(58)【調査した分野】(Int.Cl.,DB名)
前記(a)が、ウレタンゴム、アクリルゴム、スチレンゴム、スチレンオレフィンゴム、及びシリコーンゴムからなる群より選択される1又は2以上のゴム微粒子である請求項1乃至4のいずれか一項に記載の液晶滴下工法用液晶シール剤。
液晶シール剤の総量を100質量部としたときの(a)の含有量が5質量部以上50質量部未満である請求項1乃至5のいずれか一項に記載の液晶滴下工法用液晶シール剤。
液晶シール剤の総量を100質量部としたときの(b)の含有量が1質量部以上20質量部未満である請求項1乃至6のいずれか一項に記載の液晶滴下工法用液晶シール剤。
前記硬化性化合物(c)がレゾルシンジグリシジルエーテルの(メタ)アクリルエステル化物である請求項1乃至8のいずれか一項に記載の液晶滴下工法用液晶シール剤。
2枚の基板により構成される液晶表示セルにおいて、一方の基板に形成された請求項1乃至13のいずれか一項に記載の液晶滴下工法用液晶シール剤の堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、その後熱により硬化することを特徴とする液晶表示セルの製造方法。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、液晶滴下工法に使用される液晶シール剤に関し、より詳細には、フィラーの凝集を無くし、該フィラーが高分散された液晶滴下工法用液晶シール剤を提案するものである。この液晶滴下工法用液晶シール剤は、フィラーの凝集物が無い為、ディスペンスやスクリーン印刷といった塗布作業性に優れ、また液晶表示セルのセルギャップ不良を引き起こさない液晶シール剤である。
また、フィラーの凝集を無くすことによって、該フィラーのもつ特性を最大限に引き出すことが可能である。例えば、フィラー自身が、液晶の差し込みへの耐性をもつ場合があるが、この効果もより高いレベルで実現することが可能である。
【課題を解決するための手段】
【0008】
本発明者らは、鋭意検討の結果、平均粒子径の大きく異なる2種のフィラーを用いることによって、フィラーの凝集を解砕する効果が発現することを見出し、本発明に至ったものである。
なお、本明細書中、「(メタ)アクリル」とは「アクリル及び/又はメタクリル」を意味し、「(メタ)アクリロイル基」とは「アクリロイル基及び/又はメタクリロイル基」を意味する。また、「液晶滴下工法用液晶シール剤」を単に「液晶シール剤」と記載する場合もある。
【0009】
すなわち本発明は、
1)
平均粒子径A[μm]のフィラー(a)、平均粒子径B[μm]のフィラー(b)及び硬化性化合物(c)を含有し、
A[μm]及びB[μm]が、下記式(I)及び(II)で表される条件を満たす液晶滴下工法用液晶シール剤。
3μm ≦ A ≦ 20μm ・・・ (I)
0.0005×A ≦ B ≦ 0.02×A ・・・ (II)
2)
上記(a)が、有機フィラーである上記1)に記載の液晶滴下工法用液晶シール剤、
3)
上記(b)が、シリカ及び/又はアルミナである上記1)又は2)に記載の液晶滴下工法用液晶シール剤、
4)
上記(a)が疎水性フィラーであり、上記(b)が親水性フィラーである上記1)乃至3)のいずれか一項に記載の液晶滴下工法用液晶シール剤、
5)
上記(a)が、ウレタンゴム、アクリルゴム、スチレンゴム、スチレンオレフィンゴム、及びシリコーンゴムからなる群より選択される1又は2以上のゴム微粒子である上記1)乃至4)のいずれか一項に記載の液晶滴下工法用液晶シール剤、
6)
液晶シール剤の総量を100質量部としたときの(a)の含有量が5質量部以上50質量部未満である上記1)乃至5)のいずれか一項に記載の液晶滴下工法用液晶シール剤、
7)
液晶シール剤の総量を100質量部としたときの(b)の含有量が1質量部以上20質量部未満である上記1)乃至6)のいずれか一項に記載の液晶滴下工法用液晶シール剤、
8)
上記硬化性化合物(c)が(メタ)アクリル化エポキシ樹脂であり、更に熱硬化剤(d)を含有する上記1)乃至7)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
9)
上記硬化性化合物(c)がレゾルシンジグリシジルエーテルの(メタ)アクリルエステル化物である上記1)乃至8)のいずれか一項に記載の液晶滴下工法用液晶シール剤、
10)
上記熱硬化剤(d)が有機酸ヒドラジド化合物である上記8)に記載の液晶滴下工法用液晶シール剤、
11)
更に熱ラジカル重合開始剤(e)を含有する上記1)乃至10)のいずれか一項に記載の液晶滴下工法用液晶シール剤、
12)
更にシランカップリング剤(f)を含有する、上記1)乃至11)のいずれか一項に記載の液晶滴下工法用液晶シール剤、
13)
更にエポキシ樹脂(g)を含有する、上記1)乃至12)のいずれか一項に記載の液晶滴下工法用液晶シール剤、
14)
2枚の基板により構成される液晶表示セルにおいて、一方の基板に形成された上記1)乃至13)のいずれか一項に記載の液晶滴下工法用液晶シール剤の堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、その後熱により硬化することを特徴とする液晶表示セルの製造方法、
15)
上記1)乃至13)のいずれか一項に記載の液晶滴下工法用液晶シール剤を硬化して得られる硬化物でシールされた液晶表示セル、
に関する。
【発明の効果】
【0010】
本発明の液晶シール剤は、フィラーの凝集物が無い為、ディスペンスやスクリーン印刷といった塗布作業性に優れ、また液晶表示セルのセルギャップ不良を引き起こさない液晶シール剤である。従って、液晶表示セルの製造工程における様々な課題を解決するものである。
【発明を実施するための形態】
【0011】
本発明の液晶シール剤は、平均粒子径A[μm]のフィラー(a)、平均粒子径B[μm]のフィラー(b)を含有し、A[μm]及びB[μm]が、下記数式(I)、(II)で表される条件を満たすことを特徴とする。
3μm ≦ A ≦ 20μm ・・・ (I)
0.0005×A ≦ B ≦ 0.02×A ・・・ (II)
[数式(I)に関して]
数式(I)は、平均粒子径の大きいフィラー(a)の、平均粒子径を規定している。すなわち、フィラー(a)の平均粒子径は、3μm以上20μm以下である。フィラー平均粒子径が小さいと、その凝集力が高くなる傾向がある。従って、3μm未満である場合、本発明の効果が十分に得られない場合がある。また、フィラーの平均粒子径が大きすぎると、凝集していなくても、液晶表示セルの製造には不向きとなる。平均粒子径の更に好ましい範囲は、3μm以上15μm以下であり、特に好ましくは、4μm以上10μm以下である。
[数式(II)に関して]
数式(II)は、フィラー(a)とフィラー(b)の平均粒子径の関係を示したものである。すなわち、フィラー(b)の平均粒子径は、フィラー(a)の平均粒子径の2000分の1以上1000分の20以下である。フィラー(b)の平均粒子径がこの範囲である場合には、フィラー(a)の粒子とフィラー(a)の粒子の間に効率良く入り込み、フィラー(a)の分散性を高める効果を発現する。また、フィラー(a)が有機フィラーの場合には、外的応力によって形状が変形することがあるが、フィラー(b)が上記範囲であれば、その変形に追従することが可能であって、フィラー(a)から剥離することもない。フィラー(b)の平均粒子径は、更に好ましくは、1000分の2以上1000分の15以下であり、特に好ましくは、1000分の5以上1000分の10以下である。
【0012】
本明細書において平均粒子径は、粒径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS−30)等により測定することができる。また、市販品であれば、各社カタログにも明記されている。
【0013】
上記フィラー(a)は、有機フィラー及び/又は無機フィラーを意味する。
有機フィラーとしては、例えばナイロン6、ナイロン12、ナイロン66等のポリアミド微粒子、テトラフルオロエチレン、フッ化ビニリデン等のフッ素系微粒子、ポリエチレン、ポリプロピレン等のオレフィン系微粒子、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系微粒子、天然ゴム、イソプレンゴム、アクリルゴム等のゴム微粒子等が挙げられる。このうち好ましいものはゴム微粒子であって、例えば天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、ブチルゴム(IIR)、二トリルゴム(NBR)、エチレン・プロピレンゴム( EPM、EP)、クロロプレンゴム(CR)、アクリルゴム(ACM、ANM)、クロロスルホン化ポリエチレンゴム(CSM)、ウレタンゴム(PUR)、シリコーンゴム(SI、SR)、フッ素ゴム(FKM、FPM)、多硫化ゴム(チオコール)などが挙げられる。これら固形成分(I)は2種以上を混合して用いても良い。これらのうち、好ましくは、シリコーンゴム、スチレンゴム、スチレンオレフィンゴム、アクリルゴムである。
【0014】
上記シリコーンゴムとしてはKMP−594、KMP−597、KMP−598(信越化学工業製)、トレフィル
RTME−5500、9701、EP−2001(東レダウコーニング社製)が好ましく、ウレタンゴムとしてはJB−800T、HB−800BK(根上工業株式会社)、スチレンゴムとしてはラバロン
RTMT320C、T331C、SJ4400、SJ5400、SJ6400、SJ4300C、SJ5300C、SJ6300C(三菱化学製)が好ましく、スチレンオレフィンゴムとしてはセプトン
RTMSEPS2004、SEPS2063が好ましい。なお本明細書中、上付きの「RTM」は登録商標を意味する。
【0015】
また、上記アクリルゴムを使用する場合、2種類のアクリルゴムからなるコアシェル構造のアクリルゴムである場合が好ましく、特に好ましくはコア層がn−ブチルアクリレートであり、シェル層がメチルメタクリレートであるものが好ましい。これはゼフィアック
RTMF−351としてアイカ工業株式会社から販売されている。
【0016】
上記無機フィラーの例としては、溶融シリカ、結晶シリカ、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは溶融シリカ、結晶シリカ、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムであり、更に好ましくは溶融シリカ、結晶シリカ、アルミナ、タルクである。これら無機フィラーは2種以上を混合して用いても良い。
【0017】
フィラー(a)として好ましいものは有機フィラーである。有機フィラーはセルギャップに応じて変形し、液晶の差し込みに対する耐性を発現する為である。
有機フィラーの中で好ましいものは、ウレタンゴム、アクリルゴム、スチレンゴム、スチレンオレフィンゴム、及びシリコーンゴムからなる群より選択される1又は2以上のゴム微粒子であり、更に好ましいものは、アクリルゴム及び/又はシリコーンゴムである。
有機フィラーとして特に好ましいものは、KMP−594、KMP−597、KMP−598(信越化学工業製)、AFX−8、AFX−15(積水化成品工業製)、JB−800T、HB−800BK(根上工業製)である。
【0018】
上記フィラー(b)は、有機フィラー及び/又は無機フィラーを意味する。
有機フィラーとしては、ゼフィアックRTMF−325、F−340、F−351(アイカ工業株式会社製)、パラロイドEXL−2655(呉羽化学工業株式会社製)などが挙げられる。
【0019】
上記無機フィラーの例としては、上記フィラー(a)に挙げたものと同様のものが挙げられる。ただし、平均粒子径は上記数式(II)を満たすもの、又は、解砕工程を経て、上記数式(II)を満たすものとしたものに限られる。また、無機フィラーは様々の方法によって表面処理をされたものでも良いが、未処理のものが好ましい。
このフィラー(b)としては、シリカ又はアルミナが好ましく、特に好ましくはフュームドシリカ、フュームドアルミナである。
【0020】
フィラー(a)とフィラー(b)の表面極性について、フィラー(a)が疎水性であって、フィラー(b)が親水性である場合は、本願発明の好ましい態様の一つである。硬化性樹脂(c)は、比較的極性の高いものである為、疎水性のフィラー(a)の表面を親水性のフィラー(b)によって保護することによって、より高い分散性が得られる為である。
ここで、親水性とは、表面が水酸基、アミノ基などの水素結合性水酸基を有する官能基で構成されているか金属酸化物などの水素結合受容成分であるものをいう。また疎水性とは、親水性表面をジメチルジクロロシラン、ヘキサメチルジシラザン、オクチルシラン、シリコーンオイルまたは末端に非極性の官能基を有するカップリング剤などで化学的に結合させたものをいう。
【0021】
フィラー(a)の液晶シール剤中の含有量としては、本願発明の液晶シール剤の総量を100質量部とした場合に、5〜50質量部である場合が好ましく、7〜40質量部である場合がより好ましく、10〜30質量部である場合が更に好ましい。
また、フィラー(b)の液晶シール剤中の含有量としては、本願発明の液晶シール剤の総量を100質量部とした場合に、1〜20質量部である場合が好ましく、2〜15質量部である場合がより好ましく、3〜10質量部である場合が更に好ましい。
【0022】
本願発明の液晶滴下工法用液晶シール剤は、硬化性化合物(c)を含有する。
この硬化性化合物(c)は、光又は熱によって重合反応するものであれば特に限定されないが、(メタ)アクリロイル基を有する硬化性化合物である場合が特に好ましい。
(メタ)アクリロイル基を有する硬化性化合物は、例えば(メタ)アクリルエステル、エポキシ(メタ)アクリレート等が挙げられる。(メタ)アクリルエステルとしては、ベンジルメタクリレート、シクロヘキシルメタクリレート、グリセロールジメタクリレート、グリセロールトリアクリレート、EO変性グリセロールトリアクリレート、ペンタエリスリトールアクリレート、トリメチロールプロパントリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、フロログリシノールトリアクリレート等が挙げられる。エポキシ(メタ)アクリレートは、エポキシ樹脂と(メタ)アクリル酸との反応により公知の方法で得られる。原料となるエポキシ樹脂としては、特に限定されるものではないが、2官能以上のエポキシ樹脂が好ましく、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、カテコール、レゾルシノール等の二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、およびそれらのハロゲン化物、水素添加物などが挙げられる。これらのうち液晶汚染性の観点から、レゾルシン骨格を有するエポキシ樹脂が好ましく、例えばレゾルシンジグリシジルエーテル等である。また、エポキシ基と(メタ)アクリロイル基との比率は限定されるものではなく、工程適合性及び液晶汚染性の観点から適切に選択される。
したがって、好ましい(メタ)アクリロイル基を有する硬化性化合物は、(メタ)アクリロイル基を有し、さらにレゾルシン骨格を有する硬化性化合物であり、例えば、レゾルシンジグリシジルエーテルのアクリル酸エステルやレゾルシンジグリシジルエーテルのメタクリル酸エステルである。
また、硬化性化合物(c)の液晶滴下工法用液晶シール剤中に占める含有率としては、液晶シール剤の総量を100質量部とした場合に、30〜90質量部の範囲内であることが好ましく、さらに好ましくは40〜80質量部程度である。
【0023】
上記(メタ)アクリロイル基を有する硬化性化合物中には、一分子中に(メタ)アクリロイル基を3個以上有する化合物を含有する場合が好ましい。一分子中に(メタ)アクリロイル基を3個以上有する化合物は、架橋速度(反応速度)が速いため、優れた差込耐性を実現できる。なお、この方法を用いた場合、熱ラジカル重合開始剤等の量を増やして、反応性を向上させる方法とは異なり、ハンドリング性にも優れる。
一分子中に(メタ)アクリロイル基を3個以上有する化合物としては、KAYARAD
RTMPET−30、DPHA、DPCA−20、DPCA−30、DPCA−60、DPCA−120、DPEA−12、GPO−303、TMPTA、THE-330、TPA−320、TPA−330、D−310,D−330、RP−1040、UX−5000、DPHA−40H(以上、日本化薬株式会社製)、NKエステル
RTMA−9300、A−9300−1CL、A−GLY−9E、A−GLY−20E、A−TMM−3、A−TMM−3LM−N、A−TMPT、AD−TMP、ATM−35E、A−TMMT、A−9550、A−DPH(以上、新中村化学工業株式会社)、SR295、SR350、SR355、SR399、SR494、CD501、SR502、CD9021、SR9035、SR9041(以上、サートマー社製)等を挙げることができる。これらのうち、モル平均分子量が800以上である場合が好ましく、例えばKAYARAD
RTMDPCA−20、DPCA−30、DPEA−12が好ましい。また、分子内にC1−C4アルキレンオキサイド(−O−R−O−)を含有する硬化性化合物である場合が好ましく、KAYARAD
RTMDPEA−12が特に好ましい。
【0024】
本願発明の液晶滴下工法用液晶シール剤は、熱硬化剤(d)を含有しても良い。
この熱硬化剤は特に限定されるものではなく、多価アミン類、多価フェノール類、ヒドラジド化合物等を挙げることができるが、固形の有機酸ヒドラジドが特に好適に用いられる。例えば、芳香族ヒドラジドであるサリチル酸ヒドラジド、安息香酸ヒドラジド、1−ナフトエ酸ヒドラジド、テレフタル酸ジヒドラジド、イソフタル酸ジヒドラジド、2,6−ナフトエ酸ジヒドラジド、2,6−ピリジンジヒドラジド、1,2,4−ベンゼントリヒドラジド、1,4,5,8−ナフトエ酸テトラヒドラジド、ピロメリット酸テトラヒドラジド等をあげることが出来る。また、脂肪族ヒドラジド化合物であれば、例えば、ホルムヒドラジド、アセトヒドラジド、プロピオン酸ヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、セバシン酸ジヒドラジド、1,4−シクロヘキサンジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イミノジ酢酸ジヒドラジド、N,N’−ヘキサメチレンビスセミカルバジド、クエン酸トリヒドラジド、ニトリロ酢酸トリヒドラジド、シクロヘキサントリカルボン酸トリヒドラジド、1,3−ビス(ヒドラジノカルボノエチル)−5−イソプロピルヒダントイン等のヒダントイン骨格、好ましくはバリンヒダントイン骨格(ヒダントイン環の炭素原子がイソプロピル基で置換された骨格)を有するジヒドラジド化合物、トリス(1−ヒドラジノカルボニルメチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3−ヒドラジノカルボニルプロピル)イソシアヌレート、ビス(2−ヒドラジノカルボニルエチル)イソシアヌレート等をあげることができる。この熱硬化剤は、単独で用いても2種以上混合しても良い。硬化反応性と潜在性とのバランスから好ましくは、イソフタル酸ジヒドラジド、マロン酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、トリス(1−ヒドラジノカルボニルメチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3−ヒドラジノカルボニルプロピル)イソシアヌレートであり、特に好ましくはマロン酸ジヒドラジド、セバシン酸ジヒドラジドである。かかる熱硬化剤を使用する場合の含有量としては、液晶シール剤の総量を100質量部とした場合に、1〜30質量部程度である。
【0025】
本願発明の液晶滴下工法用液晶シール剤は、更に熱ラジカル重合開始剤を含有しても良い。この熱ラジカル重合開始剤は、加熱によりラジカルを生じ、連鎖重合反応を開始させる化合物であれば特に限定されないが、有機過酸化物、アゾ化合物、ベンゾイン化合物、ベンゾインエーテル化合物、アセトフェノン化合物、ベンゾピナコール等が挙げられ、ベンゾピナコールが好適に用いられる。例えば、有機過酸化物としては、カヤメック
RTMA、M、R、L、LH、SP-30C、パーカドックスCH−50L、BC−FF、カドックスB−40ES、パーカドックス14、トリゴノックス
RTM22−70E、23−C70、121、121−50E、121−LS50E、21−LS50E、42、42LS、カヤエステル
RTMP−70、TMPO−70、CND−C70、OO−50E、AN、カヤブチル
RTMB、パーカドックス16、カヤカルボン
RTMBIC−75、AIC−75(以上、化薬アクゾ株式会社製)、パーメック
RTMN、H、S、F、D、G、パーヘキサ
RTMH、HC、パTMH、C、V、22、MC、パーキュアー
RTMAH、AL、HB、パーブチル
RTMH、C、ND、L、パークミル
RTMH、D、パーロイル
RTMIB、IPP、パーオクタ
RTMND、(以上、日油株式会社製)等などが市販品として入手可能である。また、アゾ化合物としては、VA−044、V−070、VPE−0201、VSP−1001等(以上、和光純薬工業株式会社製)等が市販品として入手可能である。なお、本明細書中、上付きのRTMは登録商標を意味する。
上記(e)熱ラジカル重合開始剤として、好ましいのは、分子内に酸素−酸素結合(−O−O−)又は窒素−窒素結合(−N=N−)を有さない熱ラジカル重合開始剤である。分子内に酸素−酸素結合(−O−O−)や窒素−窒素結合(−N=N−)を有する熱ラジカル重合開始剤は、ラジカル発生時に多量の酸素や窒素を発するため、液晶シール剤中に気泡を残した状態で硬化し、接着強度等の特性を低下させる虞がある。ベンゾピナコール系の熱ラジカル重合開始剤(ベンゾピナコールを化学的に修飾したものを含む)が特に好適である。具体的には、ベンゾピナコール、1, 2−ジメトキシ−1,1, 2,2−テトラフェニルエタン、1, 2−ジエトキシ−1,1, 2,2−テトラフェニルエタン、1, 2−ジフェノキシ−1,1, 2,2−テトラフェニルエタン、1, 2−ジメトキシ−1,1, 2,2−テトラ(4−メチルフェニル)エタン、1, 2−ジフェノキシ−1,1, 2,2−テトラ(4−メトキシフェニル)エタン、1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタン、1, 2−ビス(トリエチルシロキシ)−1,1, 2,2−テトラフェニルエタン、1, 2−ビス(t−ブチルジメチルシロキシ)−1,1, 2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリメチルシロキシ−1,1, 2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリエチルシロキシ−1,1, 2,2−テトラフェニルエタン、1−ヒドロキシ−2−t−ブチルジメチルシロキシ−1,1, 2,2−テトラフェニルエタン等、が挙げられ、好ましくは1−ヒドロキシ−2−トリメチルシロキシ−1,1, 2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリエチルシロキシ−1,1, 2,2−テトラフェニルエタン、1−ヒドロキシ−2−t−ブチルジメチルシロキシ−1,1, 2,2−テトラフェニルエタン、1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンであり、さらに好ましくは1−ヒドロキシ−2−トリメチルシロキシ−1,1, 2,2−テトラフェニルエタン、1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンであり、特に好ましくは1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンである。
上記ベンゾピナコールは東京化成工業株式会社、和光純薬工業株式会社等から市販されている。また、ベンゾピナコールのヒドロキシ基をエーテル化することは、周知の方法によって容易に合成可能である。また、ベンゾピナコールのヒドロキシ基をシリルエーテル化することは、対応するベンゾピナコールと各種シリル化剤をピリジン等の塩基性触媒下で加熱させる方法により合成して得ることができる。シリル化剤としては、一般に知られているトリメチルシリル化剤であるトリメチルクロロシラン(TMCS)、ヘキサメチルジシラザン(HMDS)、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)やトリエチルシリル化剤としてトリエチルクロロシラン(TECS)、t−ブチルジメチルシリル化剤としてt−ブチルメチルシラン(TBMS)等が挙げられる。これらの試薬はシリコン誘導体メーカー等の市場から容易に入手することが出来る。シリル化剤の反応量としては対象化合物の水酸基1モルに対して1.0〜5.0倍モルが好ましい。さらに好ましくは1.5〜3.0倍モルである。1.0倍モルより少ないと反応効率が悪く、反応時間が長くなるため熱分解を促進してしまう。5.0倍モルより多いと回収の際に分離が悪くなったり、精製が困難になったりしてしまう。
【0026】
(e)熱ラジカル重合開始剤は粒径を細かくし、均一に分散することが好ましい。その平均粒径は、大きすぎると狭ギャップの液晶表示セル製造時に上下ガラス基板を貼り合わせる際のギャップ形成が上手くできない等の不良要因となるため、5μm以下が好ましく、より好ましくは3μm以下である。また、際限なく細かくしても差し支えないが、通常下限は0.1μm程度である。粒径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS−30)により測定できる。
【0027】
(e)熱ラジカル重合開始剤の含有量としては、本発明で使用される液晶シール剤の総量を100質量部とした場合、0.0001〜10質量部であることが好ましく、さらに好ましくは0.0005〜5質量部であり、0.001〜3質量部が特に好ましい。
【0028】
本願発明の液晶滴下工法用液晶シール剤は、(f)シランカップリング剤を用いて、接着強度向上や耐湿信頼性向上を図ることができる。シランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N−(2−(ビニルベンジルアミノ)エチル)3−アミノプロピルトリメトキシシラン塩酸塩、3−メタクリロキシプロピルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤はKBMシリーズ、KBEシリーズ等として信越化学工業株式会社等によって販売されているため、市場から容易に入手可能である。シランカップリング剤の液晶シール剤に占める含有量は、本発明で使用される液晶シール剤の全体を100質量部とした場合、0.05〜3質量部が好適である。
【0029】
本願発明の液晶滴下工法用液晶シール剤は、(g)エポキシ樹脂を添加して、更なる接着強度の向上を図ることができる。用いられるエポキシ樹脂としては、特に限定されるものではないが、2官能以上のエポキシ樹脂が好ましく、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、およびそれらのハロゲン化物、水素添加物などが挙げられる。これらのうち液晶汚染性の観点より好ましいのはビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂である。エポキシ基を有する硬化性樹脂の液晶シール剤中に占める含有量は、液晶シール剤の総量を100質量部とした場合に、1〜30質量部程度である。
【0030】
本発明の液晶シール剤は上記成分及び必要な場合に含有される成分以外にも、例えば光重合開始剤、ラジカル重合防止剤、硬化促進剤、顔料、レベリング剤、消泡剤、溶剤などを含有するものであってもよい。
【0031】
上記光重合開始剤としては、紫外線や可視光の照射によって、ラジカルや酸を発生し、連鎖重合反応を開始させる化合物であれば特に限定されないが、例えば、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、ジエチルチオキサントン、ベンゾフェノン、2−エチルアンスラキノン、2−ヒドロキシ−2−メチルプロピオフェノン、2−メチル−〔4−(メチルチオ)フェニル〕−2−モルフォリノ−1−プロパン、2,4,6−トリメチルベンゾイルジフェニルホスヒンオキサイド、カンファーキノン、9−フルオレノン、ジフェニルジスルヒド等を挙げることができる。具体的には、IRGACURE
RTM 651、184、2959、127、907、396、379EG、819、784、754、500、OXE01、OXE02、DAROCURE
RTM1173、LUCIRIN
RTM TPO(いずれもBASF社製)、セイクオール
RTMZ、BZ、BEE、BIP、BBI(いずれも精工化学株式会社製)等を挙げることができる。
また、液晶汚染性の観点から、分子内に(メタ)アクリル基を有するものを使用する事が好ましく、例えば2−メタクリロイルオキシエチルイソシアネートと1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2メチル−1−プロパン−1−オンとの反応生成物が好適に用いられる。この化合物は国際公開第2006/027982号記載の方法にて製造して得ることができる。
光重合開始剤を用いる場合の液晶シール剤総量中の含有率は、通常0.001〜3質量%、好ましくは0.002〜2質量%である。
【0032】
上記ラジカル重合防止剤としては、光重合開始剤や熱ラジカル重合開始剤等から発生するラジカルと反応して重合を防止する化合物であれば特に限定されるものではなく、キノン系、ピペリジン系、ヒンダードフェノール系、ニトロソ系等を用いることができる。具体的には、ナフトキノン、2−ヒドロキシナフトキノン、2−メチルナフトキノン、2−メトキシナフトキノン、2,2,6,6,−テトラメチルピペリジン−1−オキシル、2,2,6,6,−テトラメチル−4−ヒドロキシピペリジン−1−オキシル、2,2,6,6,−テトラメチル−4−メトキシピペリジン−1−オキシル、2,2,6,6,−テトラメチル−4−フェノキシピペリジン−1−オキシル、ハイドロキノン、2−メチルハイドロキノン、2−メトキシハイドロキノン、パラベンゾキノン、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、2,6−ジ−t−ブチルクレゾール、ステアリルβ−(3,5−ジt−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス−3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、3,9−ビス[1,1−ジメチル−2−[β―(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル]、2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニルプロピオネート)メタン、1,3,5−トリス(3’,5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−sec−トリアジン−2,4,6−(1H,3H,5H)トリオン、パラメトキシフェノール、4−メトキシ−1−ナフトール、チオジフェニルアミン、N−ニトロソフェニルヒドロキシアミンのアルミニウム塩、商品名アデカスタブLA−81、商品名アデカスタブLA−82(株式会社アデカ製)等が挙げられるが、これらに限定されるものではない。これらのうちナフトキノン系、ハイドロキノン系、ニトロソ系ピペラジン系のラジカル重合防止剤が好ましく、ナフトキノン、2−ヒドロキシナフトキノン、ハイドロキノン、2,6−ジ−tert−ブチル−P−クレゾール、ポリストップ7300P(伯東株式会社製)が更に好ましく、ポリストップ7300P(伯東株式会社製)が最も好ましい。
ラジカル重合防止剤は、成分(c)を合成する際に添加する方法や、液晶シール剤の製造時において成分(c)に溶解させる方法があるが、より有効な効果を得る為には液晶シール剤の製造時において成分(c)に溶解させるほうが好ましい。
ラジカル重合防止剤の含有量としては本発明の液晶シール剤総量中、0.0001〜1質量%が好ましく、0.001〜0.5質量%が更に好ましく、0.01〜0.2質量%が特に好ましい。
【0033】
上記硬化促進剤としては、有機酸やイミダゾール等を挙げることができる。
有機酸としては、有機カルボン酸や有機リン酸等が挙げられるが、有機カルボン酸である場合が好ましい。具体的には、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ベンゾフェノンテトラカルボン酸、フランジカルボン酸等の芳香族カルボン酸、コハク酸、アジピン酸、ドデカン二酸、セバシン酸、チオジプロピオン酸、シクロヘキサンジカルボン酸、トリス(2−カルボキシメチル)イソシアヌレート、トリス(2−カルボキシエチル)イソシアヌレート、トリス(2−カルボキシプロピル)イソシアヌレート、ビス(2−カルボキシエチル)イソシアヌレート等を挙げることができる。
また、イミダゾール化合物としては、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6(2’−メチルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−ウンデシルイミダゾール(1’))エチル−s−トリアジン、2
,4−ジアミノ−6(2 ’−エチル−4−メチルイミダゾール(1’))エチル−s−トリアジン、2,4− ジアミノ−6(2’−メチルイミダゾール(1 ’))エチル−s−トリアジン・イソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸の2:3付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−3,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−ヒドロキシメチル−5−メチルイミダゾール、1−シアノエチル−2−フェニル−3,5−ジシアノエトキシメチルイミダゾール等が挙げられる。
硬化促進剤を使用する場合には、液晶シール剤の総量を100質量部とした場合に、通常0.1〜10質量%、好ましくは1〜5質量%である。
【0034】
本発明の液晶表示セルは、基板に所定の電極を形成した一対の基板を所定の間隔に対向配置し、周囲を本発明の液晶シール剤でシールし、その間隙に液晶が封入されたものである。封入される液晶の種類は特に限定されない。ここで、基板とはガラス、石英、プラスチック、シリコン等からなる少なくとも一方に光透過性がある組み合わせの基板から構成される。その製法としては、液晶シール剤に、グラスファイバー等のスペーサー(間隙制御材)を添加後、該一対の基板の一方にディスペンサー、またはスクリーン印刷装置等を用いて該液晶シール剤を塗布した後、必要に応じて、80〜120℃で仮硬化を行う。その後、該液晶シール剤の堰の内側に液晶を滴下し、真空中にてもう一方のガラス基板を重ね合わせ、ギャップ出しを行う。ギャップ形成後、必要に応じて1000mJ/cm
2〜6000mJ/cm
2の紫外線を照射し、その後90〜130℃で1〜2時間硬化することにより本発明の液晶表示セルを得ることができる。このようにして得られた本発明の液晶表示セルは、液晶汚染による表示不良が無く、接着性、耐湿信頼性に優れたものである。スペーサとしては、例えばグラスファイバー、シリカビーズ、ポリマービーズ等があげられる。その直径は、目的に応じ異なるが、通常2〜8μm、好ましくは4〜7μmである。その使用量は、本発明の液晶シール剤100質量%に対し通常0.1〜4質量%、好ましくは0.5〜2質量%、更に、好ましくは0.9〜1.5質量%程度である。
【0035】
本発明の液晶表示セルの製造方法に使用される液晶シール剤は、例えば次の方法によって得ることができる。まず、成分(c)に必要に応じ、成分(g)を溶解混合する。次いでこの混合物に必要に応じて成分(f)を溶解する。次いで成分(a)及び(b)、また必要に応じて、成分(d)、(e)、消泡剤、レベリング剤、溶剤等を添加し、公知の混合装置、例えば3本ロール、サンドミル、ボールミル等により均一に混合し、金属メッシュにて濾過する。
【0036】
本発明の液晶シール剤は、フィラーの凝集物が無い為、ディスペンスやスクリーン印刷といった塗布作業性に優れ、また液晶表示セルのセルギャップ不良を引き起こさない。また、液晶の差込への耐性も良好であり、液晶滴下工法における基板の貼り合せ工程、加熱工程においても液晶が差し込んだり、シールが決壊したりする現象をおこさない。従って、安定した液晶表示セルの作成が可能である。また、構成成分の液晶への溶出も極めて少なく、液晶表示セルの表示不良を低減することが可能である。また、保存安定性にも優れる為、液晶表示セルの製造に適している。更に、その硬化物は接着強度、耐熱性、耐湿性等の各種硬化物特性にも優れる、特に透湿度は非常に低い。従って、本発明の液晶シール剤を用いることにより、信頼性に優れる液晶表示セルを作成することが可能である。また、本発明の液晶シール剤を用いて作成した液晶表示セルは、電圧保持率が高く、イオン密度が低いという液晶表示セルとして必要な特性も充足される。
【0037】
本発明の液晶表示セルの製造方法は、液晶の液晶シール剤への差し込みが極めて少ない為、熱のみによる液晶滴下工法への適用も可能であり、生産タクト等の観点から、より好ましい。
【実施例】
【0038】
以下、合成例、実施例により本発明を更に詳細に説明するが、本発明は実施例に限定されるものではない。なお、特別の記載のない限り、本文中「部」及び「%」とあるのは質量基準である。
【0039】
[合成例1]
[レゾルシンジグリシジルエーテルの全アクリル化物の合成]
レゾルシンジグリシジルエーテル181.2g(EX−201:ナガセケムテックス株式会社製)をトルエン266.8gに溶解し、これに重合禁止剤としてジブチルヒドロキシトルエン0.8gを加え、60℃まで昇温した。その後、エポキシ基の100%当量のアクリル酸117.5gを加え更に80℃まで昇温し、これに反応触媒であるトリメチルアンモニウムクロライド0.6gを添加して、98℃で約30時間攪拌し、反応液を得た。この反応液を水洗し、トルエンを留去することにより、目的とするレゾルシンジグリシジルエーテルのエポキシアクリレート293gを得た。得られたエポキシアクリレートの反応性基当量は理論値で183である。
【0040】
[合成例2]
[1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンの合成]
市販ベンゾピナコール(東京化成製)100部(0.28モル)をジメチルホルムアルデヒド350部に溶解させた。これに塩基触媒としてピリジン32部(0.4モル)、シリル化剤としてBSTFA(信越化学工業製)150部(0.58モル)を加え70℃まで昇温し、2時間攪拌した。得られた反応液を冷却し、攪拌しながら、水200部を入れ、生成物を沈殿させると共に未反応シリル化剤を失活させた。沈殿した生成物をろ別分離した後十分に水洗した。次いで得られた生成物をアセトンに溶解し、水を加えて再結晶させ、精製した。目的の1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンを105.6部(収率88.3%)得た。
HPLC(高速液体クロマトグラフィー)で分析した結果、純度は99.0%(面積百分率)であった。
【0041】
[実施例1〜7、比較例1〜2]
下記表1に示す量の成分、(a)、(b)等を用い、液晶シール剤の製造を行った。製造方法は以下に示す通りである。
まず、成分(c)に成分(g)を加熱溶解混合し、室温まで冷却後、成分(f)を添加し攪拌した。その後成分(a)、(b)、(d)、(e)、硬化促進剤を順次添加し、3本ロールにより均一に混合した。
【0042】
【表1】
【0043】
実施例1〜7、比較例1〜2で調製した液晶シール剤について、以下の評価を行った。結果を表2にまとめる。
【0044】
[ろ過性試験]
凝集物の存在を評価する方法として、ろ過性試験を実施した。
これは、上記実施例1〜7、比較例1〜2で調整した液晶シール剤4gを6mmΦの635メッシュの金メッシュでろ過し、時間とろ過量を測定する方法である。凝集物の多い液晶シール剤は次第にメッシュが詰まってくるため、ろ過速度が遅くなるが、分散されている液晶シール剤は一定の速度でろ過することができる
ろ過性の評価
○:シール剤4gが一定の速度でろ過できる。
△:シール剤4gが徐々に速度が遅くなるがろ過できる。
×:シール剤4gがろ過できず詰まってしまう。
【0045】
[接着強度試験]
凝集物が存在すると液晶シール剤中での均一性がなくなるため接着強度が低下するが、均一に分散されている液晶シール剤は偏りがなくなるため接着強度が向上する。
液晶シール剤100gにスペーサーとして直径3μmのグラスファイバー(PF−30S:日本電気硝子株式会社製)1gを添加して混合撹拌を行う。この液晶シール剤を50mm×50mmのガラス基板上に塗布し、その液晶シール剤上に1.5mm×1.5mmのガラス片を貼り合わせ、120℃オーブンに1時間投入して硬化させた。そのガラス片のせん断接着強度をボンドテスター(SS−30WD:西進商事株式会社製)を使用して測定した。その結果を表2に示す。
【0046】
【表2】
【0047】
表2の結果より、本発明による実施例の液晶滴下工法用液晶シール剤は、凝集物がなく、ろ過速度が落ちない結果となった。これに対し、比較例の液晶シール剤は凝集物の存在から、ろ過性が徐々に落ちていることが分かる。
また、本発明の液晶シール剤は接着強度についても、優れることが確認された。