】ソムナラス インコーポレイテッド
【氏名又は名称原語表記】Somnarus Inc.
(74)【代理人】
【識別番号】110001302
【氏名又は名称】特許業務法人北青山インターナショナル
(72)【発明者】
【氏名】パルフェノーヴァ,マリア
(72)【発明者】
【氏名】パルフェノーヴァ,アレクサンドル
(72)【発明者】
【氏名】ゾブニン,ユリ
【審査官】
▲高▼ 芳徳
(56)【参考文献】
【文献】
特表2008−515494(JP,A)
【文献】
特表2005−535359(JP,A)
【文献】
米国特許出願公開第2010/0152560(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/08 − 5/097
A61B 5/02 − 5/0295
(57)【特許請求の範囲】
【請求項1】
呼吸努力を検出する方法において、
プロセッサ内において、プレチスモグラフィデータを取得するステップと、
前記プレチスモグラフィデータのDC成分の変化を検出するサブステップと、
前記プレチスモグラフィデータ内において脈波を検出するサブステップと、
それぞれの検出された脈波について血管緊張の変化の尺度を算出するサブステップと、
前記プレチスモグラフィデータのDC成分の前記検出された変化にマッチングするように前記血管緊張の変化の前記尺度の次元を調節するサブステップと、
前記プレチスモグラフィデータのDC成分の前記検出された変化にマッチングするように前記血管緊張の変化の前記尺度の強度をスケーリングするサブステップと、
前記呼吸努力を取得するべく、前記プレチスモグラフィデータの前記DC成分から前記血管緊張の変化の前記調節済みの尺度を減算するサブステップと、
により、前記プロセッサ内において、呼吸努力を識別するステップと、
を有することを特徴とする方法。
【請求項2】
請求項1に記載の呼吸努力を検出する方法において、前記プレチスモグラフィデータは、無呼吸の呼吸イベント又は呼吸低下の呼吸イベントの際に取得されることを特徴とする方法。
【請求項3】
請求項1に記載の呼吸努力を検出する方法において、プレチスモグラフィデータは、光センサによって収集されることを特徴とする方法。
【請求項4】
請求項1に記載の呼吸努力を検出する方法において、プレチスモグラフィデータは、圧力センサによって収集されることを特徴とする方法。
【請求項5】
請求項1に記載の呼吸努力を検出する方法において、プレチスモグラフィデータは、インピーダンスセンサによって収集されることを特徴とする方法。
【請求項6】
請求項1に記載の呼吸努力を検出する方法において、前記プレチスモグラフィデータのDC成分の変化を検出するステップは、周波数フィルタを前記プレチスモグラフィデータに適用するステップを含むことを特徴とする方法。
【請求項7】
請求項1に記載の呼吸努力を検出する方法において、前記血管緊張の変化の前記尺度の次元を調節するステップは、スペクトル分析を含むことを特徴とする方法。
【請求項8】
請求項1に記載の呼吸努力を検出する方法において、前記プレチスモグラフィデータは、人間の大静脈の近傍に配置された大きな静脈に静脈血が流入する血管が高度に発達したエリア上において位置決めされたプレチスモグラフィセンサから取得されることを特徴とする方法。
【請求項9】
呼吸努力を検出する方法において、
プロセッサ内において、プレチスモグラフィデータを取得するステップと、
前記プレチスモグラフィデータのDC成分の変化を検出するサブステップと、
前記プレチスモグラフィデータ内において脈波を検出するサブステップと、
それぞれの検出された脈波ごとに、前記脈波形の第1及び第2心臓収縮ピークの間の差によって判定される増大係数を介して、血管緊張の変化の尺度を算出するサブステップと、
前記プレチスモグラフィデータのDC成分の前記検出された変化にマッチングするように前記血管緊張の変化の前記尺度の次元を調節するサブステップと、
前記プレスチモグラフィデータのDC成分の前記検出された変化にマッチングするように前記血管緊張の変化の前記尺度の強度をスケーリングするサブステップと、
前記呼吸努力を取得するべく、前記プレチスモグラフィデータの前記DC成分から前記血管緊張の変化の前記調節済み尺度を減算するサブステップと、
により、前記プロセッサ内において、呼吸努力を識別するステップと、
を有することを特徴とする方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本出願は、米国特許法第119条(e)の下における米国仮特許出願第61/723,682号明細書の利益及び優先権を主張するものであり、この特許出願は、参照によりその全体が本明細書に援用される。
【0002】
本出願は、米国特許出願第13/830,736号明細書の優先権を主張するものであり、この特許出願は、参照によりその全体が本明細書に援用される。
【0003】
本発明は、概して、健康指標の監視のための、より詳細には、睡眠時無呼吸などの睡眠障害の診断のための、生理学的データの取得に関する。
【背景技術】
【0004】
閉塞型の睡眠時無呼吸(Obstructive Sleep Apnea:OSA)は、最も一般的な睡眠障害であり、任意のその他の睡眠障害よりも大きな死亡率及び疾病率の原因となっている。OSAは、上部気道の閉塞の結果として睡眠中に十分な呼吸が頻繁にできなくなること(無呼吸又は呼吸低下と呼ばれる)を特徴としている。
【0005】
無呼吸は、気流の完全な停止として定義される。呼吸低下は、拡大された呼吸努力の量に釣り合っていないと共に、その個人の代謝要求の充足にも不十分である気流の低減として定義される。異常呼吸イベントと一般に呼ばれている無呼吸又は呼吸低下の際には、脳内の酸素レベルが減少する一方で、二酸化炭素のレベルが上昇し、その結果、睡眠者が目覚めることになる。無呼吸イベントの際には、アドレナリン及びコルチゾールが血液中に放出され、心拍数及び血圧が増大する。呼吸するための短時間の覚醒の後に、睡眠に復帰することになる。
【0006】
OSAは、世界的に見て、深刻ではあるものの、治療が可能な健康問題である。公開されている報告書によれば、治療を受けていないOSA患者は、産業事故及び自動車事故に関与する可能性が3〜5倍高く、且つ、覚醒性及び記憶が劣化するとされている。治療を受けていないOSAは、高血圧症、脳卒中、心不全、不整脈、心臓麻痺、糖尿病、及びうつ病をもたらす。現在の推定値によれば、中程度から深刻なレベルまでのOSAを有する人々の80%超が、診断を受けていないままであることが明らかになっている。
【0007】
OSA診断の現在の標準は、高価な夜間睡眠検査−ポリソムノグラフィ(Polysomnography:PSG)であり、これは、熟練した技術者によって実施及び分析され、睡眠障害を専門とする医師によって検討される。通常の夜間PSGは、脳波図、筋電図、眼電図、呼吸気流(口鼻気流モニタによる)、呼吸努力、酸素飽和(酸素測定)、心電図記録、いびき音、及び身体位置の信号の記録を含む。これらの信号は、パラメータの相対的に完全な集合体を提供し、このパラメータの集合体から、呼吸イベントを識別してもよく、OSAを高い信頼性によって診断してもよい。
【0008】
閉塞型の無呼吸及び呼吸低下は、それぞれ、呼吸をしようとする継続的な努力にも拘わらず、上部気道の閉塞に起因して気流が欠如及び低減することと定義される。通常のポリソムノグラフィは、呼吸努力の何らかの記録を含む。努力の最も正確な尺度は、食道内圧モニタによって反映される胸腔内圧の変化である。食道内圧監視法は、実施が困難であり、且つ、患者にとって極めて不快であることから、その他の方法が開発されている。これらの方法は、呼吸努力を推定し、胸郭及び腹部の運動の尺度に依存し、インダクタンス若しくはインピーダンスプレチスモグラフィ又は単純なひずみゲージを含む。
【0009】
従来のPSG睡眠検査の費用、不便さ、及び複雑さは、より簡単且つ安価なOSA診断に対する大きな要求を生じさせている。この結果、過去数年の間に、いくつかの携帯型睡眠モニタが開発されている。これらのモニタは、PSGよりも少ない数のパラメータを計測するが、これらのパラメータのうちのいくつかは、PSGのものに匹敵する精度を提供する。更には、携帯型OSAモニタは、自宅内型(in−home)試験という利便性を提供し、多くの場合、医師によって処方された後に患者に対して出荷される。睡眠検査室のPSG装置よりも格段に簡単ではあるものの、大部分の自宅内型OSA診断システムは、患者が、センサを適用し、ワイヤをプラグ接続し、トランスデューサ、ストラップ、ゲージ、及びその他の計測装置を適用及び調節し、又はコンピュータ制御されたベッドサイドユニットを操作する必要がある。このような装置を素人が適用し且つ適切に動作させるのは難しいであろう。Itamar Medical Ltd.社によって製造されている、既存の自宅診断システムのうちの1つである、Watch−PATの場合には、患者は、その製品の使用の前に、1時間のトレーニングプレゼンテーションを視聴する必要がある。使用が困難である診断システムの別の例は、NovaSom社によって製造されているAccuSomである。患者が自宅内型装置をセットアップする際に経験することになる困難さにより、遵守レベルが限定され、睡眠データの品質が結果的に劣化し、自宅内型睡眠監視の採用が限定される。更には、この装置は、不快である可能性があり、且つ、運動アーチファクト又は睡眠中のセンサの変位に起因して、検知されるデータの品質が乏しいものになる可能性がある。睡眠データの品質が乏しい主な理由の1つが、現在入手可能な呼吸努力センサである。呼吸努力センサは、通常、胸部の膨張を計測する胸部又は腹部バンドとして設計され、且つ、誘導性プレチスモグラフィ、圧電結晶、導電性エラストマ、磁気計、及びひずみゲージに基づいている。これらの呼吸努力センサの場合には、特に、運動アーチファクト及びトラッピングが生じやすい。患者が1つの側から他の側へと回転するのに伴うトラッピングアーチファクトの発生が、呼吸努力データの品質に大きな影響を及ぼす場合がある。2つの研究において、熟練した睡眠検査技術者によってバンドが適用された際にも、努力バンドの失敗率が7%〜21%の範囲をとることが判明した。
【0010】
従って、OSAのリスクを有する患者を正確に診断するべく、ワイヤの使用を除去又は低減すると共に最小限の指示によって確実に自分で適用することができる装置が有益であろう。更には、努力バンドの使用を伴うことなしに呼吸努力を検出しうる装置は、利便性を提供し、トラッピングアーチファクトを除去することにより、検知される呼吸努力データの品質を改善することになろう。
【0011】
「前頭部静脈圧」を評価することによって呼吸努力を検出し、且つ、フォトプレチスモグラフィセンサ、圧力センサ、及び加速度計からの信号を組み合わせたアルゴリズムに基づいている、Watermark Medial Inc.社によって製造される既知の装置−ARES−が存在している。この装置は、鼻気流の評価のための鼻チューブと、ストラップによって患者の前頭部に装着される嵩張ったメインユニットと、を含む。そのフォームファクタ及びサイズ、気流チューブの使用、及び使用されているセンサのタイプに起因し、この装置は、睡眠に入るには不快であり、且つ、センサの変位及び睡眠データの品質劣化が生じやすい。
【0012】
又、接着剤によって患者の顔面に適用されるストリップに、口鼻気流を計測するための3つのサーミスタ、電池、マイクロコントローラ、及びメモリを内蔵した既知の装置−SleepStrip−も、存在している。但し、酸素飽和又は呼吸努力用のセンサの欠如に起因し、この装置は、異常気流に関する患者のスクリーニングにしか、適しておらず、且つ、OSAの検出には、不十分である。異常気流は、OSAの主要な症状であり、無呼吸及び呼吸低下の際の呼吸努力は、OSAを中枢性睡眠時無呼吸などのその他の形態の睡眠障害を伴う呼吸と弁別する生理学的パラメータである。
【0013】
1つの方法は、努力ベルトの使用を伴わない呼吸努力の検出のために、フォトプレチスモグラフィの使用を提案している。無呼吸イベントの際のフォトプレチスモグラフィ(PPG)信号を分析する際に、低域通過フィルタ又は周波数分析を使用して呼吸によって誘発される強度変動を識別することが提案されている(米国特許第7,690,378号明細書)。但し、これらの強度変動は、呼吸努力にのみ起因するものではなく、且つ、従って、低域通過フィルタ又は周波数分析の適用は、無呼吸イベントの際に呼吸努力を識別するには、不十分である。これらの強度変動の原因については、いくつかの可能性が存在する。吸気は、拍出量の瞬間的な低減を、且つ、従って、対応した心拍出量の低減を、結果的にもたらし、これが、PPG波形の拍動成分に影響を及ぼす。又、伝達された胸郭内圧の変化に起因した呼吸サイクルにおける血量の変化も存在する。更には、交感神経によって仲介された動脈の血管収縮がPPG強度変動において役割を果たしていることも示されている。呼吸努力を正確に識別するべく、無呼吸イベントの際のPPG強度変動から、交感神経によって仲介された血管収縮の役割を除去する方法及びシステムを有することが望ましい。
【0014】
呼吸イベント及び呼吸努力の正確な検出のためのセンサを内蔵した、適用が容易であり、且つ、操作が容易である、診断装置が、便利な自宅内型の睡眠時無呼吸診断のために依然として必要とされている。
【発明の概要】
【0015】
一般的な一態様において、本発明は、睡眠時無呼吸の診断のための装置に関する。装置は、気流、酸素飽和、心拍数、及び呼吸努力の分析のためのセンサがその内部に収容される防水型のハウジングを含む。又、ハウジングは、電池、マイクロプロセッサ、及びセンサからのデータを保存するためのオンボードメモリを、又は無線データ送信システムを、も含む。ハウジングは、患者の皮膚に付着するように、接着表面を含んでもよい。
【0016】
一実施形態において、装置は、患者の顔面形状にフィットするように成形されたハウジングと、患者の顔面内の血量を検出するように位置決めされた光センサの少なくとも1つのペアと、患者の呼吸の際に気流を検出するように位置決めされた少なくとも1つの気流センサと、を含む。装置は、ハウジング内に配設され、且つ、検出された血量に関係した生理学的情報を保存すると共に呼吸の際に検出された気流に関係した生理学的情報を保存するように構成された、メモリを更に含む。装置は、ハウジング内において配設され、且つ、血量を検出するべく光センサの少なくとも1つのペアを制御し、気流を検出するべく少なくとも1つの気流センサを制御するように構成されたコントローラと、予め定義された監視期間において、検出された血量に関係した生理学的情報を保存すると共に呼吸の際の検出された気流に関係した生理学的情報を保存するためのメモリと、を更に含む。
【0017】
いくつかの実施形態において、装置及び方法は、血量の変化に対応した低速で運動する成分(「DC成分」)及び動脈の脈波に対応した高速で運動する成分(「AC成分」)についてプレチスモグラフィ信号(例えば、フォトプレチスモグラフィ)を分析している。DC成分は、PPG強度変動の推定値として使用されてもよい。
【0018】
別の一般的な態様において、本発明は、コンピュータ使用可能媒体から構成されたコンピュータプログラムに関し、前記媒体には、コンピュータに呼吸努力を反映した生理学的信号を取得及び分析させるべく、コンピュータ可読プログラムコード関数が組み込まれている。
【0019】
装置の実装形態は、以下のうちの1つ又は複数を含んでもよい。気流データは、様々なタイプのセンサ、例えば、サーミスタ又はガスフローセンサによって収集されてもよい。血液酸素飽和は、光エミッタ及びレセプタの2つのペアによって検出されてもよい。心拍数データは、フォトプレチスモグラフィ(PPG)信号から取得されてもよい。患者の位置及び運動は、加速度計によって取得されてもよい。装置は、マイクロコントローラ、電源、及び収集されたデータを保存するためのオンボードメモリ、又は収集されたデータを送信するための無線データ送信システムを含んでもよい。
【0020】
方法の実装形態は、以下のもののうちの1つ又は複数を含んでもよい。呼吸努力に関するデータは、血管の容積の変化によって証明される胸郭内圧の変化を分析することにより、間接的に取得することができる。血量の傾向は、鼻血管などの末梢血管から得られるPPG信号から推定されてもよい。
【0021】
一実施形態において、方法は、呼吸イベントの際の呼吸努力を検出する。方法は、酸素飽和、心拍数、及び気流データを取得するステップと、データを分析して呼吸イベントを識別するステップと、末梢プレチスモグラフィデータを分析して呼吸イベントの際の呼吸努力を識別するステップと、を有する。呼吸努力は、呼吸イベントの開始の際のプレチスモグラフィデータのDC成分の変化を検出し、且つ、呼吸イベントの際のプレチスモグラフィデータのDC成分に対する自律神経系の影響を推定し、且つ、プレチスモグラフィデータから自律神経系の影響を減算して呼吸努力を取得することにより、識別されてもよい。
【0022】
記述されている装置及び方法は、無呼吸及び呼吸低下の呼吸イベントの確実且つ正確な検出を提供する。又、記述されている装置及び方法は、その他の既知の技法よりも、簡単であり、使用が便利であり、且つ、安価である。
【0023】
複数の実施形態を参照し、本発明について具体的に図示及び説明したが、当業者は、これらにおいて、本発明の趣旨及び範囲を逸脱することなしに、形態及び詳細の様々な変更形態を実施することができることを理解するであろう。
【0024】
本明細書に含まれると共にその一部分を形成する以下の図面は、本発明の実施形態を示しており、且つ、説明と共に、本発明の原理を説明するように機能する。
【図面の簡単な説明】
【0025】
【
図1】
図1は、本発明による睡眠時無呼吸診断システムの配置を示す概略図である。
【
図2a】
図2aは、睡眠時無呼吸の検出のための
図1の診断システムの一実施形態及び主要コンポーネントを示す概略図である。
【
図2b】
図2bは、
図2aの診断システムの一実施形態及び主要コンポーネントを示すブロック図である。
【
図3】
図3は、診断システムの一実施形態による計測された信号を示すタイミング図である。
【
図4】
図4は、末梢血量に対する無呼吸の呼吸努力の影響を示すフローチャートである。
【
図5】
図5は、呼吸努力を伴う無呼吸発作の際の計測された信号の特徴を示すタイミング図である。
【
図6】
図6は、呼吸努力を伴う無呼吸発作の開始の際のフォトプレチスモグラフィ信号の特徴を示すタイミング図である。
【
図7】
図7は、呼吸努力を伴わない無呼吸発作の際の計測された信号の特徴を示すタイミング図である。
【
図8】
図8は、睡眠時無呼吸を検出する診断システムの動作の一実施形態を示すフローチャートである。
【
図9】
図9は、呼吸努力を識別する診断システムの動作の一実施形態を示すフローチャートである。
【
図10】
図10は、無呼吸発作の前及び最中のフォトプレチスモグラフィ信号の特徴を示すタイミング図であり、増大係数によって評価される血管緊張の変化を実証するべく、2つの脈波が選択されている。
【
図11a】
図11aは、PPG信号の第1の例における呼吸努力を識別する診断システムの動作の一実施形態の分析ステップを示すタイミング図である。
【
図11b】
図11bは、PPG信号の第2の例における呼吸努力を識別する診断システムの動作の一実施形態の分析ステップを示すタイミング図である。
【発明を実施するための形態】
【0026】
以下、同一の参照符号によって同一又は機能的に類似した要素が示されている図面を参照し、本発明の様々な実施形態について説明する。又、これらの図面においては、それぞれの参照符号の最も左側の桁は、その参照符号が最初に使用されている図に対応している。
【0027】
本明細書における「一実施形態」、「実施形態」、「様々な実施形態」、又は「いくつかの実施形態」に対する参照は、これらの実施形態との関連において記述されている特定の特徴、構造、又は特性が、本発明の少なくとも1つの実施形態において含まれており、且つ、本明細書の様々な場所におけるこのような参照は、必ずしも、そのすべてが、同一の実施形態を参照しているものではないことを意味している。
【0028】
本明細書において引用されているすべての刊行物、特許、及び特許出願は、それぞれの個々の刊行物、特許、特許出願が参照により援用されると具体的且つ個別的に示されているかのように、引用によりその全体が、すべての目的のために、本明細書に援用される。
【0029】
方法及び装置は、患者の不規則な又は異常な呼吸活動を診断する。様々な例示用の実施形態においては、このような方法及び装置は、閉塞型の睡眠時無呼吸との関連において、以下に記述されているが、このような方法及び装置は、その他の用途において使用されてもよい。例えば、方法及び装置は、知覚麻痺の消失に伴って、患者が、人工呼吸器の支援を伴うことなしに自分で呼吸できるようになりつつある術後の知覚麻痺の影響から回復中の患者の呼吸活動を監視するべく、使用されてもよい。別の例として、方法及び装置は、例えば、頭部若しくはその他の身体的外傷を受けた又は薬物を過剰投与された患者の呼吸活動を監視、分析、及び診断するべく、救命救急ユニット、集中治療ユニット、外傷センタ、又は救急処置室内において使用されてもよい。更に別の例として、方法及び装置は、患者が外来手術のために局所的な知覚麻痺を有する医療施設内において使用されてもよい。
【0030】
睡眠時無呼吸診断システムは、患者の生理学的情報を検知するべく、患者の顔面の鼻の近傍に装着されるように構成されたハウジングを含む。ハウジングは、生理学的情報を検知するためのセンサを含む。生理学的情報は、例えば、鼻若しくは口、又はこれらの両方を通じた気流であってもよい。生理学的情報は、更には、例えば、血液の酸化であってもよい。睡眠時無呼吸診断システムは、患者が不規則な又は異常な呼吸活動を経験したかどうかを判定するべく、生理学的情報を分析するように、ハウジング内若しくはハウジング外、又はこれらの両方に少なくとも1つのプロセッサを含む。分析は、リアルタイムであってもよく、又は遅延されたものであってもよい。
【0031】
図1を参照すれば、例示されている睡眠時無呼吸診断システム100は、曲がりやすいハウジング101の内部に収容されており、ハウジング101は、患者の顔面の形状にフィットするように適合されている。ハウジング101は、患者の皮膚に付着されうるハウジング100の後部表面の、それぞれ、左及び右側に配設された接着表面102及び104を含む。「前部」、「後部」、「左」、及び「右」という用語の使用は、利便を目的としたものであり、且つ、限定として解釈してはならない。いくつかの実施形態において、ハウジング101は、ストラップ(図示せず)を使用することにより、患者に付着されてもよい。接着表面102及び104は、少なくとも監視期間(例えば、4時間)にわたって、通常の睡眠状態下において、患者に対する十分な接着を提供するように、選択されてもよい。いくつかの実施形態において、ハウジング101は、患者の快適性を改善するべく、曲がりやすい生体適合性ポリマーから製造されている。いくつかの実施形態において、ハウジング101は、耐水性を有する。様々な実施形態において、ハウジング101は、患者の鼻、上唇、及び上顎洞のエリアの皮膚表面にフィットするように成形されている。
【0032】
図2a及び
図2bを参照すれば、診断システム100は、以下の電子コンポーネントを有するハウジング101を有する。電池210は、リチウム−ポリマーから、又は少なくとも監視期間にわたってハウジング101内のその他の電子コンポーネントに電力を提供するべく十分な容量を有する任意のその他の材料から、製造されてもよい。マイクロコントローラ212は、その他の電子コンポーネントを動作させ、且つ、検知された生理学的データをメモリ214内に保存する。マイクロコントローラ212は、例えば、コントローラ、マイクロプロセッサ、又はプロセッサであってもよい。メモリ214は、少なくとも監視期間にわたって記録された生理学的データを保存するようにサイズ設定されている。又、メモリ214は、マイクロコントローラ212用のプログラムコードを保存してもよい。2つの光エミッタ216及び光センサ218が、心拍数又は脈拍数、血液酸素飽和データ、及びフォトプレチスモグラフィデータを収集するべく、患者の鼻の両側において位置決めされている。いくつかの実施形態において、光エミッタ216及び光センサ218は、酸化及び脱酸素されたヘモグロビンによって通常反射又は吸収される光波長を放出し、且つ、その反射又は吸収を計測する。2つの光エミッタ216及び光センサ218について記述されているが、その他の数の光エミッタ216及び光センサ218が使用されてもよい。光エミッタ216及び光センサ218は、フォトプレチスモグラフィトランスデューサ236に結合されている。フォトプレチスモグラフィトランスデューサ236は、光センサ218からの検知された生理学的データを処理し、且つ、マイクロコントローラ212及びメモリ214用の適切なデータフォーマットに変換する。フォトプレチスモグラフィトランスデューサ236は、マイクロコントローラ212からの制御信号を処理し、且つ、光エミッタ216用の適切な信号に変換する。2つの気流センサ220が、ハウジング101から突出しており、且つ、鼻の気流を計測するように(例えば、患者の鼻孔の近傍又は内部において)位置決めされている。任意選択の第3の気流センサ(図示せず)が、同様の方式により、ハウジング101に装着されてもよく、且つ、口の気流を計測するべく、患者の口において位置決めされてもよい。いくつかの実施形態において、気流センサ220は、気圧センサ若しくは温度センサであるか、又はこれらの組合せである。気流センサ220は、気流センサ220からの検知された生理学的データを処理すると共にマイクロコントローラ212及びメモリ214用の適切なデータフォーマットに変換する気流トランスデューサ238に対して結合されている。気流センサ220は、ハウジング101から延在するように配設されたチューブの遠端に取り付けられてもよい。このチューブは、ハウジング101から着脱自在であってもよい。いくつかの実施形態において、気流トランスデューサ238は、気圧トランスデューサである。
【0033】
睡眠状態の通知として患者の位置及び運動を検出するように、加速度計222が含まれてもよい。患者又は医療従事者が睡眠データ収集を開始及び終了できるようにするべく、スイッチ224が含まれてもよい。システム100がデータを収集しているときを通知するべく、電気インジケータ226がハウジング101に内蔵されてもよい。相互接続228が、ハウジング101の内部に完全に延在し、且つ、センサ216、218、及び220をその他の電子コンポーネントと接続している。いくつかの実施形態において、相互接続228は、バスである。様々な実施形態において、相互接続228は、配線である。センサ216、218、及び220、並びに、加速度計222は、検知された信号をマイクロコントローラ212に送信してもよい。検知される信号は、アナログ又はデジタルの形態であってもよい。いくつかの実施形態において、センサ216、218は、結果的に再配置可能となるように、ハウジング101から物理的に取り外し可能であり、且つ、フォトプレチスモグラフィトランスデューサ236から電気的に着脱自在である。いくつかの実施形態において、センサ220は、結果的に再配置可能となるように、ハウジング101から物理的に取り外し可能であり、且つ、気流トランスデューサ238から電気的に着脱自在である。マイクロコントローラ212は、検知された信号をデジタル化するためのアナログ−デジタル(A/D)コンバータを含んでもよい。オーディオトランスデューサ230は、いびき又はその他の呼吸活動を検出するべく、患者を監視してもよい。内部タイマ(図示されてはない)が、タイムスタンプ又は時間差を生成するべく、又は動作を制御するべく、マイクロコントローラ212によって使用される。
【0034】
コンピュータ234が、相互接続228に対してインターフェイス232を介して結合されている。いくつかの実施形態において、診断システム100は、生理学的情報を検知するべく、患者上に配置される。次いで、診断システム100は、検知された生理学的情報をメモリ214からコンピュータ234にダウンロードするべく、コンピュータ234に結合される。インターフェイス232は、診断システム100に対する物理的接続を含んでもよく、又はハウジング101内の無線システム(図示せず)に対する無線通信状態にあってもよい。コンピュータ234は、
図3〜
図11との関連において記述されているデータ分析を実行する。いくつかの実施形態において、
図3〜
図11との関連において記述されているデータ分析は、マイクロコントローラ212又はマイクロコントローラ212とコンピュータ234の組合せによって実行される。
【0035】
図3〜
図11の分析は、PPG信号について説明されているが、インピーダンス、容積プレチスモグラフィ、及び組織プレチスモグラフィなどのその他の信号が使用されてもよい。
【0036】
図3を参照すれば、このタイミング図は、呼吸イベントの検出のための収集された信号データ及び演算されたデータを示している。グラフ310は、心筋を収縮させることによって動脈を通じて伝達される脈波を反映した高速で運動する成分(「AC成分」)と、組織血量の相対的に低速の変化を反映した低速で運動する成分(「DC成分」)と、から構成されたフォトプレチスモグラフィ信号である。グラフ320は、サーミスタ(気流センサ220)から記録され、且つ、気流の変化を反映した、信号である。グラフ330は、酸素飽和に関する算出されたデータを表している。グラフ340は、心拍数の変化を示しており、且つ、フォトプレチスモグラフィデータから算出される。グラフ310及び320のデータは、同時に収集されたものであり、且つ、4つの呼吸イベント302を示している。呼吸イベントの開始は、潮汐気流(tidal airflow)の低減又は欠如及びサーミスタ(例えば、322)によって検知される温度の漸進的な増大、フォトプレチスモグラフィ信号のDC成分の漸進的増大(例えば、312)、酸素飽和の減少、及び心拍数の増大を特徴としている。呼吸イベントの終了は、サーミスタによって検知される温度信号の減少(例えば、324)及びフォトプレチスモグラフィ信号のDC成分において反映される光吸収の増大(例えば、314)によって反映される、通常は、最初の大きな呼吸を伴う、呼吸への復帰を特徴としている。呼吸イベントが終了した後に、酸素飽和は、回復し、且つ、心拍数は、ベースラインに復帰する。従って、3つのパラメータ(気流データ、酸素飽和レベル、及び算出された心拍数)のパターンを監視及び分析することにより、呼吸イベントが識別されてもよい。無呼吸発作又はイベントは、気流の低減の程度により、呼吸低下発作と弁別することができる。潮汐気流の欠如は、無呼吸イベントを通知することになり、且つ、潮汐気流の振幅の大きな低減は、呼吸低下イベントを通知することになろう。
【0037】
図4を参照すれば、このフローチャートは、無呼吸の呼吸イベントの際に発生する主要な生理学的変化のいくつかと、これらの変化の末梢フォトプレチスモグラムの特定のパラメータに対する影響と、を示している。人間が呼吸する際に、胸郭内圧と呼ばれる胸部空洞内の圧力は、それぞれの呼吸に伴って変化する。人間が吸入するのに伴って、胸部は、膨張し、これにより、結果的に胸郭内圧が減少し、この結果、空気が肺に引き入れられる。呼気の際には、胸郭内圧が増大し、且つ、肺から空気が押し出される。又、これらの胸郭内圧の変化は、静脈を介して心臓に戻される血液の量及び心臓によって動脈内にポンピングされる血液の量の変化をも生成する。閉塞型無呼吸の呼吸イベントの際には、肺に流入する気流が遮断され、且つ、胸郭及び横隔膜の膨張(402)の結果、胸郭内圧が減少し(404)、胸郭内圧は、空気の流入の欠如に起因し、低下した状態に留まる。低い胸郭内圧は、胸部空洞内に位置した中枢静脈を膨張させ、これにより、静脈内部の血量を増大させる。この結果、中枢静脈の血量の全体的な増大(406)と、組織からの静脈血液のサイフォン吸い上げ(408)と、がもたらされる。又、この結果、心拍出量の低減(410)と、動脈の血流の低減(412)と、がもたらされる。この結果、末梢血管内の血液の量が、一時的に減少する(414)。この末梢血量に対する影響は、末梢フォトプレチスモグラムの低速で運動する(DC)成分の一時的な増大(416)を検出することにより、推定することができる。
【0038】
これらの末梢フォトプレチスモグラムのDC成分の変化は、大静脈に近接して配置された大きな静脈に静脈血液が流入する血管が高度に発達したエリア上においてフォトプレチスモグラフィセンサ(例えば、センサ216及び218)が位置決めされている際にのみ、確実に評価することができる。人体上には、この基準が満たされうる場所がいくつかしか存在していない。フォトプレチスモグラフィセンサ(例えば、センサ216及び218)の鼻における位置決めは、本開示のこの実施形態において記述されている方法による気流及び呼吸努力の計測を、長いチューブ又はワイヤを使用することなしに、単一のユニット装置に組み合わせることができるこのような場所の1つである。既知の睡眠時無呼吸診断装置の大部分は、遠位場所からのフォトプレチスモグラフィ信号に依存しており、このような方式は、PPG信号が交感神経系の影響によって支配されるという結果をもたらす。従って、このような方式は、無呼吸発作の際の呼吸努力の尺度として末梢血量の変化を確実に評価することができない。PPGセンサ(例えば、センサ216及び218)の鼻における位置決めは、結果的に、呼吸努力と交感神経系の影響の両方の影響を受ける信号をもたらす。このような位置決めによれば、交感神経系の影響を呼吸努力と弁別することができる。
【0039】
図5を参照すれば、このタイミング図は、閉塞型の無呼吸イベント504が発生した期間において収集されたフォトプレチスモグラフィ信号510及び気流信号520の一例を示している。グラフの気流データ520は、サーミスタ(気流センサ220)によって収集されたものであり、且つ、期間502における無呼吸前の正常呼吸を示している。計測された温度のそれぞれの低減及び後続する増大522は、1回の呼吸に対応している。無呼吸イベント504の開始は、潮汐気流の欠如によって証明される呼吸の完全な停止を特徴としている。データは、潮汐気流によって誘発された温度の変化を特徴とする無呼吸後の回復506を示している。期間508は、正常な呼吸を示している。
【0040】
フォトプレチスモグラフィ信号510は、気流データと同時に収集されたものであり、且つ、血量の変化に対応した低速で運動する(DC)成分と、動脈の脈波512に対応した高速で運動する(AC)成分と、を示している。無呼吸イベント504の開始の際には、DC成分が徐々に増大している。この増大514の際には、DC成分は、患者の呼吸レートに類似した周波数によって変化している。これらのDC成分の変動は、呼吸の完全な停止の際に発生する呼吸努力を反映している。それぞれの呼吸努力516は、拍動性AC成分の最小値が、DCレベルの全体的な増大を近似したライン514とアライメントしないように、DCレベルを変化させている。
【0041】
図6を参照すれば、このタイミング図は、
図5において説明した無呼吸イベント504の開始の際に収集されたフォトプレチスモグラフィ信号510の拡大された図を提供している。この特定の例においては、それぞれの呼吸イベントREは、その最小値が同一のパターンを辿っている3つの脈波から構成されている。患者が、空気を自身の肺に引き入れるべく自身の胸郭を拡大させるのに伴って、DCレベルの減少(又は、脈波の最小値)は、呼吸努力の末尾に対応した増大によって後続されている。
【0042】
図7を参照すれば、タイミング図は、中枢性無呼吸イベント704が発生した期間において収集されたフォトプレチスモグラフィ信号710及び気流信号720の一例を示している。グラフの気流データ720は、サーミスタ(気流センサ220)によって収集されたものであり、且つ、期間702における無呼吸前の正常呼吸を示している。計測された温度のそれぞれの低減及び後続する増大722は、1回の呼吸に対応している。無呼吸イベント704の開始は、潮汐気流の欠如によって証明される呼吸の完全な停止を特徴としている。データは、潮汐気流によって誘発された温度の変化を特徴とする無呼吸後の回復706を示している。期間708は、正常な呼吸を示している。
【0043】
フォトプレチスモグラフィ信号710は、気流データと同時に収集されたものであり、且つ、血量の変化に対応した低速で運動する(DC)成分と、動脈の脈波712に対応した高速で運動する(AC)成分と、を示す。無呼吸イベント704の開始の際に、DC成分は、徐々に増大している。この増大714において、DC成分は、患者の呼吸レートに対応した周波数によって変化してはいない。このようなDC成分の変動の欠如は、中枢性無呼吸の無呼吸発作の際の呼吸努力の欠如を示している。拍動性AC成分の最小値は、DCレベルの全体的な増大を近似したライン714とアライメントされている。
【0044】
図5、
図6、及び
図7は、PPGのDC成分に対する交感神経系の影響が最小限である患者から収集された生理学的データの例である。但し、大部分の患者においては、PPGのDC成分に対する交感神経系の影響は、呼吸努力のものに匹敵するか、又はこれを上回っている。このような患者においては、PPGのDC成分の変化は、2つの影響の組合せ(又は、重ね合わせ)である。睡眠時無呼吸の診断と関係するように、交感神経系の影響が大きい場合には、中枢性睡眠時無呼吸を有する患者は、呼吸努力として誤解されうるPPGのDC成分の変化を示すことになり、且つ、中枢性睡眠時無呼吸ではなく、閉塞型の睡眠時無呼吸という誤った診断が下される可能性があろう。従って、呼吸努力を正しく識別するべく、交感神経系の影響を推定し、且つ、PPGのDC成分から減算する。
【0045】
図8を参照すれば、フローチャートは、睡眠時無呼吸を診断する診断システム100及び方法を使用する際の主要なステップを示している。802において、診断システム100が、患者に適用され、且つ、その位置が固定されている。診断システム100は、接着表面102及び104により、患者の皮膚に付着してもよい。気流センサ220が、鼻の気流を計測するべく、患者の鼻孔の近傍又は内部において位置決めされる。光エミッタ216及び光センサ218が、血液酸化データ及びフォトプレチスモグラフィデータを収集するべく、患者の鼻の両側において位置決めされる。診断システム100が位置決めされたら、804において、マイクロコントローラ212が、患者が眠っている状態にある際に、データ収集を開始し、且つ、少なくとも予め定義された時間にわたって(例えば、少なくとも4時間にわたって)データ収集を継続する。睡眠データが収集される際にのみ電池210の電池電力が使用されることを保証するべく、気流トランスデューサ238に組み込まれた加速度計222からのデータにより、患者が眠っている期間の識別を支援してもよい。いくつかの実施形態において、マイクロコントローラ212は、患者が眠りに落ちる前に、データを収集してもよい。患者が目覚めている又は眠っている期間を識別するべく、内部タイマ(図示せず)が使用されてもよい。806において、収集された睡眠データは、患者が診断システム100を分析のために戻した後に、メモリ214からコンピュータ234にダウンロードされてもよく、又は診断システム100が患者に装着されている間に又はその後に、送信されてもよい。808において、コンピュータ234は、酸素飽和、心拍数を演算すると共に呼吸イベントを識別するべく、収集されたデータに対してデータ分析アルゴリズムを適用している。
【0046】
810において、コンピュータ234は、検知された生理学的データから、異常な呼吸イベントを識別している。識別は、
図3及び
図5〜
図7との関連において上述したものであってもよく、又はその他の既知の方法によるものであってもよい。無呼吸の呼吸イベントにおける呼吸努力を検出するべく、更なるデータ分析アルゴリズムが使用される。これらのアルゴリズムは、周波数フィルタをフォトプレチスモグラフィデータに適用して呼吸レートに対応したDC波の存在を識別するステップを含んでもよい。その他の方式は、スペクトル分析(フーリエ分析など)を、又は技術者によるデータの視覚的検査を含む任意のその他のタイプの分析を、含んでもよい。811において、コンピュータ234は、
図9のプロセスなどにより、検知された生理学的データについて呼吸努力を識別している。812において、コンピュータ234は、呼吸イベントのタイプ、周波数、及び深刻さと、無呼吸イベントの際の呼吸努力の存在と、に基づいて、閉塞型の睡眠時無呼吸などの呼吸活動の診断を判定している。呼吸イベントの診断及び採点は、自動的なものであってもよく、又は熟練した技術者若しくは医師による手動による採点を伴ってもよい。
【0047】
図9は、呼吸努力を識別する診断システムの動作の一実施形態を示すフローチャートである。902において、コンピュータ234は、無呼吸イベントの前及び最中にPPG信号を取得している。
図11a及び
図11bは、
図9の呼吸努力を識別する診断システム100の動作の一実施形態の分析ステップを示すタイミング図であり、且つ、
図9との関連において説明する。ライン1102a(
図11a)は、低域通過フィルタリングのみを使用することによって呼吸イベントが検出されうる信号について902において取得されたPPG信号の例示を目的とした例である。対照的に、ライン1102b(
図11b)は、フィルタリングのみを使用することによって呼吸イベントが検出可能ではない信号について902において取得されたPPG信号の例示を目的とした例である。呼吸イベントは、期間1120a(
図11a)及び1120b(
図11b)において発生している。
【0048】
904において、コンピュータ234は、無呼吸イベントの前及び最中にPPGのDC成分を取得するべく、例えば、低域通過フィルタを使用することにより、又はフーリエ分析を使用することにより、PPG信号をフィルタリングしてもよい。ライン1104a(
図11a)は、904におけるライン1102aの信号に対する(例えば、0.3Hzのカットオフ周波数を有する)低域通過フィルタの適用の例示を目的とした例である。フィルタリングのみにより、コンピュータ234は、904において、呼吸努力が発生したと判定する。一方、ライン1104b(
図11b)は、904におけるライン1102bの信号に対する(例えば、0.3Hzのカットオフ周波数を有する)低域通過フィルタの適用の例示用の例である。フィルタリングのみにより、コンピュータ234は、904において、呼吸努力が発生したと判定しない。906において、コンピュータ234は、無呼吸イベントにおけるDC成分に対する自律神経系(ANS)の影響の尺度として、血管収縮を推定している。907において、コンピュータ234は、血管緊張を表すパラメータ(例えば、増大係数)を演算している。いくつかの実施形態において、コンピュータ234は、例えば、無呼吸イベントの前及び最中におけるPPG脈波のそれぞれごとの増大係数を演算することにより、DC成分における交感神経によって仲介された血管収縮の存在及び程度を推定している。増大係数は、動脈硬化の尺度であり、且つ、動脈は、交感神経によって仲介された血管収縮の結果として、硬化する。増大は、脈波形の第2及び第1心臓収縮ピークの間の差を表しており、且つ、増大係数は、脈波振幅の百分率として表現された増大を表している。無呼吸イベントの際の増大係数の増大の程度は、そのイベントの際のDC成分に対する血管収縮の影響を定量化する。心拍数は、通常、無呼吸イベントにおいて増大することから、増大係数の心拍数によって正規化された尺度は、PPG信号のDC成分に対する血管収縮の影響の相対的に良好な推定値をもたらす。無呼吸イベントの前及び最中におけるPPG脈波に対する血管収縮の影響が、
図10に示されており、これについては、詳細に後述する。DC成分に対する影響を推定するべく、動脈硬化の(脈波反射率などの)その他の尺度及び血管緊張の変化が使用されてもよい。ライン1107a(
図11a)及びライン1107b(
図11b)は、75拍動/分の心拍数に対して正規化された増大係数(AI
75)を使用することによる907におけるパラメータの演算の例示を目的とした例である。908において、コンピュータ234は、周波数強度を生成するべく、AI
75のタイミング図に対してスペクトル分析を実行している。スペクトル分析は、例えば、フーリエ分析又はヒルベルト分析であってもよい。909において、コンピュータ234は、スペクトル分析において識別された周波数の強度に基づいて、演算されたパラメータをスケーリングしている。ライン1109a(
図11a)及びライン1109b(
図11b)は、909におけるスペクトル分析によるそれぞれライン1107a及び1107bの演算されたパラメータの909におけるスケーリングの例示を目的とした例である。いくつかの実施形態において、PPG信号及びフィルタリング済みのPPG信号のデータセットは、PPGパルスの演算されたパラメータのデータセットの次元とは異なる次元を有する。例えば、PPG信号は、10秒の期間において10,000個のデータ点を付与するべく、1,000Hzの周波数においてサンプリングされてもよい。フィルタリング済みのPPG信号は、PPG信号と同一数のデータ点を有してもよい。対照的に、コンピュータパラメータのデータセットは、10秒の期間における10個の脈波に対応する10であってもよい。フィルタリング済みのPPGデータ及び演算されたパラメータの次元を調節するべく、スムージング又はスパインなどの補間が適用されてもよい。又、PPG信号及びフィルタリング済みのPPG信号は、光の吸収に対応した電流として計測されてもよく、例えば、増大係数などの演算されたパラメータは、百分率として演算されてもよい。コンピュータ234は、スケーリングの前若しくはスケーリングの後、又はこれらの両方において、次元を調節するべく、データセットに対する処理を実行する。910において、血管収縮の影響が推定されたら、コンピュータ234は、DC成分から自律神経系の影響を減算しており、912において、無呼吸イベントにおける呼吸努力の尺度を取得している。ライン1112a(
図11a)は、ライン1104aからライン1109aを減算することによる912における期間1120aにおける呼吸努力の取得の例示を目的とした例である。コンピュータ234は、
図11bの例示を目的とした例においては、904において呼吸努力を検出していなかったが、コンピュータ234は、912において、呼吸努力を判定している。ライン1112b(
図11b)は、ライン1104bからライン1109bを減算することによる912における期間1120bにおける呼吸努力の取得の例示を目的とした例である。
【0049】
図10は、無呼吸発作の前及び最中のフォトプレチスモグラフィ信号1010の特徴を示すタイミング図であり、増大係数によって評価される血管緊張の変化を実証するべく、2つの脈波1012及び1014が選択されている。ライン1016は、コンピュータ234が902において6%の増大係数(AI
75)を算出した脈波1012を表している。ライン1018は、コンピュータ234が902において20%の増大係数(AI
75)を算出した脈波1014を表している。パルス1012は、無呼吸イベントの前に発生している。パルス1018は、無呼吸イベントの際に発生しており、且つ、パルス1012によって表されるものよりも収縮した動脈の状態を反映している。
【0050】
本明細書の説明において、且つ、添付の請求項の全体を通じて、使用されている「1つの(a)」、「1つの(an)」、及び「その(the)」は、そうではない旨が明示的に文脈によって示されていない限り、複数の参照対象物を含む。又、本明細書の説明において、且つ、添付の請求項のすべてを通じて、使用されている「において(in)」の意味は、そうではない旨が明示的に文脈によって示されていない限り、「において(in)」及び「上において(on)」を含む。又、本明細書の説明において、且つ、添付の請求項のすべてを通じて、使用されている「上において(on)」の意味は、そうではない旨が明示的に文脈によって示されていない限り、「において(in)」及び「上において(on)」を含む。
【0051】
詳細な説明のいくつかの部分は、コンピュータメモリ内におけるデータビットに対する操作のアルゴリズム及びシンボリックな表現の観点において提示されている。これらのアルゴリズムの説明及び表現は、データ処理技術分野の当業者が自身の研究の本質を他の当業者に対して最も効率的に伝達するべく、使用されている手段である。アルゴリズムは、ここでは、且つ、一般に、望ましい結果に結び付くステップ(命令)の自己一貫性を有するシーケンスであると想定される。ステップは、物理量の物理的操作を必要とするものである。通常、但し、必須ではないが、これらの量は、保存、転送、合成、比較、及びその他の操作が可能な電気的、磁気的、又は光学的信号の形態を有する。しばしば、主には、共通的な使用法の理由から、これらの信号を、ビット、値、要素、シンボル、文字、用語、数値、又はこれらに類似したものと呼ぶことが便利である。更には、しばしば、一般性の喪失を伴うことなしに、物理量の物理的操作を必要とするステップの特定の構成をモジュール又はコード装置と呼ぶことも便利である。
【0052】
但し、これらの及び類似した用語は、いずれも、適切な物理量と関連付けられることを要し、且つ、これらの量に対して適用される便利な表記に過ぎない。以下の説明から明らかとなるように、そうではない旨が特記されていない限り、この本明細書のすべてを通じて、「処理」又は「演算」又は「計算」又は「判定」又は「表示」又はこれらに類似したものなどの用語を利用した説明は、コンピュータシステムの、或いは、コンピュータシステムのメモリ又はレジスタ又はその他のこのような情報の保存、送信、又は表示装置内において物理的(電子的)な量として表されたデータを操作及び変換する類似した電子的演算装置の、動作及びプロセスを意味するものと理解されたい。
【0053】
本開示の特定の態様は、アルゴリズムの形態を有する本明細書において記述されているプロセスステップ及び命令を含む。本開示のプロセスステップ及び命令は、ソフトウェア、ファームウェア、又はハードウェアにおいて実施することが可能であり、且つ、ソフトウェアにおいて実施された場合には、様々なオペレーティングシステムによって使用される異なるプラットフォーム上に存在すると共にこれから操作されるように、ダウンロードすることができることに留意されたい。
【0054】
又、本開示は、本明細書における動作を実行する装置にも関する。この装置は、具体的には、必要とされる目的のために構築されてもよく、又はコンピュータ内において又は非一時的コンピュータ可読媒体内において保存されたコンピュータプログラムによって選択的に起動又は再構成される汎用コンピュータを有してもよい。このようなコンピュータプログラムは、限定を伴うことなしに、ハードドライブ、磁気ディスク、磁気−光ディスク、光ディスク、読出し専用メモリ(Read−Only Memory:ROM)、ランダムアクセスメモリ(Random Access Memory:RAM)、EPROM、EEPROM、磁気又は光カード、アプリケーション固有の集積回路(Application Specific Integrated Circuit:ASIC)、CD−ROM、DVD、Blu−Ray、フラッシュメモリ、USBメモリカード、フロッピーディスク、又はコンピュータが読み取り可能な任意のその他の媒体などの非一時的電磁的媒体などのコンピュータ可読記憶媒体(例えば、メモリ214)内において保存されてもよい。非一時的コンピュータ可読媒体は、一時的な伝播する信号を除くすべてのコンピュータ可読媒体を有する。更には、本明細書において引用されているコンピュータ及びマイクロコントローラは、信号プロセッサを含んでもよく、又は演算能力の拡張のために複数プロセッサの設計を利用したアーキテクチャであってもよい。
【0055】
本明細書において提示されているアルゴリズム及びディスプレイは、いずれかの特定のコンピュータ又はその他の装置に本質的に関係したものではない。様々な汎用システムが、本明細書における教示内容に従って、プログラムと共に使用されてもよく、又は必要とされる方法ステップを実行するべく、相対的に専門的な装置を構築することが便利であると証明される場合もある。様々なこれらのシステム用の必要とされる構造については、本明細書の説明から明らかとなろう。更には、本開示は、任意の特定のプログラミング言語を参照して記述されてはいない。様々なプログラミング言語を使用し、本明細書に記述されている実施形態の教示内容を実装してもよく、且つ、特定の言語に対する以下における任意の参照は、実施形態の実施可能性及び最良の形態を開示するべく、提供されるものであることを理解されたい。
【0056】
更には、本明細書において使用されている言語は、基本的に、可読性及び教示的目的のために選択されたものであり、且つ、本発明の主題を線引き又は限定するべく選択されたものはない。従って、本開示は、請求項において記述されている本発明の範囲の限定ではなく、例示を目的としている。