(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0015】
以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
【0016】
1.本実施形態の概要
上述したSADは、現フレームと前フレームの画素値を同一位置で比べたものであり、局所的な動きの程度(静止の程度)を表すものと言える。SADが小さい領域では、被写体は静止していると考えられるため、時間方向のノイズ低減処理において残像は発生していないと考えられる。そのため、SADが小さい領域では、大きなブレンド率で時間方向のノイズ低減処理の結果をブレンドすることで、残像を抑制しつつ解像度の高いノイズ低減が可能となる。
【0017】
しかしながら、上記の手法ではSADのみでブレンド率を決定しており、撮影条件が考慮されていないため、ノイズ低減において画質を低下させる可能性がある。即ち、撮影条件とは、ノイズ低減処理において時間方向のノイズ低減処理の結果と空間方向のノイズ低減処理の結果を合成した場合に、その画像の画質に影響を与える条件である。言い換えれば、特定の撮影条件においては、合成した画像の画質が低下する可能性があるということである。
【0018】
画質の低下としては、例えば上述した残像が残ることや、アーティファクトが生じることが考えられる。これらの低下が起きる状況として、例えば以下の状況が考えられる。
【0019】
1つ目は、局所的な動き(SAD)が小さいにも関わらず、時間方向のノイズ低減処理において残像が発生する場合である。残像が発生するということは被写体に動きがあるということだが、例えば低コントラスト画像などではSADが小さくなる。内視鏡装置では、消化管の粘膜等、構造物が比較的少ない被写体を観察することが多く、このような状況が起きやすい。
【0020】
下式(2)で説明するように、時間方向のノイズ低減処理ではフレーム間の動きベクトルを検出し、位置合わせを行っている。この位置合わせが成功していれば残像が生じないが、実際には動きベクトルの検出が失敗する場合がある。例えば、被写体に比較的大きな動きが発生している場合である。例えば、動き検出の探索範囲を超えるような動きはそもそも検出できない。このような場合に、SADが小さいことだけでブレンド率を決めると、時間方向のノイズ低減処理の結果が大きなブレンド率でブレンドされることになり、残像が残ってしまう。
【0021】
2つ目は、現フレームと前フレームの明るさが大幅に異なる場合である。このような状況は、例えば撮像部を大きく動かした場合等に起き得る。内視鏡装置では、撮像部の先端から照明光を照射するため、被写体までの距離によって明るさが異なっている。そのため、撮像部を奥行き(光軸)方向に動かした場合や、消化管の蠕動などによって被写体までの距離が変わった場合等に、明るさが大きく変化する。
【0022】
空間方向のノイズ低減は基本的に現フレームに対して行うので、現フレームに近い明るさの画像となる。一方、時間方向のノイズ低減処理では現フレームと前フレームを加算するため、現フレームと前フレームの明るさが大きく異なる場合には、加算後の画像の明るさは現フレームの明るさと異なっている。SADは局所的な動きを表すので、一般には画素や領域ごとに異なった値を持ち、そのSADから決めたブレンド率は画素や領域ごとに異なったものとなる。そうすると、明るさが異なる時間方向のノイズ低減処理の結果と空間方向のノイズ低減処理の結果が、画素や領域ごとに異なる割合でブレンドされ、その明るさの差がアーティファクトとなる。
【0023】
なお、ノイズ低減処理の画質を低下させる撮影条件は上記の例に限定されるものでない。例えば、画像にノイズが多い条件では動きベクトルの検出を失敗する可能性が高くなり、時間方向のノイズ低減処理において残像が発生しやすい。ノイズが多くなる場合として、例えば第5実施形態で説明する狭帯域光画像などが考えられる。
【0024】
以上のように、局所的な動きの程度であるSADのみで時間方向のノイズ低減処理の結果と空間方向のノイズ低減処理の結果を合成すると、ノイズ低減処理において画質が低下するという課題がある。
【0025】
このような課題を解決できる本実施形態の画像処理装置の構成例を
図1に示す。画像処理装置は、画像取得部315と第1のノイズ低減処理部323と第2のノイズ低減処理部324と類似度検出部321と撮影条件取得部322と画像合成部325とを含む。
【0026】
画像取得部315は、撮像部により撮像された時系列の撮像画像を取得する。画像取得部315は、例えば
図2で後述する補間処理部310に対応する。即ち、ベイヤ配列の画像に対して補間処理を行い、各画素にRGB画素値が存在するRGB画像を撮像画像として取得する。或は、R画像、G画像、B画像を順次に撮像する面順次方式の場合には、画像取得部315は、それらのR画像、G画像、B画像から1つのRGB画像にまとめることで、撮像画像を取得してもよい。
【0027】
第1のノイズ低減処理部323は、撮像画像に対して時間方向のノイズ低減処理を施して第1画像を生成する。時間方向のノイズ低減処理は、複数フレームの画素値を用いて平滑化を行う処理である。例えば、下式(2)に示すように、画素単位で現フレームと前フレームの画素値を加重平均する処理である。
【0028】
第2のノイズ低減処理部324は、撮像画像に対して少なくとも空間方向のノイズ低減処理を施して第2画像を生成する。空間方向のノイズ低減処理は、同一フレームの画素値を用いて平滑化を行う処理である。少なくとも空間方向のノイズ低減処理を行えばよいので、同一フレームの画素値のみで平滑化を行ってもよいし、下式(3)、(4)に示すように、更に複数フレームの画素値を用いた平滑化を組み合わせてもよい。
【0029】
類似度検出部321は、撮像画像のフレーム間の類似度を検出する。即ち、現フレームと前フレームの間の類似度を検出する。類似度とは、各画素又は各局所領域について算出され、フレーム間の局所的な相関度合いを表す指標である。例えば、下式(1)に示す差分平均値mSADを類似度として用いる。この差分平均値mSADは各画素位置(x,y)について算出される。
【0030】
撮影条件取得部322は、撮像画像の撮影条件を取得する。撮影条件は、上述のように画質低下を招く可能性がある条件である。撮影条件は、例えば撮像画像から所定の量を抽出することで取得してもよいし、或は、センサーにより取得してもよいし、或は、制御信号や操作入力により取得してもよい。
【0031】
画像合成部325は、類似度が高いほど第1画像の合成度合いが高くなると共に第2画像の合成度合いが低くなるように、第1画像と第2画像を合成処理する。即ち、類似度が高い画素や局所領域では、時間方向のノイズ低減処理の結果を高い合成度合いで合成する。このとき、画像合成部325は、撮影条件により合成度合いを変更する。撮影条件が残像やアーティファクトを発生させる条件である場合には、第1画像の合成度合いを低くする。即ち、同じ類似度であっても、時間方向のノイズ低減処理の結果が合成される度合いが低下し、残像やアーティファクトの発生を抑制できる。
【0032】
ここで、合成処理とは、ブレンド処理又は選択処理である。ブレンド処理は、第1画像を第1ブレンド率(例えば後述する1−α)で第2画像を第2ブレンド率(例えば後述するα)で加重平均する処理である。この場合、合成度合いはブレンド率である。一方、選択処理は、第1画像と第2画像のいずれかを選択する処理である。この場合、合成度合いは、選択される度合い(選択されやすさ)である。例えば、類似度が閾値以上である場合に第1画像を選択する場合、類似度が高くなれば第1画像が選択される度合いが上がり、類似度が低くなれば第1画像が選択される度合いが下がる。また、閾値を変化させることによって第1画像が選択される度合いを変化させることができる。
【0033】
具体的には、撮影条件取得部322は、撮像部と被写体との間の相対的な動きにより変化する動き情報を撮影条件として取得する。そして、画像合成部325は、その動き情報が表す相対的な動きが大きいほど第1画像の合成度合いを低くすると共に第2画像の合成度合いを高くする。
【0034】
動き情報としては、例えば上述した被写体の動き量や明るさの変化量等がある。画像内で被写体の動き量が大きくなるのは、例えば撮像部と被写体が相対的に横(光軸に交差する方向)に移動した場合である。また、画像の明るさが大きく変化するのは、例えば撮像部と被写体が相対的に縦(光軸方向)に移動した場合である。
【0035】
動き情報が動き量である場合、動き量が大きいほど相対的な動きが大きいことを表す。また、動き情報が明るさの変化量である場合、明るさの変化量が大きいほど相対的な動きが大きいことを表す。本実施形態では、このような動き情報が表す動きが大きいほど、時間方向のノイズ低減処理の結果を合成する度合いを低くすることで、残像やアーティファクトの発生を抑制できる。
【0036】
また、類似度検出部321は、撮像画像の第1の領域において類似度を検出し、撮影条件取得部322は、撮像画像の第1の領域よりも広い第2の領域において動き情報を取得する。
【0037】
例えば、類似度が下式(1)に示す差分平均値mSADである場合、類似度は(2k+1)×(2k+1)画素の領域(第1の領域)で検出する。動き量や明るさの変化量等の動き情報は、その(2k+1)×(2k+1)画素の領域よりも広い領域(第2の領域)で検出する。例えば、第1、第2実施形態で説明するように、画像全体についての動き量や明るさの変化量を検出する。
【0038】
上述した画質を低下させる撮影条件は、類似度の検出領域よりもグローバル(大局的)な領域で発生する条件と予想される。例えば、内視鏡スコープの操作や消化管の蠕動などで生じる動きは、画像の広い範囲に及ぶと考えられる。また、低コントラスト画像などにおいて、類似度を検出する微小な領域でフレーム間に差がなかったとしても、広い領域で見れば動き量や明るさの変化量を検出することが可能である。
【0039】
このような理由から、グローバルな動き情報を取得することによって、類似度が小さい場合であっても時間方向のノイズ低減処理の結果を合成する度合いを低くすることが可能となり、残像やアーティファクトを低減できる。
【0040】
2.第1実施形態
2.1.内視鏡装置
以下、詳細な実施形態について説明する。
図2に、第1実施形態における内視鏡装置の構成例を示す。内視鏡システムは、光源部100と、撮像部200と、制御装置300と、表示部400と、外部I/F部500と、を含む。制御装置300は、補間処理部310と、ノイズ低減処理部320と、フレームメモリー330と、表示画像生成部340と、制御部390と、を含む。
【0041】
光源部100は、白色光を発生する白色光源110と、その白色光をライトガイドファイバー210に集光するためのレンズ120と、を含む。
【0042】
撮像部200は、体腔への挿入を可能にするため、例えば細長く且つ湾曲可能に形成されている。また、観察する部位により異なる撮像部が用いられるため、撮像部200は制御装置300に対して着脱可能な構造をしている。なお以下の説明では適宜、撮像部200をスコープと呼ぶ。
【0043】
撮像部200は、光源部100で集光された光を導くためのライトガイドファイバー210と、そのライトガイドファイバー210により導かれた光を拡散させて被写体に照射する照明レンズ220と、を含む。また撮像部200は、被写体からの反射光を集光する集光レンズ230と、集光レンズ230により集光された反射光を検出するための撮像素子240と、メモリー250と、を含む。メモリー250は制御部390に接続されている。
【0044】
撮像素子240は、
図3に示すようにベイヤ配列の色フィルターを有する撮像素子である。色フィルターは、rフィルター、gフィルター、bフィルターの3種類である。
図4に示すように、rフィルターは580〜700nmの光を透過させ、gフィルターは480〜600nmの光を透過させ、bフィルターは390〜500nmの光を透過させる特性を有する。
【0045】
外部I/F部500は、内視鏡装置に対するユーザーからの入力等を行うためのインターフェースである。例えば、外部I/F部500は、電源のオン/オフを行うための電源スイッチや、撮影モードやその他各種のモードを切り換えるためのモード切換ボタンなどを含んで構成されている。外部I/F部500は、入力された情報を制御部390へ出力する。
【0046】
制御装置300は、内視鏡装置の各部の制御や、撮像画像に対する画像処理等を行う。補間処理部310は、ノイズ低減処理部320に接続されている。ノイズ低減処理部320は表示画像生成部340に接続されている。また、ノイズ低減処理部320は、フレームメモリー330と双方向に接続されている。表示画像生成部340は表示部400に接続されている。制御部390は、補間処理部310と、ノイズ低減処理部320と、フレームメモリー330と、表示画像生成部340に接続されており、これらの制御を行う。
【0047】
補間処理部310は、撮像素子240により取得される画像に対して補間処理を行う。上述のように撮像素子240はベイヤ配列を有するため、撮像素子240により取得される画像の各画素は、R、G、B信号のうちの何れか1色の信号値を有し、他の2色の信号値が欠落した状態である。補間処理部310は、この画像の各画素に対して補間処理を行うとで、欠落している信号値を補間し、各画素においてR、G、B信号の全ての信号値を有する画像を生成する。補間処理として、例えば公知のバイキュービック補間処理を用いればよい。なお以下では、補間処理後の画像をRGB画像と呼ぶ。補間処理部310は、生成したRGB画像をノイズ低減処理部320へ出力する。
【0048】
ノイズ低減処理部320は、補間処理部310より出力されるRGB画像に対して、ノイズ低減処理を行う。ノイズ低減処理部320の詳細は後述する。なお以下では、ノイズ低減処理後の画像をNR画像(ノイズ低減画像)と呼ぶ。
【0049】
表示画像生成部340は、ノイズ低減処理部320より出力されるNR画像に対し、例えば既存のホワイトバランスや色変換処理、階調変換処理等を施し、表示画像を生成する。表示画像生成部340は、生成した表示画像を表示部400に出力する。表示部400は、表示画像を表示し、例えば液晶表示装置等の表示装置により構成される。
【0050】
2.2.ノイズ低減処理部
図5に、ノイズ低減処理部320の詳細な構成例を示す。ノイズ低減処理部320は、類似度検出部321と、撮影条件取得部322と、第1のノイズ低減処理部323と、第2のノイズ低減処理部324と、画像合成部325と、を含む。
【0051】
類似度検出部321は、補間処理部310とフレームメモリー330と画像合成部325に接続されている。類似度検出部321は、補間処理部310から得られる現在のRGB画像と、フレームメモリー330から得られる過去画像を用いて類似度を検出し、その類似度を画像合成部325に転送する。過去画像とは、現在のRGB画像よりも1フレーム前の時点において、ノイズ低減処理部320から出力されたNR画像である。以下現在のRGB画像を現フレーム、過去画像を前フレームと呼ぶ。類似度検出部321は、後述する下式(1)を用いて、現フレームと前フレームの所定矩形領域内の差分値を類似度として検出する。
【0052】
撮影条件取得部322は、補間処理部310とフレームメモリー330と画像合成部325と接続されている。撮影条件取得部322は、現フレームと前フレームから被写体の動き量を検出し、その動き量を撮影条件として画像合成部325へ転送する。具体的には、撮影条件取得部322は、現フレームと前フレームの間における被写体の動きベクトルを各局所領域について検出し、その検出した動きベクトルを大きさの昇順に整列する。そして、昇順に整列された動きベクトルのうち下位の複数個の動きベクトルを抽出し、その抽出した動きベクトルの大きさの平均値を求め、その平均値を動き量とする。
【0053】
第1のノイズ低減処理部323は、補間処理部310とフレームメモリー330と画像合成部325に接続されている。第1のノイズ低減処理部323は、現フレームと前フレームを用いて時間方向のノイズ低減処理を行い、その結果の画像(以下、時間方向NR画像と呼ぶ)を画像合成部325に転送する。時間方向のノイズ低減処理の詳細は、下式(2)で後述する。
【0054】
第2のノイズ低減処理部324は、補間処理部310と画像合成部325に接続されている。第2のノイズ低減処理部324は、現フレームを用いて空間方向のノイズ低減処理を行い、その結果の画像(以下空間方向NR画像と呼ぶ)を画像合成部325に転送する。空間方向のノイズ低減処理の詳細は、下式(3)、(4)で後述する。
【0055】
画像合成部325は、類似度及び動き量に基づいて、時間方向NR画像と空間方向NR画像を合成する処理を行う。画像合成部325は、合成処理の結果の画像をフレームメモリー330と表示画像生成部340に転送する。
【0056】
フレームメモリー330は、画像合成部325から転送されたNR画像を記憶する。そして、そのNR画像を前フレームとして、類似度検出部321と撮影条件取得部322と第1のノイズ低減処理部323に転送する。
【0057】
2.3.類似度検出部
次に、類似度検出部の詳細について説明する。類似度検出部321は、現フレームと前フレームとを用いて、類似度である差分平均値mSADを算出する。以下に差分平均値mSADについて詳しく説明する。
【0058】
ノイズ低減処理の対象となる画素である注目画素の座標を(x,y)とすると、差分平均値mSAD(フレーム間差分値)は、下式(1)を用いて算出される。
【数1】
【0059】
類似度検出部321は、上式(1)のSAD(m,n)が最小となる差分平均値mSADの値を、画像合成部325へ出力する。なお、以下ではG信号についての処理を説明するが、R信号、B信号についても同一の処理が施される。
【0060】
ここで、上式(1)において、min{}は、括弧内の値の最小値を取得する処理を表す。また、m=−1、0、1、n=−1、0、1である。また、F
G_cur(x,y)は現フレームの座標(x,y)におけるG信号値であり、F
G_pre(x,y)は前フレームの座標(x,y)におけるG信号値である。また、kは自然数であり、(2k+1)は差分平均値mSADを算出する際のカーネルサイズに相当する。kは、予め一定の値を設定しておくこともできるし、外部I/F部500より、ユーザーが任意の値を設定する構成としてもよい。また、||A||は、実数値Aの絶対値を取得する処理を表す。
【0061】
差分平均値mSADは、被写体が静止状態である場合と動作状態(動きがある状態)である場合とで、その値が異なっている。この特徴について以下に説明する。なお、説明を簡単にするために、画像を1次元の信号として扱う。また、画像信号の成分は、
図6(A)に示す構造成分と、
図6(B)に示すノイズ成分で構成されているものとする。
【0062】
ある時刻tにおいて
図7(A)に示す画像が取得され、その直前の時刻t−1において
図7(B)に示す画像が取得された場合を考える。この場合、時刻tと時刻t−1において、構造成分の位置は変化していない(静止状態に相当)。そのため、時刻tにおける画像と、時刻t−1における画像との差分値(差分値の絶対値)を求めると、
図7(C)に示すように、差分値にはノイズ成分のみが含まれることになる。一方、ある時刻tにおいて
図8(A)に示す画像が取得され、その直前の時刻t−1において
図8(B)に示す画像が取得された場合を考える。
図8(B)に示すdは、フレーム間における被写体の動き量に相当する(動作状態に相当)。この場合、時刻tにおける画像と、時刻t−1における画像の差分値を求めると、
図8(C)に示すように、差分値にはノイズ成分と構造成分の両方が含まれることになる。
【0063】
従って、動作状態における差分平均値mSADは、静止状態における差分平均値mSADよりも大きくなる特徴がある。差分平均値mSADは後述する下式(9)〜(12)で説明するように、ブレンド率の決定に用いられる。
【0064】
2.4.第1のノイズ低減処理部
次に、時間方向のノイズ低減処理の詳細について説明する。時間方向のノイズ低減処理には、下式(2)が用いられる。
【数2】
【0065】
ここで、上式(2)において、F
G_TimeNR(x,y)は時間方向NR画像の座標(x,y)におけるG信号値である。また、we_cur、we_preは加重平均処理時の重み係数である。重み係数we_preを重み係数we_curよりも大きくすることにより、ノイズ低減量が大きくなる。重み係数we_cur、we_preは予め一定の値を設定しておいてもよいし、外部I/F部500より、ユーザーが任意の値を設定する構成としてもよい。また、(u,v)は動きベクトルである。即ち、時間方向のノイズ低減処理において各座標(x,y)での被写体の動きベクトル(u,v)を検出し、その動きベクトル(u,v)により位置合わせを行う。
【0066】
2.5.第2のノイズ低減処理部
次に、空間方向のノイズ低減処理の詳細について説明する。本実施形態において、空間方向のノイズ低減処理は、ノイズ低減処理の対象となる画素(注目画素)とその周辺の画素を用いた加重平均処理である。具体的には、下式(3)を用いてノイズを低減する。
【数3】
【0067】
ここで、上式(3)において、we_diff_cur(x+i,y+j)、we_diff_pre(x+i,y+j)は加重平均処理時の重み係数に相当する。この係数は、下式(4)に示すように、ガウス分布で与えられる。また、Iは自然数である。また、m、nは、上式(1)において差分平均値mSADとして選択されたSAD(m,n)のm、nである。
【数4】
【0068】
上式(4)に示すように、本実施形態で用いられる空間方向のノイズ低減処理では、注目画素の信号値と周辺画素の信号値との差分の大きさに応じて、適応的に重み係数が設定される。具体的には、差分が大きい場合には、加重平均処理時の重みが小さくなる。従って、エッジ部など信号値が急に変化する領域の画素は加重平均処理に寄与しなくなるため、エッジ部を保持してノイズ成分のみを低減できる利点がある。
【0069】
2.6.撮影条件取得部
以上のように、ノイズ低減処理部320は、時間方向のノイズ低減処理と空間方向のノイズ低減処理を行う。時間方向のノイズ低減処理は、解像感を保持できる反面、残像の副作用があり、時間方向のノイズ低減処理は、残像が生じない反面、解像が低下する副作用がある。
【0070】
そこで、本実施形態では、類似度(差分平均値mSAD)に応じて空間方向NR画像と時間方向NR画像をブレンドすることで、時間方向のノイズ低減処理と空間方向のノイズ低減処理のそれぞれの利点を活かした、高性能なノイズ低減を実現する。
【0071】
具体的には、差分平均値mSADの値が小さい場合には、現フレームと前フレームの間は被写体が静止状態であると判断できる。よって差分平均値mSADの値が小さいと類似性が高くなるため、時間方向NR画像のブレンド率を高くする制御を行う。逆に、差分平均値mSADの値が大きい場合には、現フレームと前フレームの間は被写体が動作状態であると判断できる。よって差分平均値mSADが大きいと類似度が低くなるため、空間方向NR画像のブレンド率を高くする制御を行う。
【0072】
このような制御によって、残像が生じない静止状態では時間方向NR画像のブレンド率を上げて解像度を向上させ、残像が生じる動作状態では空間方向NR画像のブレンド率を上げて残像を抑制できる。
【0073】
しかしながら、静止状態を判断する指標として差分平均値mSADの信頼性が低い場合があり、そのような場合には、差分平均値mSADが小さい場合であっても実際には静止状態ではない可能性がある。例えば、「1.本実施形態の概要」で説明した1つ目の状況である。即ち、被写体のコントラストやノイズの影響により、差分平均値mSADを誤判定し、時間方向NR画像に残像があるにも関わらず合成度合いが高くなる場合である。
【0074】
そこで本実施形態では、画像の広い範囲における被写体の動きの程度を表すグローバルな動き量を用いてブレンド率を決定する。即ち、グローバルな動き量が大きい場合は、時間方向NR画像を少なくするようにブレンド率を調整することで、残像を抑えたノイズ低減処理を実現する。
【0075】
以下、この構成について詳細に説明する。
図9に撮影条件取得部322の詳細な構成例を示す。撮影条件取得部322は、公知のブロックマッチング処理を用いて複数の局所領域から動きベクトルを算出する動きベクトル検出部601と、得られた動きベクトルを昇順に並べる動きベクトル整列部602と、所定の割合で下位の動きベクトルを採用し、それらの平均値を算出する動きベクトル平均部603と、を含む。
【0076】
具体的には、動きベクトル検出部601は、現フレームに対し、
図10に示すように代表点を中心とする局所領域を複数設定する。xは画像の水平走査方向における座標であり、yは画像の垂直走査方向における座標である。設定する局所領域の大きさ,数は、予め一定の値を設定しておくこともできるし、外部I/F部500によりユーザーが任意の値を設定できる構成としても良い。
【0077】
次に、動きベクトル検出部601は、設定された全ての局所領域について公知のブロックマッチング処理を用いて動きベクトル(mx,my)を算出する。ブロックマッチング処理では、現フレーム(基準画像)の各ブロックに対して、相関が高いブロックの位置を前フレーム(対象画像)内で探索する。ブロック間の相対的なズレ量が、そのブロックの動きベクトル(mx,my)に対応する。
【0078】
ブロックマッチングで相関の高いブロックを探索する方法としては、例えば二乗誤差SSDや、絶対誤差SADなどを用いれば良い。これは基準画像におけるブロック領域をI、対象画像におけるブロック領域をI’として、Iと相関が高いI’の位置を求める方法である。各ブロック領域での画素位置をp∈I及びq∈I’として、各画素の信号値をLp,Lqとすると、SSD,SADは、下式(5)及び下式(6)で定義され、この値が小さいほど相関が高いと評価する。
【数5】
【数6】
【0079】
ここで、p及びqはそれぞれ2次元の値を持ち、I及びI’は2次元の領域を持つものとし、p∈Iは座標pが領域Iに含まれていることを示す。また||A||は実数値Aの絶対値を取得する処理を表す。
【0080】
動きベクトル整列部602は、全ての局所領域において算出された動きベクトル(mx,my)をサイズ(大きさ)に基づき昇順に整列する。動きベクトルのサイズは、動きベクトルの水平成分であるmxと、動きベクトルの垂直成分であるmyの、それぞれの絶対値である。算出する各代表画素における動き量mvは、下式(7)に示すように、|mx|と|my|を比較し、値の大きい方を選択したものである。
【数7】
【0081】
動きベクトル平均部603は、整列された動き量mvの中から、下位の所定の割合(例えば数%)の動き量mvを採用する。採用した複数の動き量mvを平均するための式を下式(8)に示す。
【数8】
【0082】
ここで、numは動きベクトルの数であり、mv
iはi番目の代表点における動き量mvであり、それらにより算出された結果がグローバルな動き量MVである。
【0083】
なお、上記では、動き量MVをフレーム全体で算出する例を挙げたが、これに限定されず、動き量MVを所定領域毎、若しくは画素毎で算出しても良い。
【0084】
2.7.画像合成部
図11に、画像合成部325の詳細な構成例を示す。画像合成部325は、類似度である差分平均値mSADとグローバルな動き量MVとに基づいてブレンド率を決定するブレンド率決定部611と、そのブレンド率に基づいて時間方向NR画像と空間方向NR画像をブレンドするブレンド処理部612と、を含む。
【0085】
具体的には、ブレンド率決定部611は、制御部390からブレンド率を決定するためのパラメーターを取得し、類似度検出部321から類似度(差分平均値mSAD)を取得し、撮影条件取得部322から動き量MVを取得する。そして、下式(9)によりブレンド率αを決定する。ブレンド率αは空間方向NR画像のブレンド率であり、時間方向NR画像のブレンド率は(1−α)となる。
【数9】
【0086】
αは、0以上1以下の値となるように正規化する。また、BLEND_mSADは類似度に関するブレンド率であり、BLEND_CONDITIONは観察条件に関するブレンド率である。
【0087】
まず、類似度に関するブレンド率BLEND_mSADについて説明する。メモリー250は、ブレンド率BLEND_mSADを決定するのに用いるパラメーターである閾値mSAD_TH及び傾きmSAD_SLPを保持している。これらのパラメーターは、予めメモリー250に登録しておく。制御部390は、メモリー250を参照して、パラメーターを画像合成部325に転送する。
【0088】
図12に示すように、横軸を差分平均値mSADとし、縦軸をブレンド率BLEND_mSADとする。まず、閾値mSAD_THと傾きmSAD_SLPを用いて下式(10)によりBLEND_mSAD’を算出する。
【数10】
【0089】
次に、下式(11)に示すようにBLEND_mSAD’を下限値0と上限値64でクリッピングする。下限値0と上限値64は任意の値に設定可能である。
【数11】
【0090】
次に、下式(12)に示すようにBLEND_mSAD’を正規化してBLEND_mSADを求める。
【数12】
【0091】
差分平均値mSADは各位置(x,y)で算出するので、ブレンド率BLEND_mSADは各位置(x,y)で異なる値となる。即ち、最終的なブレンド率αも各位置(x,y)で異なる値をもつことになる。
【0092】
次に、観察条件に関するブレンド率BLEND_CONDITIONについて説明する。下式(13)に示すように、ブレンド率BLEND_CONDITIONは、動き量MVに関するブレンド率BLEND_MVである。
【数13】
【0093】
メモリー250は、ブレンド率BLEND_MVを決定するのに用いるパラメーター、閾値MV_THと傾きMV_SLPを保持している。これらのパラメーターは、予めメモリー250に登録しておく。制御部390は、メモリー250を参照して、パラメーターを画像合成部325に転送する。
【0094】
図13に示すように、横軸を動き量MVとし、縦軸をブレンド率BLEND_MVとする。まず、閾値MV_THと傾きMV_SLPを用いて下式(14)によりBLEND_MV’を求める。そして、下式(15)によりBLEND_MV’をクリッピングし、下式(16)に示すようにBLEND_MV’を正規化してブレンド率BLEND_MVを求める。
【数14】
【数15】
【数16】
【0095】
閾値mSAD_TH、mSAD_THを設けるのは以下の理由による。即ち、閾値の存在により、差分平均値mSADや動き量MVがある程度の大きさになるまでは空間方向NR画像のブレンド率αが低くなる。これにより、残像が発生しにくい条件では時間方向NR画像のブレンド率(1−α)を高くでき、解像度を維持できるからである。
【0096】
ブレンド処理部612は、上記のようにして決定されたブレンド率αに基づいて、第1のノイズ低減処理部323からの時間方向NR画像と第2のノイズ低減処理部324からの空間方向NR画像とをブレンドする。
【0097】
具体的には、下式(17)によりブレンド結果の画像F
G_NR(x,y)を求める。
【数17】
【0098】
ここで、F
G_TimeNR(x,y)は時間方向NR画像の画素値であり、F
G_SpaceNRは空間方向NR画像の画素値である。
【0099】
なお、上記ではブレンド率BLEND_mSAD、BLEND_MVを用いて空間方向NR画像のブレンド率αを算出する例を説明したが、これに限定されず、時間方向NR画像のブレンド率(1−α)を算出するようにしても良い。その場合は、
図12、
図13のグラフが右下がりとなる。
【0100】
以上の第1実施形態によれば、撮影条件取得部322は、撮像部200と被写体との間の相対的な動き量MVを動き情報として取得する。そして、画像合成部325は、動き量MVが大きいほど第1画像(時間方向NR画像)の合成度合いを低くすると共に第2画像(空間方向NR画像)の合成度合いを高くする。
【0101】
具体的には、撮影条件取得部322は、撮像画像上での被写体のフレーム間における動きベクトルの大きさを動き量MVとして取得する。なお、動き量は画像から動きベクトルを検出する場合に限定されず、例えば撮像部200に加速度センサー等のモーションセンサー(変位量検出部)を設け、そのセンシング信号に基づいて動き量を検出してもよい。
【0102】
このようにすれば、類似度が低い場合であっても、動き量MVが検出された場合には時間方向NR画像の合成度合いを低くできるので、最終的なNR画像において残像を抑制できる。
【0103】
具体的には、
図12に示すように、局所的な類似度が低くなるほど(差分平均値mSADの値が大きくなるほど)ブレンド率BLEND_mSADの値が大きくなるので、空間方向NR画像のブレンド率αが大きくなる。また、
図13に示すように、グローバルな動き量MVが大きくなるほどブレンド率BLEND_MVの値が大きくなるので、空間方向NR画像のブレンド率αが大きくなる。
【0104】
これにより、局所的な類似度又はグローバルな動き量MVの少なくとも一方が大きい場合には、時間方向NR画像のブレンド率(1−α)が小さくなり、残像を低減できる。特に、局所的な類似度が高い(差分平均値mSADの値が小さい)場合であっても、グローバルな動き量MVが大きい場合には時間方向NR画像に残像が発生しやすいが、本実施形態ではグローバルな動き量MVを考慮しているため時間方向NR画像のブレンド率(1−α)が小さくなり、残像を抑制できる。
【0105】
なお、第1実施形態では合成処理はブレンド処理であるが、第3実施形態で説明するように合成処理は選択処理であってもよい。選択処理の場合にも、上記と同様の効果が得られる。
【0106】
また第1実施形態では、撮影条件取得部322は、撮像画像の複数の領域について動きベクトルを検出し、その複数の領域についての動きベクトルを大きさmv(上式(7))の順に並べる。そして、撮影条件取得部322は、大きさmvが小さい方から所定割合の動きベクトルの平均値(上式(8))を動き量MVとして取得する。
【0107】
例えば鉗子により処置を行っているような場合、背景が静止しているが、画面全体の中で比較的少ない領域の被写体(鉗子)が大きく動いている状況が生まれる。このような状況では、できるだけ時間方向NR画像を採用して解像度を高くすることが望ましい。
【0108】
しかしながら、このような場合に、全ての動き量mvを採用して最終的なグローバルな動き量MVを求めると、動いている被写体(鉗子)の動き量mvによりグローバルな動き量MVが大きくなってしまう。そうすると、背景が静止してグローバルな動きがないにも関わらず、動きがあるかのような動き量MVが算出され、時間方向NR画像の合成度合いが低くなる。
【0109】
この点、本実施形態では、大きさmvが小さい方から所定割合の動きベクトルを採用するので、上記の鉗子のような画像の一部で動きがあっても、その動きベクトルの大きさmvは除外される。これにより、背景に動きがない場合には動き量MVとして小さい値を算出でき、時間方向NR画像の合成度合いを高くできる。
【0110】
3.第2実施形態
次に、第2実施形態について説明する。「1.本実施形態の概要」で説明したように、画質を低下させる2つ目の状況として画像の明るさに大きな変化が生じた場合がある。例えば、現フレームが暗い画像であり、前フレームが明るい画像であるとする。この場合、空間方向NR画像は現フレームと同じく暗い画像となり、時間方向NR画像は現フレームと前フレームを加算した中間の明るさの画像となる。これらの画像は、場所によって異なるブレンド率αでブレンドされるので、明るさの異なる画素や領域が隣り合わせとなり、その明るさの違いが偽輪郭として現れ、アーティファクトとなってしまう。
【0111】
そこで第2実施形態では、フレーム間における明るさの変化量を考慮してブレンド率αを決定する。なお、以下では撮影条件として動き量MVと明るさの変化量を組み合わせる場合を例に説明するが、これに限定されず、撮影条件として明るさの変化量のみを用いてもよい。
【0112】
図14に、第2実施形態における撮影条件取得部322の詳細な構成例を示す。撮影条件取得部322は、動きベクトル検出部601と動きベクトル整列部602と動きベクトル平均部603と明るさ変化量検出部604とを含む。なお、内視鏡装置及びノイズ低減処理部320の構成は第1実施形態と同じである。また、すでに説明した構成要素と同一の構成要素については同一の符号を付し、適宜説明を省略する。
【0113】
明るさ変化量検出部604は、現フレームと前フレームのフレーム間における明るさの変化を、明るさの変化量として検出し、その明るさの変化量を画像合成部325へ転送する。
【0114】
具体的には、下式(18)に示すように、現フレームの画素値又は輝度値の平均値Ave
all_curと、前フレームの画素値又は輝度値の平均値Ave
all_preとを求め、それらの差分値を明るさの変化量AVE
all_diffとして求める。
【数18】
【0115】
平均値Ave
all_cur、Ave
all_preは画像全体の明るさを代表している。例えば、画像の中心位置(x,y)=(W/2,L/2)を中心とする所定矩形内の画素の画素値を平均して求められる。Wは水平走査方向の画像サイズであり、Lは垂直走査方向の画像サイズである。
【0116】
画像合成部325は、上記で求めた明るさの変化量AVE
all_diffと、第1実施形態で説明した類似度(差分平均値mSAD)及びグローバルの動き量MVに基づいて、時間方向NR画像と空間方向NR画像をブレンドする。
【0117】
具体的には、第1実施形態の
図11と同様に、画像合成部325はブレンド率決定部611とブレンド処理部612を含む。
【0118】
ブレンド率決定部611は、制御部390からブレンド率を決定するためのパラメーターを取得し、類似度検出部321から差分平均値mSADを取得し、撮影条件取得部322から動き量MVと明るさの変化量AVE
all_diffを取得する。
【0119】
ブレンド率αを決定する式は上式(9)と同じであるが、観察条件に関するブレンド率BLEND_CONDITIONは、下式(19)となる。BLEND_LNは、明るさの変化量AVE
all_diffに関するブレンド率である。
【数19】
【0120】
ブレンド率BLEND_LNは、以下のようにして求める。即ち、メモリー250は、ブレンド率BLEND_LNを決定するのに用いるパラメーターとして閾値LN_THと傾きLN_SLPを保持している。これらのパラメーターは、予めメモリー250に登録しておく。制御部390は、メモリー250を参照して、パラメーターを画像合成部325に転送する。
【0121】
図15に示すように、横軸をフレームごとの明るさの変化量AVE
all_diffとし、縦軸をブレンド率BLEND_LNとする。まず、閾値LN_THと傾きLN_SLPを用いて下式(20)によりBLEND_LN’を求める。そして、下式(21)によりBLEND_LN’をクリッピングし、下式(22)に示すようにBLEND_LN’を正規化してブレンド率BLEND_LNを求める。
【数20】
【数21】
【数22】
【0122】
閾値LN_THを設けるのは以下の理由による。即ち、閾値の存在により、明るさの変化量AVE
all_diffがある程度の大きさになるまでは空間方向NR画像のブレンド率αが低くなる。これにより、アーティファクトが発生しにくい条件では時間方向NR画像のブレンド率(1−α)を高くでき、解像度を維持できるからである。
【0123】
なお、上記ではブレンド率BLEND_mSAD、BLEND_CONDITIONを用いて空間方向NR画像のブレンド率αを算出する例を説明したが、これに限定されず、時間方向NR画像のブレンド率(1−α)を算出するようにしても良い。その場合は、
図12、
図13、
図15のグラフが右下がりとなる。
【0124】
以上の第2実施形態によれば、撮影条件取得部322は、撮像画像のフレーム間における明るさの変化量AVE
all_diffを動き情報として取得する。そして、画像合成部325は、明るさの変化量AVE
all_diffが大きいほど第1画像(時間方向NR画像)の合成度合いを低くすると共に第2画像(空間方向NR画像)の合成度合いを高くする。
【0125】
このようにすれば、類似度が低い場合であっても、明るさの変化量AVE
all_diffが検出された場合には時間方向NR画像の合成度合いを低くできるので、アーティファクトを抑制できる。
【0126】
具体的には、
図15に示すように、明るさの変化量AVE
all_diffが大きくなるほどブレンド率BLEND_LNの値が大きくなるので、空間方向NR画像のブレンド率αが大きくなる。即ち、局所的な類似度が高い(差分平均値mSADの値が小さい)場合であっても、画像全体の明るさの変化量AVE
all_diffが大きい場合には時間方向NR画像のブレンド率(1−α)が小さくなる。これにより、明るさが異なる空間方向NR画像と時間方向NR画像が混在してブレンドされることがなくなり、アーティファクトを抑制できる。
【0127】
なお、第2実施形態では合成処理はブレンド処理であるが、第3実施形態で説明するように合成処理は選択処理であってもよい。選択処理の場合にも、上記と同様の効果が得られる。
【0128】
4.第3実施形態
次に、第3実施形態について説明する。第3実施形態では、類似度である差分平均値mSADと動き量MVと明るさの変化量AVE
all_diffを用いて閾値を決定し、その閾値に基づいて時間方向NR画像と空間方向NR画像のいずれかを選択する。
【0129】
なお、以下では動き量MVと明るさの変化量AVE
all_diffの双方を用いて閾値を決定する場合を説明するが、これに限定されず、動き量MVと明るさの変化量AVE
all_diffのいずれか一方を用いて閾値を決定してもよい。
【0130】
図16に、第3実施形態における画像合成部325の詳細な構成例を示す。画像合成部325は、閾値決定部621と選択部622を含む。なお、内視鏡装置及びノイズ低減処理部320の構成は第1実施形態と同じであり、撮影条件取得部322の構成は第2実施形態と同じである。また、すでに説明した構成要素と同一の構成要素については同一の符号を付し、適宜説明を省略する。
【0131】
メモリー250は、類似度に関する閾値mSAD_THをパラメーターとして保持している。制御部390は、メモリー250に保持されているパラメーターを参照し、画像合成部325にパラメーターを送る。
【0132】
閾値決定部621は、制御部390から閾値を決定するためのパラメーターを取得し、類似度検出部321から類似度(差分平均値mSAD)を取得し、撮影条件取得部322から動き量MVと明るさの変化量AVE
all_diffを取得する。閾値決定部621は、取得した類似度、動き量、明るさの変化量に基づいて閾値を決定する。
【0133】
具体的には、閾値決定部621では、閾値mSAD_THと、撮影条件に関する値CONDITION_VALを用いて、下式(23)のように閾値mSAD_TH’を再設定する。
【数23】
【0134】
ここで、CONDITION_VALは、動き量MVと明るさの変化量AVE
all_diffを用いて下式(24)のように算出する。CONDITION_VALの下限値0と上限値64は任意の値に設定可能である。また、上式(23)においてCONDITION_VAL/64の分母64は、CONDITION_VALの上限値と同一の値であり、正規化を意味する。
【数24】
【0135】
上式(23)、(24)によれば、動き量MV又は明るさの変化量AVE
all_diffが大きいほど閾値mSAD_THよりも小さくなるような閾値mSAD_TH’を設定することができる。
【0136】
選択部622は、閾値mSAD_TH’に基づいて、時間方向NR画像若しくは、空間方向NR画像の何れかを選択し、その選択した画像をフレームメモリー330と表示画像生成部340に転送する。
【0137】
具体的には、選択部622は、再設定された閾値mSAD_TH’と類似度である差分平均値mSADを用いて下式(25)のように判別処理を行う。
【数25】
【0138】
F
G_TimeNR(x,y)は時間方向NR画像の画素値であり、F
G_SpaceNRは空間方向NR画像の画素値であり、F
G_NR(x,y)は選択された画像である。
【0139】
差分平均値mSADがmSAD_TH’よりも小さい場合は、差分平均値mSADによる局所的な動き検出が成功している、或は現フレームと前フレームで明るさの変化が少ないと判断できるので、時間方向のノイズ低減処理の結果を選択する。一方、差分平均値mSADがmSAD_TH’よりも大きい場合は、差分平均値mSADによる局所的な動き検出が失敗している、或は現フレームと前フレームの明るさの変化が大きいと判断できるので、空間方向のノイズ低減処理の結果を選択する。このようにして、撮影条件を考慮することにより残像やアーティファクトを抑制できる。
【0140】
5.第4実施形態
次に、第4実施形態について説明する。第4実施形態では、明るさの変化量AVE
all_diffに基づいて画像の明るさを補正することで、空間方向NR画像と時間方向NR画像の明るさを合わせ、アーティファクトを抑制する。具体的には、時間方向NR画像に明るさの変化量AVE
all_diffを加算してから空間方向NR画像とブレンド若しくは選択を行う。
【0141】
まず、ブレンドを行う場合について説明する。画像合成部325の構成は
図11の第1実施形態と同じである。また、内視鏡装置及びノイズ低減処理部320の構成は
図1、
図5の第1実施形態と同じであり、撮影条件取得部322の構成は
図14の第2実施形態と同じである。
【0142】
明るさ変化量検出部604は、下式(26)に示すように、注目画素(x、y)を中心とする所定矩形内における現フレームの画素値の平均値AVE
cur(x,y)と前フレームの画素値の平均値AVE
pre(x+u,x+v)をとり、現フレームと前フレームの明るさの変化量AVE
diff(x,y)を算出する。(u,v)は上式(2)の動きベクトル(u,v)である。即ち、明るさ変化量検出部604は、第1のノイズ低減処理部323により検出された動きベクトル(u,v)を受けて、位置合わせを行う。なお、動き検出をしなかった場合には(u,v)=(0,0)である。
【数26】
【0143】
画像合成部325は、下式(27)に示すように、明るさの変化量AVE
diff(x,y)を時間方向NR画像F
G_TimeNR(x,y)に加算し、その画像と空間方向NR画像F
G_SpaceNR(x,y)とをブレンドする。
【数27】
【0144】
次に、選択を行う場合について説明する。画像合成部325の構成は
図16の第3実施形態と同じである。また、内視鏡装置及びノイズ低減処理部320の構成は
図1、
図5の第1実施形態と同じであり、撮影条件取得部322の構成は
図14の第2実施形態と同じである。
【0145】
明るさ変化量検出部604は、上式(26)により明るさの変化量AVE
diff(x,y)を算出する。そして、画像合成部325は、下式(28)に示すように、明るさの変化量AVE
diff(x,y)を時間方向NR画像F
G_TimeNR(x,y)に加算し、その画像と空間方向NR画像F
G_SpaceNR(x,y)のいずれかを選択する。
【数28】
【0146】
以上の処理の効果として、明るさの変化量AVE
diff(x,y)を時間方向NR画像に加算してからブレンドすることで、明るさの違いによるアーティファクトを防ぐことができる。
【0147】
6.第5実施形態
次に、第5実施形態について説明する。第5実施形態では、画像の種類を撮影条件としてブレンド率や選択を制御する。
【0148】
図17に、第5実施形態における内視鏡装置の構成例を示す。内視鏡装置は、光源部100と、撮像部200と、制御装置300と、表示部400と、外部I/F部500と、を含む。なお以下では、すでに説明した構成要素と同一の構成要素については同一の符号を付し、適宜説明を省略する。
【0149】
撮像部200は、ライトガイドファイバー210と、照明レンズ220と、集光レンズ230と、撮像素子240と、メモリー250と、フィルター駆動部280と、狭帯域フィルター290と、を含む。フィルター駆動部280は狭帯域フィルター290に接続されており、さらに制御部390と双方向に接続されている。
【0150】
狭帯域フィルター290は、
図18に示すように、380〜450nm、及び530〜550nmの光を透過する。また、狭帯域フィルター290は、集光レンズ230及び撮像素子240の間の光路に挿入できるようになっている。狭帯域フィルター290の挿入・非挿入は、例えば外部I/F部500よりユーザーが制御する。この場合、ユーザーの指示が、外部I/F部500より制御部390を介してフィルター駆動部280に送られ、フィルター駆動部280が狭帯域フィルター290を駆動する。狭帯域フィルター290が光路中に挿入されている場合、制御部390は、補間処理部310及びノイズ低減処理部320へトリガー信号を出力する。
【0151】
補間処理部310は、撮像素子240により撮影される画像に対して補間処理を行う。補間処理部310は、上述のトリガー信号が制御部390から出力されてない場合(狭帯域フィルター290が挿入されてない場合)には、第1実施形態と同一の手法によりRGB画像を生成する。以下では狭帯域フィルター290が挿入されない場合に取得されるRGB画像を、白色光画像と呼ぶ。
【0152】
一方、トリガー信号が制御部390から出力されている場合(狭帯域フィルター290が挿入されている場合)には、補間処理部310は、G信号及びB信号に対してのみ補間処理を行う。補間処理は、例えば公知のバイキュービック補間処理である。この場合、補間処理部310は、全画素においてG信号を有するG画像と、全画素においてB信号を有するB画像とを、補間処理により生成する。そして、RGB画像のR信号にG画像を入力し、RGB画像のG信号とB信号にB画像を入力することで、RGB画像を生成する。以下では、狭帯域フィルター290が挿入されている場合に取得されるRGB画像を、狭帯域光画像(特殊光画像)と呼ぶ。
【0153】
なお、上記では、狭帯域フィルター290を光路に挿入することにより狭帯域光画像を撮像する場合を例に説明したが、本実施形態はこれに限定されない。例えば、光源部100が、特殊光(狭義には狭帯域光)を出射することにより狭帯域光画像を撮像してもよい。あるいは、撮像部200が、特殊光を透過する色フィルターを有する撮像素子を更に含み、その撮像素子により狭帯域光画像を撮像してもよい。あるいは、画像処理により白色光画像から狭帯域光画像を生成してもよい。
【0154】
さて、狭帯域光画像は、白色光画像と比べて光の波長帯域が狭いので光量が不足し、ノイズが増加(S/Nが低下)する。即ち、白色光画像と狭帯域光画像とでは撮影条件が異なっている。上述したようにS/Nが低下した画像ではNR画像に残像が出やすいため、白色光画像と同じブレンド率や閾値で狭帯域光画像のノイズ低減処理を行うと、狭帯域光画像のNR画像に残像が出てしまうという課題がある。
【0155】
そこで本実施形態では、撮影条件に画像の種類を用いることで、それぞれの画像に合ったブレンド率や閾値の設定をする。白色光画像の場合は、第1実施形態で設定されたブレンド率や閾値を用い、狭帯域光画像の場合は、白色光画像と比べてノイズ量が増加し、差分平均値mSADによる判定精度が低下してしまうことを考慮してブレンド率や閾値を設定する。具体的には、白色光画像と比べて、空間方向NR画像を用いる割合を増やす。
【0156】
このように、画像の種類に合わせて、時間方向NR画像と空間方向NR画像のブレンド率や閾値を決定し、ブレンドや選択を行うことで、残像を低減した高性能なノイズ低減を実現できる。
【0157】
まず、ブレンドを行う場合について説明する。
図19に、第5実施形態における撮影条件取得部322の詳細な構成例を示す。撮影条件取得部322は、動きベクトル検出部601と動きベクトル整列部602と動きベクトル平均部603と明るさ変化量検出部604と種類情報取得部605とを含む。なお、ノイズ低減処理部320及び画像合成部325の構成は
図5、
図11の第1実施形態と同じである。
【0158】
種類情報取得部605は、白色光画像か狭帯域光画像かを識別するための種類情報を制御部390から取得する。種類情報は、外部I/F部500によりユーザーが狭帯域フィルター290を挿入した場合に制御部390が出力するトリガー信号である。例えば、制御部390は、白色光画像の場合は“0”をトリガー信号として出力し、狭帯域光画像の場合は“1”をトリガー信号として出力する。種類情報取得部605は、画像合成部325と接続されており、種類情報を画像合成部325に転送する。
【0159】
画像合成部325は、撮影条件取得部322から取得した種類情報に応じたパラメーターと類似度からブレンド率αを算出し、そのブレンド率αに基づいてブレンド処理を行う。
【0160】
具体的には、メモリー250は、白色光画像に対応するブレンド率BLEND_WILと狭帯域画像に対応するブレンド率BLEND_NBIを保持している。BLEND_NBI、BLEND_WILは0以上1以下であり、BLEND_NBIはBLEND_WILよりも大きい値を持つ。
【0161】
ブレンド率決定部611は、撮影条件取得部322から種類情報を取得し、撮影条件に関するブレンド率BLEND_CONDITIONを下式(29)により算出する。
【数29】
【0162】
BLEND_IMAGETYPEは、画像の種類に関するブレンド率である。ブレンド率決定部611は、下式(30)に示すように、トリガー信号TS=0の場合には、白色光画像に対応したブレンド率BLEND_WLIをブレンド率BLEND_IMAGETYPEとして設定する。一方、トリガー信号TS=1の場合には、狭帯域光画像に対応したブレンド率BLEND_NBIをブレンド率BLEND_IMAGETYPEとして設定する。
【数30】
【0163】
ブレンド処理部612は、上記のようにして設定したブレンド率BLEND_CONDITIONを上式(9)に代入してブレンド率αを求め、上式(17)により時間方向NR画像と空間方向NR画像をブレンドする。
【0164】
次に、選択を行う場合について説明する。撮影条件取得部322及びノイズ低減処理部320の構成はブレンドを行う場合と同じである。また、画像合成部325の構成は
図16の第3実施形態と同じである。
【0165】
メモリー250は、白色光画像に対応する値VAL_WLIと狭帯域画像に対応する値VAL_NBIを保持している。ただし、VAL_NBIはVAL_WLIよりも大きい値を持つ。
【0166】
閾値決定部621は、撮影条件取得部322から種類情報を取得し、撮影条件に関する値CONDITION_VALを下式(31)により算出する。
【数31】
【0167】
VAL_IMAGETYPEは画像の種類に関する値である。閾値決定部621は、下式(32)に示すように、トリガー信号TS=0の場合には、白色光画像に対応した値VAL_WLIを値VAL_IMAGETYPEとして設定する。一方、トリガー信号TS=1の場合には、狭帯域光画像に対応した値VAL_NBIを値VAL_IMAGETYPEとして設定する。
【数32】
【0168】
閾値決定部621は、上記のようにして設定した値CONDITION_VALを上式(23)に代入して閾値mSAD_TH’を求め、上式(25)により時間方向NR画像と空間方向NR画像のいずれかを選択する。
【0169】
以上の第5実施形態によれば、撮影条件取得部322は、撮像画像の種類を撮影条件として取得する。そして、画像合成部325は、撮像画像の種類が第1の種類である場合と、撮像画像の種類が第2の種類である場合とで、合成度合いを変更する。
【0170】
具体的には、第1の種類は、白色の波長帯域における情報を有した白色光画像であり、第2の種類は、特定の波長帯域における情報を有した特殊光画像(狭帯域光画像)である。そして、画像合成部325は、撮像画像の種類が特殊光画像である場合には、撮像画像の種類が白色光画像である場合に比べて、第1画像(時間方向NR画像)の合成度合いを低くすると共に第2画像(空間方向NR画像)の合成度合いを高くする。
【0171】
このように、画像の種類に応じて異なる合成度合いで合成処理(ブレンド処理又は選択処理)を行うことで、残像が発生しやすい画像の種類である場合であっても時間方向NR画像の合成度合いを下げて、残像を抑制できる。
【0172】
具体的には、白色光画像の場合は、第1実施形態で設定されたブレンド率や閾値を用い、狭帯域光画像の場合は、白色光画像と比べてノイズ量が増加し、差分平均値mSADによる判定精度が低下してしまうことを考慮してブレンド率や閾値を設定する。即ち、白色光画像と比べて、空間方向NR画像を用いる割合を増やすことで、最終的なNR画像において残像を抑制できる。
【0173】
また第5実施形態によれば、特定の波長帯域は、白色の波長帯域(例えば380nm〜650nm)よりも狭い帯域である(NBI:Narrow Band Imaging)。例えば、白色光画像及び特殊光画像は、生体内を写した生体内画像であり、その生体内画像に含まれる特定の波長帯域は、血液中のヘモグロビンに吸収される波長の波長帯域である。例えば、このヘモグロビンに吸収される波長は、390nm〜445nm(第1の狭帯域光)、または530nm〜550nm(第2の狭帯域光)である。
【0174】
これにより、生体の表層部及び、深部に位置する血管の構造を観察することが可能になる。また得られた信号を特定のチャンネル(G2→R、B2→G,B)に入力することで、扁平上皮癌等の通常光では視認が難しい病変などを褐色等で表示することができ、病変部の見落としを抑止することができる。なお、390nm〜445nmまたは530nm〜550nmとは、ヘモグロビンに吸収されるという特性及び、それぞれ生体の表層部または深部まで到達するという特性から得られた数字である。ただし、この場合の波長帯域はこれに限定されず、例えばヘモグロビンによる吸収と生体の表層部又は深部への到達に関する実験結果等の変動要因により、波長帯域の下限値が0〜10%程度減少し、上限値が0〜10%程度上昇することも考えられる。
【0175】
7.ソフトウェア
以上に説明した実施形態では、例えば、画像処理装置を構成する各部をハードウェアで構成してもよいし、或は、撮像画像に対してプロセッサーが各部の処理を行う構成としてもよい。例えば、プロセッサーがプログラムを実行することによって画像処理装置をソフトウェアとして実現することとしてもよい。或は、画像処理装置の各部が行う処理の一部をソフトウェアで構成することとしてもよい。ソフトウェアとして実現する場合、情報記憶媒体に記憶されたプログラムが読み出され、読み出されたプログラムをプロセッサーが実行する。
【0176】
ここで、プロセッサーは、例えばCPUやMPU、DSP、GPU等の汎用のプロセッサーであってもよいし、ASIC等の専用に設計されたプロセッサーであってもよい。即ち、プロセッサーは、処理を記述したプログラムを外部から読み込んで実行する汎用のプロセッサーであってもよいし、その処理を専用に行う回路を予め組み込んだ専用のプロセッサーであってもよい。また、プロセッサーは1つのチップで構成されてもよいし、複数のチップを組み合わせて構成されてもよい。
【0177】
また、情報記憶媒体(コンピューターにより読み取り可能な媒体)は、プログラムやデータなどを格納するものである。情報記憶媒体は、CD−ROMやUSBメモリーの他、MOディスクやDVDディスク、フレキシブルディスク(FD)、光磁気ディスク、ICカード等を含む「可搬用の物理媒体」、コンピューターシステムの内外に備えられるHDDやRAM、ROM等の「固定用の物理媒体」、モデムを介して接続される公衆回線や、他のコンピューターシステム又はサーバーが接続されるローカルエリアネットワーク又は広域エリアネットワーク等のように、プログラムの送信に際して短期にプログラムを記憶する「通信媒体」等、コンピューターシステムによって読み取り可能なプログラムを記録するあらゆる記録媒体を含む。
【0178】
即ち、プログラムは、上記の記録媒体にコンピューター読み取り可能に記録されるものであり、コンピューターシステム(操作部、処理部、記憶部、出力部を備える装置)は、このような記録媒体からプログラムを読み出して実行することで画像処理装置を実現する。なお、プログラムは、コンピューターシステムによって実行されることに限定されるものではなく、他のコンピューターシステム又はサーバーがプログラムを実行する場合や、これらが協働してプログラムを実行するような場合にも、本発明を同様に適用することができる。
【0179】
以上、本発明を適用した実施形態およびその変形例について説明したが、本発明は、各実施形態やその変形例そのままに限定されるものではなく、実施段階では、発明の要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上記した各実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、画像処理装置や内視鏡装置、画像処理方法(画像処理装置の作動方法、内視鏡装置の作動方法)等の各実施形態や変形例に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態や変形例で説明した構成要素を適宜組み合わせてもよい。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能である。また、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。