(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
近年、携帯型PC、携帯電話、携帯情報端末(PDA)等における電子技術の進歩、発展に伴い、これら電子機器の蓄電デバイスとして、繰り返し充放電することができる二次電池等が広く用いられている。このような二次電池等の電気化学的蓄電デバイスにおいては、電極として使用する材料の高容量化や急速充放電特性が望まれる。
【0003】
蓄電デバイスの電極は、イオンの挿入・脱離が可能な機能を有する活物質を含有する。活物質のイオンの挿入・脱離は、いわゆるドーピング・脱ドーピングとも称され、一定の分子構造あたりのドーピング・脱ドーピング量をドープ率(またはドーピング率)と呼び、ドープ率が高い材料ほど、電池としては高容量化が可能となる。
【0004】
電気化学的には、イオンの挿入・脱離の量が多い材料を電極として使用することにより、電池として高容量化が可能となる。より詳しく述べると、蓄電デバイスとして注目されるリチウム二次電池においては、リチウムイオンを挿入・脱離することができるグラファイト系の負極が用いられ、6つの炭素原子あたり1つ程度のリチウムイオンが挿入・脱離し高容量化が得られている。
【0005】
このようなリチウム二次電池のなかでも、正極にマンガン酸リチウムやコバルト酸リチウムのようなリチウム含有遷移金属酸化物を用い、負極にリチウムイオンを挿入・脱離し得る炭素材料を用い、両電極を電解液中で対峙させたリチウム二次電池は、高エネルギー密度を有するようになるため、上述した電子機器の蓄電デバイスとして広く用いられている。
【0006】
しかし、上記リチウム二次電池は、電気化学反応によって電気エネルギーを得る二次電池であって、上記電気化学反応の速度が小さいために、出力密度が低いという欠点がある。さらに、二次電池の内部抵抗が高いため、急速な放電は困難であるとともに、急速な充電も困難となっている。また、充放電に伴う電気化学反応によって電極や電解液が劣化するため、一般に寿命、すなわち、サイクル特性もよくない。
【0007】
そこで、上記の問題を改善するため、ドーパントを有するポリアニリンのような導電性ポリマーを正極活物質に用いるリチウム二次電池も知られている(特許文献1参照)。
【0008】
しかしながら、一般に、導電性ポリマーを正極活物質として有する二次電池は、充電時には導電性ポリマーにアニオンがドープされ、放電時にはそのアニオンがポリマーから脱ドープされるアニオン移動型である。そのため、負極活物質にリチウムイオンを挿入・脱離し得る炭素材料等を用いたときは、充放電時にカチオンが両電極間を移動するカチオン移動型のロッキングチェア型二次電池を構成することができない。すなわち、ロッキングチェア型二次電池は電解液量が少なくてすむという利点を有するが、上記導電性ポリマーを正極活物質として有する二次電池はそれができず、蓄電デバイスの小型化に寄与することができない。
【0009】
このような問題を解決するために、電解液を大量に必要とせず、電解液中のイオン濃度を実質的に変化させないとともに、これにより体積や重量あたりの容量密度、エネルギー密度の向上を目的とした、カチオン移動型の二次電池も提案されている。これは、ドーパントとしてポリビニルスルホン酸のようなポリマーアニオンを有する導電性ポリマーを用いて正極を構成し、負極にリチウム金属を用いているものである(特許文献2参照)。
【発明を実施するための形態】
【0022】
以下、本発明の実施の形態について詳細に説明するが、以下に記載する説明は、本発明の実施態様の一例であり、本発明は、以下の内容に限定されない。
【0023】
本発明の蓄電デバイス用正極に用いる活物質粒子(以下、単に「活物質粒子」と略すことがある)は、導電性ポリマー
粒子と、導電助剤
のみからなり、上記導電性ポリマー粒子の表面に上記導電助剤がコーティングされてなることを特徴とする。本発明の活物質粒子とは、特に断りがない限り、導電性ポリマー粒子を核として、その表面に導電助剤がコーティングされてなるコーティング粒子を意味する。
【0024】
本発明の活物質粒子は、例えば、
図1に示すように、電解質層3と、これを挟んで対向して設けられた正極2と負極4とを有する蓄電デバイスの正極2として用いられる。
図1において、1は正極集電体、5は負極集電体を示す。
以下、上記正極、負極、電解質層について順に説明する。
【0025】
<正極>
上記正極は、上記導電性ポリマー粒子の表面に上記導電助剤がコーティングされてなる活物質粒子を含有する正極形成材料を用いてなる。
【0026】
〔導電性ポリマー〕
本発明の活物質粒子の核となる導電性ポリマーについて説明する。上記導電性ポリマーは、ポリマー主鎖の酸化反応または還元反応によって生成し、または消失する電荷の変化を補償するために、イオン種がポリマーに挿入し、またはポリマーから脱離することによって、ポリマー自身の導電性が変化する一群のポリマーをいう。
【0027】
このようなポリマーにおいて、導電性が高い状態をドープ状態といい、低い状態を脱ドープ状態という。導電性を有するポリマーが酸化反応または還元反応によって導電性を失い、絶縁性(すなわち、脱ドープ状態)となっても、そのようなポリマーは、酸化還元反応によって再度、可逆的に導電性を有することができるので、このように脱ドープ状態にある絶縁性のポリマーも、本発明においては、導電性ポリマーの範疇に入れることとする。
【0028】
上記導電性ポリマーの好ましい例としては、例えば、無機酸アニオン、脂肪酸スルホン酸アニオン、芳香族スルホン酸アニオン、高分子スルホン酸アニオンおよびポリビニル硫酸アニオンからなる群から選ばれた少なくとも1つのプロトン酸アニオンをドーパントとして有するポリマーがあげられる。また、本発明において好ましい別の導電性ポリマーとしては、上記導電性ポリマーを脱ドープした脱ドープ状態のポリマーがあげられる。
【0029】
上記導電性ポリマーの具体例としては、ポリアセチレン、ポリピロール、ポリアニリン、ポリチオフェン、ポリフラン、ポリセレノフェン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリアズレン、ポリ(3,4−エチレンジオキシチオフェン)や、これらの置換体ポリマー等があげられる。なかでも、電気化学的容量が大きいことから、ポリアニリン、ポリアニリン誘導体、ポリピロール、ポリピロール誘導体が好ましく用いられ、ポリアニリン、ポリアニリン誘導体がさらに好ましく用いられる。
【0030】
本発明において、上記ポリアニリンとは、アニリンを電解重合させ、または化学酸化重合させて得られるポリマーをいい、ポリアニリンの誘導体とは、例えば、アニリンの誘導体を電解重合もしくは化学酸化重合させて得られるポリマーをいう。
【0031】
ここで、アニリンの誘導体としては、アニリンの4位以外の位置にアルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、アルキルアリール基、アリールアルキル基、アルコキシアルキル基等の置換基を少なくとも1つ有するものを例示することができる。好ましい具体例としては、例えば、o−メチルアニリン、o−エチルアニリン、o−フェニルアニリン、o−メトキシアニリン、o−エトキシアニリン等のo−置換アニリンや、m−メチルアニリン、m−エチルアニリン、m−メトキシアニリン、m−エトキシアニリン、m−フェニルアニリン等のm−置換アニリンがあげられる。これらは単独でもしくは2種以上併せて用いられる。また、本発明においては、4位に置換基を有するものでも、p−フェニルアミノアニリンは、酸化重合によってポリアニリンが得られるので、アニリン誘導体として好適に用いることができる。
【0032】
以下、本発明において、特に断らない限り「アニリンまたはその誘導体」を単に「アニリン」といい、また、「ポリアニリンおよびポリアニリン誘導体の少なくとも一方」を単に「ポリアニリン」という。したがって、導電性ポリマーを構成するポリマーがアニリン誘導体から得られる場合であっても、「導電性ポリアニリン」ということがある。
【0033】
〔導電助剤〕
本発明の活物質粒子において、核となる導電性ポリマー粒子の表面にコーティングされる導電助剤は、蓄電デバイスの放電時に印加する電位によって性状の変化しない導電性材料であればよく、例えば、導電性炭素材料、金属材料等があげられ、なかでもアセチレンブラック、ケッチェンブラック等の導電性カーボンブラックや、炭素繊維、カーボンナノチューブ等の繊維状炭素材料が好ましく用いられる。特に好ましくは導電性カーボンブラックである。
【0034】
上記導電助剤は、上記導電性ポリマー
粒子の導電性ポリマー100重量部に対して1〜30重量部であることが好ましく、さらに好ましくは4〜20重量部であり、特に好ましくは8〜18重量部である。導電助剤の配合量がこの範囲内であれば、活物質としての形状や特性に異常なく調製でき、効果的にレート特性を向上させることができる。
【0035】
〔活物質粒子〕
本発明の
導電性ポリマー粒子と導電助剤のみからなる活物質粒子は、例えば、上記導電性ポリマー粒子と、導電助剤とを、粒子複合装置を用いてせん断処理することにより得ることができる。上記粒子複合装置としては、例えば、ホソカワミクロン社製のノビルタやメカノフュージョン、奈良機械製作所社製のミラーD、日本コークス社製のCOMPOSIやCONPIX等があげられる。
【0036】
このようにして得られる本発明の活物質粒子(導電助剤をコーティングしたコーティング粒子)のサイズは、メジアン径が0.001〜1000μmであることが好ましく、さらに好ましくは0.01〜100μmであり、特に好ましくは0.1〜20μmである。上記メジアン径は、例えば、静的光散乱式粒径分布測定装置等を用いて測定することができる。
【0037】
なお、導電助剤をコーティングする前の導電性ポリマー粒子のサイズは、上記活物質粒子(コーティング粒子)のサイズと略同等である。
【0038】
なお、本発明の正極形成材料には、上記活物質粒子に加え、必要に応じて、バインダー、導電助剤、水等を適宜加えることができる。
【0039】
上記バインダーとしては、例えば、フッ化ビニリデンやスチレン−ブタジエンゴムのようなバインダーが用いられる。また、このほかにも、ポリアニオンや分子量の比較的大きなアニオン化合物、電解液に溶解性の低いアニオン性ポリマー等を用いることができる。
【0040】
なかでも、バインダーの主成分が上記アニオン性ポリマーからなることが好ましい。ここで、主成分とは、全体の過半を占める成分のことをいい、全体が主成分のみからなる場合も含む意味である。
【0041】
上記アニオン性材料としては、例えば、ポリマーアニオンや分子量の比較的大きなアニオン化合物、電解液に溶解性の低いアニオン化合物等があげられる。さらに詳細には、分子中にカルボキシル基を有する化合物が好ましく用いられ、特にポリマーであるポリカルボン酸が好ましく用いられる。上記アニオン性材料としてポリカルボン酸を用いた場合は、ポリカルボン酸がバインダーとしての機能を有するとともに、ドーパントとしても機能することから、蓄電デバイスの特性が向上する。
【0042】
上記ポリカルボン酸としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリビニル安息香酸、ポリアリル安息香酸、ポリメタリル安息香酸、ポリマレイン酸、ポリフマル酸、ポリグルタミン酸およびポリアスパラギン酸等があげられ、ポリアクリル酸およびポリメタクリル酸が特に好ましく用いられる。これらは単独でもしくは2種以上併せて用いられる。
【0043】
上記ポリカルボン酸としては、分子中にカルボキシル基を有する化合物のカルボン酸をリチウム型にするものがあげられる。リチウム型への交換率は、100%が理想であるが、必ずしもそうでなくてもよく、好ましくは40%〜100%である。
【0044】
上記ポリカルボン酸などのポリマーをバインダーに用いた場合は、このポリマーがドーパントとしても機能することから、本発明に係る蓄電デバイスはロッキングチェア型の機構を有し、その特性の向上に関与するものとみられる。
【0045】
上記バインダーは、導電性ポリマー
粒子の導電性ポリマー100重量部に対して、通常、1〜100重量部、好ましくは2〜70重量部、最も好ましくは5〜40重量部の範囲で用いられる。上記バインダーの量が少なすぎると、均一な電極が得られない傾向にあり、アニオン性材料の量が多すぎても、結果として活物質材料が減り、エネルギー密度の高い蓄電デバイスを得ることができない傾向にある。
【0046】
また、本発明に係る正極形成材料に、必要に応じて適宜加えられる任意成分の導電助剤としては、前記活物質粒子に用いる導電助剤と同様のものがあげられる。この導電助剤は、蓄電デバイスの放電時に印加する電位によって性状の変化しない導電性材料であればよく、例えば、導電性炭素材料、金属材料等があげられ、なかでも、アセチレンブラック、ケッチェンブラック等の導電性カーボンブラックや、炭素繊維、カーボンナノチューブ等の繊維状炭素材料が好ましく用いられ、特に好ましくは導電性カーボンブラックである。
【0047】
なお、ここでいう導電助剤は、導電性ポリマー粒子の表面にコーティングされる導電助剤とは別に用いる任意成分の導電助剤をいうが、活物質粒子用の導電助剤と同じ材料であっても異なっていてもよい。
【0048】
上記任意成分の導電助剤は、上記導電性ポリマー
粒子の導電性ポリマー100重量部に対して1〜30重量部であることが好ましく、4〜20重量部であることが更に好ましく、8〜18重量部であることが特に好ましい。
【0049】
本発明の蓄電デバイス用正極は、上記活物質粒子と、アニオン性材料等との複合体からなることが好ましく、通常、多孔質シートに形成される。
【0050】
上記正極の厚みは、通常、1〜500μmであり、好ましくは10〜300μmである。上記正極の厚みは、例えば、先端形状が直径5mmの平板であるダイヤルゲージ(尾崎製作所社製)を用いて測定し、電極の面に対して10点の測定値の平均を求めることにより算出できる。なお、集電体上に正極(多孔質層)が設けられ複合化している場合には、その複合化物の厚みを上記と同様に測定して測定値の平均を求め、この値から集電体の厚みを差し引いて計算することにより正極の厚みが求められる。
【0051】
本発明の蓄電デバイス用正極は、例えば、つぎのようにして形成される。上記導電性ポリマー
粒子と導電助剤のみからなる活物質粒子に、導電助剤と、バインダーと、水とを加えて、充分に分散させてスラリーを調製する。そして、これを集電体上に塗布した後、水を蒸発させる等によって、上記スラリーをシート状に賦形する。これによって、集電体上に導電性ポリマー
粒子と導電助剤のみからなる活物質粒子と、必要に応じて加えられるアニオン性材料等との混合物の層を有する複合体からなる正極(シート電極)を得ることができる。
【0052】
<負極>
先に述べた負極としては、金属またはイオンを挿入・脱離し得る負極物質(負極活物質)を用いて形成されたものが好ましい。上記負極活物質としては、金属リチウムや、酸化・還元時にリチウムイオンが挿入・脱離し得る炭素材料や遷移金属酸化物、シリコン、スズなどが好ましく用いられる。なお、負極の厚みは、正極の厚みに準ずることが好ましい。
【0053】
<電解質層>
先に述べた電解質層は、電解質により構成されるが、例えば、セパレータに電解液を含浸させてなるシートや、固体電解質からなるシートが好ましく用いられる。固体電解質からなるシートは、それ自体がセパレータを兼ねている。
【0054】
上記電解質は、溶質と、必要に応じて溶媒と各種添加剤とを含むものから構成される。上記溶質としては、例えば、リチウムイオンなどの金属イオンとこれに対する適宜のカウンターイオン、例えば、スルホン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、ハロゲンイオン等を組み合わせてなるものが好ましく用いられる。上記電解質の具体例としては、LiCF
3SO
3、LiClO
4、LiBF
4、LiPF
6、LiAsF
6、LiN(SO
2CF
3)
2、LiN(SO
2C
2F
5)
2、LiCl等をあげることができる。
【0055】
上記溶媒としては、例えば、カーボネート類、ニトリル類、アミド類、エーテル類等の少なくとも1種の非水溶媒、すなわち有機溶媒が用いられる。このような有機溶媒の具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、アセトニトリル、プロピオニトリル、N,N′−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメトキシエタン、ジエトキシエタン、γ−ブチロラクトン等をあげることができる。これらは単独でもしくは2種以上併せて用いられる。なお、溶媒に溶質が溶解したものを「電解液」ということがある。
【0056】
そして、上記各種添加剤としては、ビニレンカーボネートなどの電極の界面制御剤、ビフェニル,シクロヘキシルベンゼン、フッ化アニソールなどの過充電防止剤、リン酸エステル、ホスファゼン類などの難燃化剤などの、作動電圧、充放電の速度、安全性、寿命特性などを総合的に確保するものがあげられる。
【0057】
また、上記蓄電デバイスは、上述の集電体、正極、電解質層、負極のほかに、セパレータを用いている。このようなセパレータは、各種の態様で用いることができる。例えば、正極と負極の間の電気的な短絡を防ぐことができ、さらに、電気化学的に安定であり、イオン透過性が大きく、ある程度の機械強度を有する絶縁性の多孔質シートを用いることができ、例えば、紙、不織布や、ポリプロピレン、ポリエチレン、ポリイミド等の樹脂からなる多孔質シートが好ましく用いられる。これらは単独でもしくは2種以上併せて用いることができる。また、上述のとおり、電解質層3が固体電解質からなるシートである場合には、それ自体がセパレータを兼ねているため、別途他のセパレータを準備する必要はない。
【0058】
図1の集電体1,5としては、電子伝導性に優れ、電池内部での体積を縮小でき(薄膜化)、加工が容易であるなどの特性を有するものを用いることができる。このような特性を満たすものとしては、例えば、ニッケル、アルミ、ステンレス、銅等の金属箔やメッシュがあげられる。なお、正極集電体(例えば集電体1)と負極集電体(例えば集電体5)とは、同じ材料で構成されていても、異なる材料で構成されていても差し支えない。
【0059】
<蓄電デバイス>
つぎに、本発明の蓄電デバイス用正極を用いた蓄電デバイスについて説明する。本発明の蓄電デバイスとしては、例えば、
図1に示すように、電解質層3と、これを挟んで対向して設けられた正極2と負極4とを有するものがあげられる。
【0060】
本発明の蓄電デバイス用正極を用いた蓄電デバイスは、上記負極等の材料を用いて、例えば、つぎのようにして作製することができる。すなわち、上記正極と負極との間にセパレータが配置されるように積層し、積層体を作製し、この積層体をアルミニウムラミネートパッケージ等の電池容器内に入れた後、真空乾燥する。つぎに、真空乾燥した電池容器内に電解液を注入し、電池容器であるパッケージを封口することにより、蓄電デバイスを作製することができる。なお、パッケージへの電解液注入等の電池の作製は、グローブボックス中、超高純度アルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。
【0061】
本発明の蓄電デバイスは、上記ラミネートセル以外に、フィルム型、シート型、角型、円筒型、ボタン型等種々の形状に形成される。また、蓄電デバイスの正極電極サイズとしては、ラミネートセルであれば1辺が、1〜300mmであることが好ましく、特に好ましくは10〜50mmであり、負極の電極サイズは1〜400mmであることが好ましく、特に好ましくは10〜60mmである。負極の電極サイズは、正極電極サイズより、わずかに大きくすることが好ましい。
【0062】
また、本発明の蓄電デバイスは、電気二重層キャパシタのように、重量出力密度とサイクル特性に優れるとともに、従来の電気二重層キャパシタの重量エネルギー密度よりも非常に高い重量エネルギー密度を有する。そのため、本発明の蓄電デバイスは、キャパシタ的蓄電デバイスであると言える。
【実施例】
【0063】
つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。
【0064】
まず、実施例,比較例となる蓄電デバイスの作製に先立ち、下記に示す各成分を調製・準備した。
【0065】
<導電性ポリアニリン粉末の調製>
テトラフルオロホウ酸をドーパントとする導電性ポリアニリン(導電性ポリマー)の粉末を、下記のように調製した。すなわち、イオン交換水138gを入れた300mL容量のガラス製ビーカーに、42重量%濃度のテトラフルオロホウ酸水溶液(和光純薬工業社製、試薬特級)84.0g(0.402mol)を加え、磁気スターラーにて撹拌しながら、これにアニリン10.0g(0.107mol)を加えた。テトラフルオロホウ酸水溶液にアニリンを加えた当初は、アニリンは、テトラフルオロホウ酸水溶液に油状の液滴として分散していたが、その後、数分以内に水に溶解し、均一で透明なアニリン水溶液になった。このようにして得られたアニリン水溶液を低温恒温槽を用いて−4℃以下に冷却した。
【0066】
つぎに、酸化剤として二酸化マンガン粉末(和光純薬工業社製、試薬1級)11.63g(0.134mol)を、上記アニリン水溶液中に少量ずつ加えて、ビーカー内の混合物の温度が−1℃を超えないようにした。このようにして、アニリン水溶液に酸化剤を加えることによって、アニリン水溶液は直ちに黒緑色に変化した。その後、しばらく撹拌を続けたとき、黒緑色の固体が生成し始めた。
【0067】
このようにして、80分間かけて酸化剤を加えた後、生成した反応生成物を含む反応混合物を冷却しながら、さらに100分間撹拌した。その後、ブフナー漏斗と吸引瓶を用いて、得られた固体をNo.2濾紙にて吸引濾過して、粉末を得た。この粉末を約2mol/Lのテトラフルオロホウ酸水溶液中にて磁気スターラーを用いて撹拌洗浄した。ついで、アセトンにて数回、撹拌洗浄し、これを減圧濾過した。得られた粉末を室温(25℃)で10時間真空乾燥することにより、テトラフルオロホウ酸をドーパントとする導電性ポリアニリン(以下、単に「導電性ポリアニリン」という)12.5gを得た。この導電性ポリアニリンは鮮やかな緑色粉末であった。
【0068】
(導電性ポリアニリン粉末の電導度)
上記導電性ポリアニリン粉末130mgを瑪瑙製乳鉢で粉砕した後、赤外スペクトル測定用KBr錠剤成形器を用い、75MPaの圧力下に10分間真空加圧成形して、直径13mm、厚み720μmの導電性ポリアニリンのディスクを得た。ファン・デル・ボー法による4端子法電導度測定にて測定した上記ディスクの電導度は、19.5S/cmであった。
【0069】
(脱ドープ状態の導電性ポリアニリン粉末の調製)
上記により得られたドープ状態である導電性ポリアニリン粉末を、2mol/L水酸化ナトリウム水溶液中に入れ、3Lセパラブルフラスコ中にて30分間撹拌し、中和反応によりドーパントのテトラフルオロホウ酸を脱ドープした。濾液が中性になるまで脱ドープしたポリアニリンを水洗した後、アセトン中で撹拌洗浄し、ブフナー漏斗と吸引瓶を用いて減圧濾過し、No.2濾紙上に、脱ドープしたポリアニリン粉末を得た。これを室温下、10時間真空乾燥して、茶色の脱ドープ状態のポリアニリン粉末を得た。
【0070】
(還元脱ドープ状態のポリアニリン粉末の調製)
つぎに、フェニルヒドラジンのメタノール水溶液中に、この脱ドープ状態のポリアニリン粉末を入れ、撹拌下30分間還元処理を行った。ポリアニリン粉末の色は、還元により、茶色から灰色に変化した。反応後、メタノール洗浄、アセトン洗浄し、濾別後、室温下真空乾燥し、還元脱ドープ状態のポリアニリンを得た。
アセトンを溶媒として用いた、光散乱法による上記粒子のメジアン径は13μmであった。
【0071】
(還元脱ドープ状態のポリアニリン粉末の電導度)
上記還元脱ドープ状態のポリアニリン粉末130mgを瑪瑙製乳鉢で粉砕した後、赤外スペクトル測定用KBr錠剤成形器を用い、75MPaの圧力下に10分間真空加圧成形して、厚み720μmの還元脱ドープ状態のポリアニリンのディスクを得た。ファン・デル・ボー法による4端子法電導度測定にて測定した上記ディスクの電導度は、5.8×10
-3S/cmであった。これより、ポリアニリン化合物は、イオンの挿入・脱離により導電性の変化する活物質化合物であるといえる。
【0072】
<バインダー溶液の調製>
ポリアクリル酸(和光純薬工業社製、重量平均分子量100万)を水に溶解し、4.4重量%濃度の均一で粘稠なポリアクリル酸水溶液20.5gを得た。このポリアクリル酸水溶液に、水酸化リチウム0.15gを加え、再度溶解させアクリル酸部位の50%がリチウムに置換したポリアクリル酸−ポリアクリル酸リチウム複合体溶液(バインダー溶液)を調製した。
【0073】
<セパレータの準備>
不織布(宝泉社製、TF40−50(空孔率:55%))を準備した。
【0074】
<負極の準備>
厚み50μmの金属リチウム(本城金属社製、圧延型金属リチウム)を準備した。
【0075】
<電解液の準備>
1モル/dm
3濃度のテトラフルオロホウ酸リチウム(LiBF
4)のエチレンカーボネート/ジメチルカーボネート溶液(キシダ化学社製)を準備した。
【0076】
<タブ電極>
正極の電流取り出し用タブ電極として、厚み50μmのアルミ金属箔を準備し、負極の電流取り出し用タブ電極として、厚み50μmのニッケル金属箔を準備した。
【0077】
<集電体>
正極用集電体として、厚み30μmのアルミ箔を準備し、負極用集電体として、厚み180μmのステンレスメッシュを準備した。
【0078】
準備した上記材料を用いて、まず正極を作製するための正極用スラリーを調製した。
【0079】
〔実施例1用スラリー〕
上記で得たポリアニリン粉末4gと、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)0.5g(ポリアニリン粉末100重量部に対して13重量部となる量)とを、粒子複合化装置(ホソカワミクロン社製、ノビルタ)を用いて、80ccで負荷動力が500Wになるような回転条件で30分間処理することにより、導電助剤が粒子表面にコーティングされたポリアニリン粒子を得た。このポリアニリン粒子を、前記で得たポリアクリル酸−ポリアクリル酸リチウム複合体溶液20.5g中に加え、スパチュラでよく練った後、超音波式ホモジナイザーにて5分間超音波処理を施し、フィルミックス40−40型(プライミックス社製)を用いて、流動性を有するスラリーを得た。このスラリーをあわとり練太郎(シンキー社製)を用い、3分間脱泡操作を行った。
【0080】
〔実施例2用スラリー〕
導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)の配合量を1.0gに増量した以外は、実施例1用のスラリーの調製と同様にしてスラリーを調製した。
【0081】
〔比較例1用スラリー〕
粒子複合化装置(ホソカワミクロン社製、ノビルタ)を用いた、導電助剤のコーティング処理を行わなかった以外は、実施例1用のスラリーの調製に準じてスラリーを調製した。すなわち、上記で得たポリアニリン粉末4gと、導電助剤である導電性カーボンブラック(電気化学工業社製、デンカブラック)0.5gと、水4gとを混合したものを、前記で得たポリアクリル酸−ポリアクリル酸リチウム複合体溶液20.5g中に加え、スパチュラでよく練った後、超音波式ホモジナイザーにて5分間超音波処理を施し、フィルミックス40−40型(プライミックス社製)を用いて、流動性を有するスラリーを得た。このスラリーをあわとり練太郎(シンキー社製)を用い、3分間脱泡操作を行った。このようにして、比較例1のスラリーを調製した。
【0082】
〔実施例1,2〕
上記で得た実施例1,2用のスラリーを、それぞれ卓上型自動塗工装置(テスター産業社製)を用い、マイクロメーター付きドクターブレ−ド式アプリケータによって、溶液塗工厚みを360μmに調整し、塗布速度10mm/秒にて、電気二重層キャパシタ用エッチングアルミニウム箔(宝泉社製、30CB)上に塗布した。つぎに、室温(25℃)で45分間放置した後、温度100℃のホットプレート上で乾燥し、ポリアニリンシート電極(正極)を作製した。
【0083】
〔比較例1〕
上記で得た比較例1用のスラリーを、卓上型自動塗工装置(テスター産業社製)を用い、マイクロメーター付きドクターブレ−ド式アプリケータによって、溶液塗工厚みを360μmに調整し、塗布速度10mm/秒にて、電気二重層キャパシタ用エッチングアルミニウム箔(宝泉社製、30CB)上に塗布した。つぎに、温度150℃の乾燥機にて20分間乾燥し、ポリアニリンシート電極(正極)を作製した。
【0084】
つぎに、各活物質粒子における導電助剤のコーティング状態を、走査型電子顕微鏡(SEM:HITACHI社製、S3500N)を用いて観察した(倍率5000倍)。その結果を
図2に示した。
図2において、(A)は比較例1、(B)は実施例1、(C)は実施例2における各導電性ポリマー粒子のSEM写真をそれぞれ示す。
【0085】
図2の比較例1の導電性ポリマー粒子は、導電助剤を添加していない系であり、粒子表面に導電助剤が存在しない、素の導電性ポリマー粒子そのものである。これに比較して、
図2の実施例1,2の導電性ポリマー粒子は、サイズは僅かに大きくなっているが、粒子形態に大きな変化がないことが分かった。
【0086】
また、実施例1および比較例1の正極の断面TEM測定を行った。正極内の空隙に包埋樹脂が行き渡るように正極を樹脂包埋した後に、超薄切片法により正極断面を切り出し、その超薄切片を透過型電子顕微鏡(TEM:日立ハイテク社製、H−7650)を用いて観察した(倍率:5000倍)。その結果を
図3に示した。
図3において、(A)は比較例1、(B)は実施例1のTEM写真をそれぞれ示す。
【0087】
図3から、比較例1において、靄のような微細の球状粒子は、導電助剤(カーボンブラック)であり、導電性ポリマー粒子とは別に導電助剤が存在しているのに対して、実施例1は、靄のような導電助剤の存在はなく、導電性ポリマー粒子サイズが僅かに大きくなっていることから、導電助剤が導電性ポリマー粒子の表面上に付着していることが分かった。以上より、上記
図2および
図3から、実施例1,2の導電性ポリマー粒子は、その表面に導電助剤がコーティングされていることが分かる。
【0088】
<蓄電デバイスの作製>
上記により得られた実施例1,2、比較例1の各正極(ポリアニリンシート電極)と、その他準備した上記材料を用いて、蓄電デバイス(リチウム二次電池)であるラミネートセルの組立をつぎに示す。
【0089】
電池の組立てはグローブボックス中、超高純度アルゴンガス雰囲気下にて行った(グローブボックス内の露点:−100℃)。
【0090】
また、ラミネートセル用正極の電極サイズは27mm×27mmとし、負極サイズは29mm×29mmとし、正極電極サイズより、わずかに大きくしてある。
【0091】
まず、正極用および負極用のタブ電極の金属箔は、対応する集電体にあらかじめスポット溶接機にてそれぞれ接続して用いた。ポリアニリンシート電極(正極)と、負極集電体として準備したステンレスメッシュと、セパレータとを100℃にて5時間、真空乾燥した。その後、露点−100℃のグローブボックスに入れ、グローブボックス内にて、準備した金属リチウム箔を集電体のステンレスメッシュに押しつけてめり込ませて、負極と集電体の複合体を作製した。
【0092】
つぎに、グローブボックス内にて、この正極と負極の間にセパレータを挟み、これらを三方がヒートシールされたラミネートセルの中にセットし、正極と負極が正しく対向するように、またショートしないようにセパレータの位置も調整し、正極および負極用タブ部分にシール剤をセットした上で、電解液注入口を少し残して、タブ電極部分のヒートシールを行った。その後、所定量の電解液をマイクロピペットで吸引して、ラミネートセルの電解液注入口から所定量注入した。最後にラミネートセル上部の電解液注入口をヒートシールにて溶封し、ラミネートセルを完成した。
【0093】
このようにして得られた各ラミネートセル(蓄電デバイス)を用い、下記の測定方法に従って、下記の特性を測定した。その結果を、下記の表1に示した。
【0094】
〔エネルギー密度(mWh/g)の測定〕
各蓄電デバイスを、電池充放電装置(北斗電工社製、SD8)を用いて、25℃の環境下で、定電流一定電圧充電/定電流放電モードにてエネルギー密度測定を行った。充電終止電圧は3.8Vとし、定電流充電により電圧が3.8Vに到達した後は、3.8Vの定電圧充電を2分間行い、この後、放電終止電圧2.0Vまで定電流放電を行った。ポリアニリンの重量容量密度を150mAh/gとし、各蓄電デバイスの電極単位面積に含まれるポリアニリン量から全容量密度(mAh/g)を算出して、20時間で全容量を充放電するように設定した(0.05C)。
【0095】
【表1】
【0096】
上記表1の結果から、表面に導電助剤がコーティングされた導電性ポリマー粒子を含有する正極を用いた実施例1,2は、表面に導電助剤がコーティングされていない導電性ポリマー粒子を含有する正極を用いた比較例1に比べて、エネルギー密度が高いことが分かった。