【文献】
"Final draft ETSI EN 302 755 V1.3.1 (2011-11)",[online],2011年11月,pages.1-24, 52-76, 85-105, 153-162, 189,[平成29年1月6日検索], インターネット,URL,http://www.etsi.org/deliver/etsi_en/302700_302799/302755/01.03.01_40/en_302755v010301o.pdf
【文献】
生岩量久(外1名),「OFDM技術とその適用」,日本,株式会社コロナ社,2010年 9月17日,初版,第108〜110頁,ISBN:978-4-339-00815-9
(58)【調査した分野】(Int.Cl.,DB名)
前記構成可能な部分は、現在論理チャンネルの現在論理スーパーフレームに含まれた論理フレームの数、前記現在論理スーパーフレームに含まれた各論理フレームのサイズを指示するフィールド、前記現在論理スーパーフレームの最初の論理フレームのインデックスを指示するフィールド、前記現在論理スーパーフレーム内で該当PLPのセルを伝達する2個の論理フレーム間に位置した論理フレームの数を指示するフィールドのうちの少なくとも一つを含むことを特徴とする請求項1に記載の方法。
前記構成可能な部分は、現在論理チャンネルの現在論理スーパーフレームに含まれた論理フレームの数、前記現在論理スーパーフレームに含まれた各論理フレームのサイズを指示するフィールド、前記現在論理スーパーフレームの最初の論理フレームのインデックスを指示するフィールド、前記現在論理スーパーフレーム内で該当PLPのセルを伝達する2個の論理フレーム間に位置した論理フレームの数を指示するフィールドのうちの少なくとも一つを含むことを特徴とする請求項5に記載の方法。
前記構成可能な部分は、現在論理チャンネルの現在論理スーパーフレームに含まれた論理フレームの数、前記現在論理スーパーフレームに含まれた各論理フレームのサイズを指示するフィールド、前記現在論理スーパーフレームの最初の論理フレームのインデックスを指示するフィールド、前記現在論理スーパーフレーム内で該当PLPのセルを伝達する2個の論理フレーム間に位置した論理フレームの数を指示するフィールドのうちの少なくとも一つを含むことを特徴とする請求項9に記載の装置。
前記構成可能な部分は、現在論理チャンネルの現在論理スーパーフレームに含まれた論理フレームの数、前記現在論理スーパーフレームに含まれた各論理フレームのサイズを指示するフィールド、前記現在論理スーパーフレームの最初の論理フレームのインデックスを指示するフィールド、前記現在論理スーパーフレーム内で該当PLPのセルを伝達する2個の論理フレーム間に位置した論理フレームの数を指示するフィールドのうちの少なくとも一つを含むことを特徴とする請求項13に記載の装置。
【発明を実施するための形態】
【0019】
以下、本発明の望ましい実施形態を添付の図面を参照して詳細に説明する。
【0020】
添付の図面を参照した下記の説明は、特許請求の範囲の記載及びこれと均等なものの範囲内で定められるような本発明の実施形態の包括的な理解を助けるために提供するものであり、この理解を助けるための様々な特定の詳細を含むが、唯一つの実施形態に過ぎない。従って、本発明の範囲及び趣旨を逸脱することなく、ここに説明する実施形態の様々な変更及び修正が可能であるということは、当該技術分野における通常の知識を有する者には明らかである。また、当業者に良く知られている機能や構成に関する具体的な説明は、明瞭性と簡潔性のために省略する。
【0021】
次の説明及び請求項に使用する用語及び単語は、辞典的意味に限定されるものではなく、発明者により本発明の理解を明確且つ一貫性があるようにするために使用する。従って、特許請求の範囲とこれと均等なものに基づいて定義されるものであり、本発明の実施形態の説明が単に実例を提供するためのものであって、本発明の目的を限定するものでないことは、本発明の技術分野における通常の知識を持つ者には明らかである。
【0022】
本願明細書に記載の各要素は、文脈中に特に明示しない限り、複数形を含むことは、当業者には理解できるものである。したがって、例えば、コンポーネント表面(a component suRFace)”との記載は、1つ又は複数の表面を含む。
【0023】
本発明の実施形態は、例えば2世代地上波(2nd generation terrestrial:DVB-T2)システムに基づいたデジタルビデオブロードキャスティング次世代携帯用(Digital Video Broadcasting-Next Generation Handheld:DVB-NGH)標準のコンテキストで説明される。
【0024】
しかしながら、これは、単なる一例であり、他の実施形態が他の無線ブロードキャストシステムに関連され、実施形態は、デジタルビデオ信号の送信の使用に限定されないことを理解することができる。
【0025】
本発明の一部実施形態では、データは、直交周波数分割多重化(Orthogonal Frequency-Division Multiplexing:OFDM)を使用して送信される。下記のような実施形態では、物理階層パイプ(PLP)でデータの送信に関連するが、本発明は、このような配列のみに限定されることなく、他のタイプのデータストリームが使用され得る。
【0026】
図2は、本発明の実施形態によるデータの送信に使用されるフレーム200の一例を示す。フレーム200は、プリアンブルセクション202とデータセクション204を含み、プリアンブルセクション202は、シグナリング部分(signaling portion)、“P1”206、“L1_pre”208、“L1-Config”210、“L1-Dyn”212、“L1-Dynamic Extension”214、及びCRC(Cyclic Redundancy Check)216、及び“L1 Padding”218を含む。データセクションは、PLPで送信されるデータのようなペイロードデータを伝達し、
図1に示されていないが、データセクション204は、一般的に他のタイプのペイロードデータを送信する複数の部分を含む。
【0027】
一般に、P1シグナリング部分206は、プリアンブルを識別するデータを含む。L1_Preシグナリング部分208は、一般的にプリアンブルの残り部分を受信するために必要となる変調及び符号化方式に少なくとも関連するシグナリング情報を含む。
【0028】
上記したように、L1-Configシグナリング部分210は、所定のスーパーフレームの各フレーム200に対して有効な情報を伝達し、一般的にスーパーフレームの各フレームに対して同一であり、L1-Configシグナリング部分210により伝達される情報は、スーパーフレーム内で伝達される複数のPLPを表すデータアイテム、あるいは関連したPLPにより使用される変調タイプのような構成データを含む。さらに、L1-Configシグナリング部分210で伝達される構成データアイテムの例は、下記のように説明される。ここで、使用される用語“構成データアイテム”は、例えば所定のPLPに関連して与えられたフレームのシグナリング部分に含まれるすべての構成データを称し、あるいは例えば、このデータの一部分を称することができる。
【0029】
上記したように、L1-Dynシグナリング部分212は、フレームごとに変更される情報を伝達し、フレーム200内のPLPを復号化することに関連する。例えば、L1-Dynシグナリング部分212は、スーパーフレーム内のフレーム200のインデックス及び/又は一例としてPLPの開示アドレスを含むことができる。
【0030】
L1-Dynamic Extensionシグナリング部分214は、他の部分に含まれていない追加的なシグナリング情報の包含に対して許与する。CRC部分216は、受信器で送信エラーの検出のためのCRCコードを含む。L1 Padding部分218は、可変長フィールドであり、CRCフィールドの次に挿入されてL1-postシグナリングの複数ののLDPC(Low Density Parity Check)ブロック(すなわち、Preシグナリング部分208の次の部分)は、L1-postシグナリングが複数のブロックにセグメントされ、これらブロックが別途に符号化される場合に同一の情報サイズを有することを保証する。
【0031】
プリアンブル202の異なるシグナリング部分は、送信のために符号化され、あるいは別途に符号化され得る。例えば、L1-Configシグナリング部分210は、L1-Dyn部分212と共に符号化され、あるいは別途に符号化され得る。
【0032】
上記したように、データセクション204は、PLPで配列されたデータを伝達する。しかしながら、各PLPは、フレーム200ごとに必ずしもマッピングされる必要はないことがわかる。
【0033】
本発明の実施形態において、異なる反復長は、異なるタイプの構成データアイテムに対して設定され、それによって異なるタイプの構成アイテムが複数のフレームを含むフレーム構造内で異なる長さに従って反復される。
【0034】
図3Aは、本発明の一実施形態による異なる構成データアイテムPnmがフレーム構造300の各フレームで送信されるn個のフレームを含むフレーム構造300の一例を示す。
図3Aは、各フレームのL1-Configシグナリング部分210のデータを示す。フレームの他の部分は、便宜上省略する。
【0035】
L1-Configシグナリング部分210に含まれているデータは、定数データ(constant data)302と構成データ304を含む。定数データ302は、任意の特定PLPに対して独立的な構成情報を含む。一般的に、定数データ302は、時間周波数スライス(Time Frequency Slicing:TFS)アイテム、未来拡張フレーム(Future Extension Frame:FEF)シグナリング情報アイテム、及び/又は各フレームで送信されることが要求される補助ストリーム(auxiliary stream)情報アイテムを含む。
【0036】
構成データ304は、各々1個以上のPLPに関連した構成データアイテムを含み、その構成データアイテムに関連する1個以上のPLPを受信するのに使用するために存在する。構成データアイテムは、異なるタイプの構成データアイテムの各々のために設定される異なる反復長を有する、異なるタイプ304a,…,304Nに分割される。ここで、使用される表示において、Pnmは、反復長nを有する構成データアイテムを表し、それによって構成データアイテムはnフレームごとに反復され、まずフレームmで送信される。
図3Aに示されていないが、フレームは、またダミーPLPに関連するダミーデータのような追加データを含むことができる。このデータには、反復長が割り当てられることができ、それについては以下に具体的に説明する。
【0037】
したがって、
図3Aの実施形態において、構成データアイテムP
11は、フレームごとに反復され、構成データアイテムP
21はフレーム1,3,5,…で反復され、構成データアイテムP
22はフレーム2,4,6,…で反復される。図示した実施形態において、最低反復長の集合は、nフレームごとに反復される構成データアイテムP
Nmに対するものである。したがって、反復長nは、反復長nを有する一つのタイプの構成データアイテムが反復される前にフレーム構造で連続して後続するフレーム(n-1)を定義する。
【0038】
したがって、各構成データアイテムは、フレーム構造300で少なくとも1回含まれる。しかしながら、全構成データアイテムがフレーム構造300の各フレームで反復されないため、各フレームで送信されるように要求されるデータがほとんどなく、すべての構成データアイテムがフレームごとに送信される従来技術の方法に比べてシグナリングオーバーヘッドの側面で節約することができる。
【0039】
さらに、異なる反復長が異なるタイプの構成データアイテムに対して設定されるため、受信器で、例えば初期化又はチャンネル変更のイベントで発生する復号化での遅延(“ザッピング(zapping)”遅延)は、例えば、所定の構成データアイテムにPLPのサービス要求事項に従って制御できる(nフレームごとに反復される構成データアイテムを受信する場合の平均遅延は、各フレーム長のn/2倍となる)。したがって、長い遅延が望ましくないPLPに関連した構成データアイテムは、遅延が許容されるPLPに関連する構成データアイテムより低い反復長が割り当てられる。
【0040】
一部の場合に、同一のサービスの異なる部分に関連したデータを伝達する異なるPLPに対して異なる反復長を設定することが望ましく、それによって、例えばサービスの基本バージョンは、実際に使用可能になるサービスの向上したバージョンを有し、最小期待遅延が提供され得る。サービスの基本バージョンは、例えば同一のサービスの多重入力多重出力(Multiple-Input and Multiple-Output:MIMO)構成を使用する向上したバージョンを有する単一入力単一出力(Single-Input and Single-Output:SISO)構成を使用することができる。スケーラブルビデオ符号化(Scalable Video Coding:SVC)方式を使用する送信の場合において、上記方式の基本階層を受信するための構成データアイテムは、上記方式の向上した階層を受信するための構成データアイテムより高い反復長で送信され、それによって受信器は、初期にベースストリームを復号化し、ユーザーに送信を表示でき、向上した階層に関連する構成データアイテムを待機する必要なしに、直ちにベース階層に対する構成データアイテムが受信されたことを表示することができる。
【0041】
図3Aに示すフレーム構造300は、N個のフレーム(送信に対して最も長い反復長と同一の個数)のみを含むが、本発明の実施形態により、送信されるデータによってフレーム構造の長さが制限されないことを理解することができる。例えば、一部の実施形態では、フレーム構造の長さがすべてのフレーム反復長の最小公倍数と同一であることもある。フレーム構造のフレームは、スーパーフレームで配列され得る。送信に対して設定される最大反復長又は最大サイクル長は、スーパーフレームの長さがNと同一であり、あるいはNの倍数と同一であるように選択することができる。
【0042】
図3Bは、本発明の一実施形態により、フレームのL1-Configシグナリング部分210の望ましい該当データサイズを有する定数データ302と構成データ304の一例を示す表である。特に、定数データ302は、各フレームに含まれている構成データ304に対するPLPの個数を表すデータアイテム“Num_PLP_config”302aを含む。構成データ304は、多様な構成データアイテムを含む。“構成データアイテム”は、構成データ内の単一フィールドに含まれているデータ又は関連フィールドの集合に含まれているデータに関連することに留意しなければならない。この実施形態で、PLPの識別子は、構成データアイテム“PLP_ID”306で識別される。一実施形態による新たなフィールドで、構成データアイテム“L1Config_Repetition_Length”308は、識別されたPLPに関連する構成データアイテムの反復長を表す。ここで、新たなフィールドとして示されるが、一部実施形態では、“L1Config_Repetition_Length”308は、“Rserved_1”フィールドのような拡張フィールドに含まれる。
【0043】
本発明の一部実施形態では、構成データアイテムは、その反復長に基づいて送信に対して整列され、それによって低い反復長を有する構成データアイテムは、より高い反復長を有する構成データアイテム前に送信される。同一の反復長を有する構成データアイテムは、また構成データアイテムが関連するPLPのPLP_ID306の順に送信されるように整列でき、例えば、構成データアイテムは、昇順に整列することができる。予想可能な方式を使用して構成データアイテムを整列することによって、受信器は、連続して関連フレームで送信される構成データアイテムに関連したPLPを予測でき、それに関しては以下により詳細に説明する。
【0044】
<第1の実施形態による送信方法>
図4は、本発明の一実施形態による異なるタイプの構成データアイテムを配列する第1の実施形態による方向を示すフローチャートである。ステップS400で、所定の反復長nに対して、所望の反復長nを有するQ
n個の割り当てられないPLPの集合(ここで、S
nと称する)が決定される。上記のように、所望の反復長は、、PLPの各々に関して、ネットワークオペレータにより設定されるサービス要求事項の識別に基づいて決定することができる。
【0045】
ステップS402で、Q
nがnと同一であるか、あるいはnの倍数と同一であるかが決定される(すなわち、nが4である場合、Q
Nが4,8,12,…であるか、あるいは4の倍数でない数字であるかを判定する)。Q
nがn、あるいはその倍数と同一でないと判定される場合、n+1の所望の反復長を有するPLPに関する構成データは、集合S
nに追加され、それによってQ
nの値はステップS404で1だけ増加する。このステップは、n+1の反復長を要求するPLPに対するサービスが低下を体験しないという観察に基づいて遂行され、nに反復長を減少させることによって改善される。ステップS404以後に、プロセスは、ステップS402に戻り、ステップS402及びS404は、Q
nの値がn又はnの倍数と同一に決定されるまで反復される。
【0046】
ステップS402で、Q
nがn又はnの倍数と同一であると判定される場合、反復長nで該当する構成データアイテムが送信されるPLPの個数Pnは、ステップS406でQ
nに設定される。すなわち、Snに含まれている構成データアイテムは、Qnがn又はnの倍数と同一である条件を満たすために
図2を参照して上記したデータタイプ204a,204b,204c,及び204Nの各々に該当するS
1,S
2,S
3,及びS
Nを有する反復長nを有するタイプであるカテゴリーとなる。
【0047】
その後、プロセスは、Snに含まれる構成データアイテムが
図2を参照して上記したデータアイテムP
nmに該当するn個のグループP
n1,…,P
nnにさらにカテゴリー化されるステップS408に進行する。一般的に、所定の値nに対してP
nmは、上記値mに関係なしに同一の個数のPLPに関連した構成データアイテムを含むように選択される。
【0048】
ステップS410では、
図4のプロセスで該当する構成データアイテムが割り当てられない(すなわち、いかなる反復長も設定されない)PLPが存在するか否かを判定する。まだ割り当てられない構成データアイテムが存在しないと決定される場合、ステップS412で、nの値は増加し、プロセスはステップS400に戻り、増加したnの値を用いて反復される。また、割り当てられる構成データアイテムが存在しない場合、このプロセスは、以前ステップで割り当てられたフレームによるデータの送信が開始されるステップS414に進行する。
【0049】
最小値と最大値との間のnの値に対してこのプロセスを増加させて反復することによって、すべてのPLPに対して構成データアイテムは、サービス品質が上記したような所望レベルに維持されることを保証する、PLPに関連したサービス要求事項に基づいて決定される所望の反復長以下の値に設定される反復長を有する異なるタイプにカテゴリー化される。同時に、所望する長さ未満の反復長を有するPLPの個数は最小に維持されるため、各フレームですべての構成データアイテムを反復しないことによって達成されるシグナリングオーバーヘッドでの節約は最大化することができる。
【0050】
上記プロセスで、ステップS404で、n+1の所望反復長を有するPLPが存在すると仮定することに留意すべきである。上記のようなPLPが存在しない場合、n+1以上の所望する反復を有するPLPに対する構成データアイテムを使用することができる。すべてのPLPに対する構成データが既に割り当てられている場合(すなわち、nが送信されるPLPに対する最大値である場合)、ダミーPLPに関連したダミー構成データアイテムの代わりに使用する。追加的に又は代替的に、一つ以上の既に割り当てられたPLPに関連した構成データは、反復されてQnがnと同一であり、あるいはnの倍数と同一であることを保証する。
【0051】
ステップS406で、構成データアイテムの各タイプを所定のタイプの各グループは、同一の個数のPLPに関連するようにn個のグループに分割することにより、フレーム構造でフレームの各々が定数個のデータアイテムを有することが、すなわち各フレームに対するシグナリング容量が定数を維持させることを保証できる。これは、スケジューリングを簡略化するという利点を有する。
【0052】
<表1>は、
図4を参照して示す方式と類似した方式で構成データアイテムを配列するアルゴリズムに対する疑似コード(pseudo-code)の一例を示す。
【0054】
図5Aは、第1の実施形態の送信方法によりデータを送信する場合、送信装置により遂行されるプロセスの一例を示す。
【0055】
ステップS500で、行(raw)L1 configシグナリングデータの形態となり得る構成データアイテムが生成される。ステップS502で、送信装置は、分割処理(partitioning)が可能であるか否か、すなわち第1の実施形態の送信方法による送信方法が使用されるか否かを判定する。送信方法が使用されないと判定される場合、プロセスは、構成データアイテムが既存の方法別に、フレームごとに送信に対してスケジューリングされるステップS504に進行する。その後、構成データアイテムは、ステップS506で、送信装置のフレーム生成器によりフレーム構造(サイクル)のフレームにより生成され、その次に送信される。
【0056】
ステップS502で、第1の実施形態の送信方法による方法が遂行されると判定される場合、このプロセスは、送信装置が送信される各PLPに対する反復長を決定するステップS508に進行する。これは、
図4を参照して上記したような方法によって遂行できる。
【0057】
ステップS510で、送信装置は、送信される各PLPに対して、サイクル内で位置及び反復パターンを決定する。例えば、反復長n=2のPLPに対する構成データアイテムが6個のフレームを含むサイクルの第1、第3、及び第5のフレームに含まれると判定される。
【0058】
ステップS512で、送信装置は、各PLPに対する構成データアイテムをスケジューリングする。ステップS514で、送信装置は、例えば
図2に示したように、サイクルを介して構成データアイテムを配列する。その後、構成データアイテムは、ステップS516で、送信装置のフレーム生成器によりサイクルのフレームに生成されてから送信される。
【0059】
図5Bは、第1の実施形態の送信方法により、送信されたデータを受信する場合に受信器装置により遂行されるプロセスの一例を示す。
【0060】
プロセスは、ステップS520で、受信器装置がデータを受信するスーパーフレームの第1のサイクルの第1のフレームで受信されたL1構成可能なシグナリングを復号化するステップS520で開始される。ステップS522で、フレームの定数データ202が抽出される。
【0061】
ステップS524で、受信器装置は、分割処理が可能であるか否か、すなわち第1の実施形態の送信方法による送信方法が使用されるか否かを判定する。送信方法が使用されないと判定される場合、受信器装置は、各PLPに該当する構成データアイテムがサイクルのフレームごとに送信されると判定する。したがって、受信器装置は、ステップS526に進行し、一つ以上の所望するPLP、すなわち受信器装置がデータを受信することに関するサービスに該当する一つ以上のPLPを抽出する。その後、受信器装置は、抽出された構成データアイテムが一つ以上の所望するPLPで送信されるデータを復号化するために使用されるステップS528に進行する。受信器装置は、構成データアイテムが基本方法別に、毎フレームで送信されるようにスケジューリングされるステップS526に進行する。構成データアイテムは、ステップS506で、送信装置のフレーム生成器によりサイクルのフレームに生成され、その次に送信される。
【0062】
ステップS524で分割処理が可能であると判定される場合、プロセスは、一つ以上のPLPを現在処理されているフレームで使用可能であるか否かを判定するステップS530に進行する。関連した構成データアイテムが使用可能でないと判定される場合、プロセスは、ステップS536に進行し、これについて、下記のように具体的に説明する。
【0063】
関連構成データアイテムが使用可能であると判定される場合、受信器装置は、一つ以上の所望するPLPに該当する構成データアイテムが抽出されるステップS532に進行する。その後、抽出された構成データアイテムは、ステップS534で一つ以上の所望するPLPを復号化するために使用される。受信器装置は、スーパーフレームの第1のサイクルで、すべてのフレームが受信されるか否かを判定するステップS536に進行する。サイクルですべてのフレームが受信されないと判定される場合、受信器装置は、ステップS538で、サイクルの次のフレームで受信されるL1構成可能なデータを復号化する。プロセスは、上記したS530に戻る。ステップS530〜S538は、サイクルですべてのフレームに対して反復的に繰り返され、あるいはすべての要求される構成データアイテムが抽出されるまで反復することができる。
【0064】
ステップS536で、スーパーフレームの第1のサイクルですべてのフレームが受信されると判定される場合、受信器装置は、ステップS540で、反復パターンと所望するPLPに対して要求される構成データアイテムのサイクル内での位置を格納する。これは、受信器装置が連続して構成データアイテムの同一のパターンが各サイクルで反復されるという事実と結合し、受信器のエラーレートを減少させる構成データアイテムを受信するサイクル内で位置を予想することを可能にする。ステップS542に示すように、受信器装置は、所望する構成データアイテムが位置することが予想されるフレームから構成データアイテムを抽出することだけを必要とする。これは、受信器装置に対する処理ロード(processing load)を減少させ、データを受信することが不要になるサイクルの部分で受信器装置がスリープモードのように電力モードに進入することにより、電力を節約することを可能にする。
【0065】
<第2の実施形態による送信方法>
上記した第1の実施形態による送信方法において、Q
nがn又はnの整数倍と同一でない場合、一つ以上の構成データアイテムには所望する反復長より短い反復長が割り当てられる。しかしながら、一部実施形態において、すべての構成データアイテムにはQ
nがn又はnの整数倍と同一であるか否かに関係なく、所望する反復長と同一の反復長が割り当てられる。これは、フレーム別にPLPの全体個数を一定に維持させる間にフレームごとに与えられる反復長に該当するようにPLPの個数を変更させることで遂行できる。
【0066】
この実施形態において、上記フレームは、グループ又はサイクルで配列され、その各々は、すべての所望する反復長の全体最小公倍数Lと同一の個数のフレームを含む。構成データアイテムは、各フレームのL1-Config110部分のデータスロット(ここで、構成データスロットと称する)に含まれる。反復長nを有する各構成データアイテムは、各サイクルでL/n回を含み、各サイクルは送信中に反復される。各構成データアイテムがL/n回割り当てられる場合、フレーム別に割り当てられるPLPの個数は、サイクルのフレームにわたって一定でなく、(ダミーPLPに該当するダミデータアイテムのような)一つ以上の追加データアイテムは、追加データスロット(ここで、追加データスロットと称する)に追加され、それによって(ダミーPLPを含む)PLPの全体個数と該当するデータスロットの個数(すなわち、構成データスロットと追加データスロットの和)は、フレームサイクルにわたって一定である(そして、一般的に定数倍のフレームサイクルにわたって一定である)。また、この構成データスロットの配列(すなわち、フレーム及びフレームのサイクル内の位置)は、スーパーフレームの各サイクルで同一であり得る。第1の実施形態による送信方法に関して上記したように、これらの特徴は、受信器のエラーレートを減少させ、受信器装置での処理ロードを減少させ、及び/又は受信器装置が電力の節約を可能にする。
【0067】
図6Aは、本発明の一実施形態によるフレームのサイクル600で異なる反復長を有する構成データアイテムの実施形態に基づいた配列を示す。5個のPLPが所望の反復長=1を有し、7個のPLPが所望の反復長n=2を有し、10個のPLPが所望の反復長n=3を有する一例を考慮する。
図6Aにおいて、データスロットは、タイプ(すなわち、構成データスロット及び追加(ダミー)データスロット)で、データスロットに含まれているデータに関連した反復長nによって示される。データスロットに含まれるデータが関連するPLPのPLPインデックスも指示される。
【0068】
1、2、及び3の最小公倍数Lが6であるため、サイクル600に6個のフレームが存在する。
図6Aからわかるように、12個のPLPに該当する構成データアイテムは、各フレームに含まれ、すなわち、各フレームには12個のデータスロットが存在する。n=1に該当するデータスロットの個数が各フレームにわたって一定に維持する間、n=2及びn=3の各々に対する該当個数は、各フレームでデータスロットの全体量を固有に維持させる間にフレームごとに変更される。L/n回の反復される各構成データアイテムの順に11個のPLPに該当する構成データアイテムがサイクルの第6(最後)のフレームに含まれる必要があり、追加的なPLPはこのフレームに含まれ得る。
【0069】
その一方で、
図6Bは、所望の反復長の同一の初期集合を用いて、上記した第1の実施形態の送信方法によって配列される構成データアイテムを示す。この場合、いかなるダミーPLPも使用されない。その代わりに、n=3の所望する反復長を有するPLPのうちいずれか一つに対する構成データアイテムにn=2の実際反復長が割り当てられる。
【0070】
説明されたこの方法は、上記したような第1の実施形態の送信方法により提供される利点と同一の多くの利点を提供する。特に、オーバーヘッド節約が同一である。これは、
図6A及び
図6Bの実施形態により示されており、各場合に、12個のPLPに該当する構成データアイテムは、各フレーム(
図6Aの第6のフレームにダミーPLPを包含)に含まれる。
【0071】
さらに、
図4の方法とは異なり、任意の構成データアイテムに対する所望の反復長より低い反復長を割り当てることが必須ではない。これは、サービスプロバイダのサービス要求事項に従って受信長を設定するため、送信の送信器及び受信器でのプロセッシングを簡略化させることができる。この方法を実現するネットワークオペレータは、サービスプロバイダの要求事項から導出する必要がない。また、一部実施形態において、反復長は、該当するPLPの固定した特徴を有することができ、それによって現在の方法は、このような固定特性のいかなる望ましい変更も回避するようになる。
【0072】
この方法のすべての構成データアイテムが所望の反復長と同一の平均反復長で送信される間、サイクル内のフレーム間の実際区間は、一部構成データアイテムに対する個数から変わることに留意しなければならない。例えば、
図6Aで、n=3に対するPLP#4に対応する構成データアイテムは、サイクルのフレーム2で送信され、その後に2個のフレームの区間が所定のフレーム4でさらに送信される。以前の送信後に4個のフレームの区間が与えられる連続的なサイクルのフレーム2で更に送信される。しかしながら、このパターンによって反復される構成データアイテムは、所望する反復長を有する構成データアイテムのクラスタ(cluster)に維持され、構成データアイテムに関連した特性“反復長”を代替する必要がない。送信の受信器は、
図6Aに示す構成データアイテムのパターンを予測するように配列される。
【0073】
また、いずれの構成データアイテムも所望の反復長より小さい反復長で送信されないため、追加的な空間は、“追加(extra)”データを送信するために使用されるダミーPLPに対応する追加データアイテムに対する形態でフレームで有効である。そのため、特定値は、追加データアイテムを識別するために、追加データアイテムを含むフレームで識別子に割り当てられることができる。割り当てられた値を有する識別子の受信の際に、追加データアイテムが追加データを送信するために使われない“ダミー”データアイテムである場合、受信器は、追加データアイテムを廃棄でき、あるいは追加データアイテムが追加データを送信するために使用される場合に追加データアイテムを処理する。その値が追加データアイテムを識別できるPLP識別子は、フレームがL1-Config部分110で構成データアイテムとして含まれることができる。一部配列で、受信器装置は、追加データアイテムの存在を識別する特定値を要求せず、受信器装置は、サイクル内で位置の認知のみを要求できる。
【0074】
図7を参照して、本発明の第2の実施形態による送信方法に基づき、構成データアイテム及び追加データアイテムの配列を提供する方法を説明する。ここで、
図7のプロセスステップが
図6Aのように入力パラメータで実現される方法について説明する。
【0075】
ステップS700で、入力パラメータが受信され、すなわち、反復長nを有するPLPの個数P
nが受信される。
図6Aの実施形態で、P
1=5、P
2=7、及びP
3=10である。
【0076】
ステップS702で、サイクル長Lは、サイクルですべての反復長nの最小公倍数と同一である。また、パラメータNは、1より大きい反復長の個数と同一に設定される。
図6Aの実施形態で、N=2である。
【0077】
ステップS704で、サイクル別追加データスロットの個数D(例えば、ダミーPLPの個数)は、0の初期値に設定される。
【0078】
ステップS706で、値Dが反復される反復手順が開始される。ステップS708で、パラメータC
n及びD
nの値が、次のように設定される。
【0079】
C
n=ceiling(P
n/n)及び
D
n=(C
n×n)-Pn
【0080】
ステップS710で、値Dは、次のように増加する。
【0082】
ステップS708〜S710は、Dに対する全体値を獲得するために反復され、1より大きい全体値を介して加算される。
図6Aの実施形態は、次のような値が獲得される。
【0083】
C
2=4
C
3=4
D
2=1
D
3=2
D=7
【0084】
これは、反復手順を終了する。プロセスは、サイクルのフレームごとに除去されるE個の追加データスロット(ダミーPLP)及びサイクルに残っているR個の追加データスロットが、次のように決定されるステップS712に進行する。
【0085】
E=floor(D/L)及び
R=mod(D,L)
【0086】
図6Aの実施形態で、次のような値が獲得される。
【0088】
ステップS714で、初期候補行列を表す行列Aは、A
l,n=C
nのエレメントを有するサイズL×Nを有するように定義される。A
l,nの値は、候補サイクルの第1のフレームの反復長nに割り当てられたデータスロットの個数を表す。
【0089】
ステップS716で、サイクルのフレームのうち追加データスロット(ダミーPLP)の初期分散を表す行列Bは、エレメントB
l,nを有するサイズL×Nを有するように定義される。
【0090】
ここで、
B
l,n=D
n(lがn又はnの整数倍と同一である場合)、及び
B
l,n=(そうでない場合)
である。
【0091】
B
l,nの値は、候補サイクルの第1のフレームの反復長nに割り当てられた追加データスロットの個数を表す。
【0092】
図6Aの実施形態において、以下のような行列が獲得される。
【0094】
すると、プロセスは、候補サイクルから減少する追加データスロットの個数を減少させるために進行する。上記したように、Eと同一の追加データスロットの個数は、候補データスロットの個数は、候補サイクルの各フレームから除去される。これは、2ステップのプロセスで遂行され、これについて具体的に説明する。
【0095】
ステップS718で、Eより大きく、あるいはEと同一の個数の追加データアイテムを有する候補行列の各フレームに対して、Eと同一の個数のフレームは、簡単に除去できる。
図6Aの実施形態で、このステップは、次のような行列をもたらす。
【0097】
この実施形態で、nの昇順に追加データスロット(すなわち、n=3の列に優先するn=2の列から除去される追加データスロット)が除去されても、一部の場合では降順、又は任意の順序の除去も使用され得る。
【0098】
上記実施形態による行列からわかるように、候補フレームサイクルのすべてのフレームから要求される個数Eの追加データスロットを直接除去することが常に可能ではない。上記のような場合、プロセスは、E個と同一の個数の構成データスロットに対応する構成データアイテムは、追加データスロットを含む一つ以上のフレームに対してE個の追加データスロットを除去することが不可能な各フレームから除去されるステップS720に進行する。該当する個数の追加データアイテムは、構成データアイテムが除去されるフレームから除去される。
【0099】
図6Aの実施形態において、これは、シーケンスの第3のフレームに移動されるシーケンスの第1のフレームでn=3に対応する構成データアイテムと、シーケンスの第6のフレームに移動されるシーケンスの第5のフレームでn=4に対応する構成データアイテムを招く。この実施形態で獲得される最後の行列は、次のようである。
【0101】
これらの行列は、
図6Aに示す配列に該当することがわかる。この実施形態では、追加的な(例えば、ダミー)データスロットがサイクルの最終フレームに含まれ、これは、常にこの場合ではないことに留意すべきである。入力パラメータに基づいて、追加データスロットは、サイクル内の他の位置で含まれ得る。
【0102】
ステップS720の“スワッピング(swapping)”手順の完了後に、上記プロセスは、ステップS722で終了する。
【0103】
上記したプロセスに従って生成されたサイクルは、データの送信中にサイクルを反復することによって、シグナリングデータの送信のために使用することができる。
【0104】
図7を参照して説明したプロセスは、一例であるだけで、上記した多様なステップの詳細は変更できる。例えば、上記した実施形態で、パラメータNの値は、1より大きい反復長の個数と同一に設定される。1の反復長を有する構成データアイテムが各フレームで反復されるため、同一の再配列が不要であり、上記したようなプロセスでn=1の構成データアイテムを含むことは不要である。しかしながら、一部実施形態で、Nの値はn=1を含む反復長の個数と同一に設定され、それによって一連のステップは代替される。
【0105】
図8Aは、第1の実施形態の送信方法によりデータを送信する場合、送信装置により遂行されるプロセスの一例を示す。
【0106】
図8Aを参照すると、ステップS800〜S806は、各々
図5Aに関して上記したステップS500〜S506に対応する。しかしながら、本実施形態では、ステップS508に対応するステップは省略できる。これは上記したように、第2の実施形態による送信方法で、すべての構成データアイテムが該当する所望の反復長が割り当てられるためである。その代りに、プロセスは、送信装置がサイクル内の位置と送信される各PLPに対する反復パターンを決定するステップS810に進行する。このステップは、以上に説明したようなステップS510に対応する。
【0107】
上記したように、第2の実施形態による送信方法において、一つ以上の追加データアイテムが送信されるため、ステップS811で、送信装置は、サイクルに含まれる追加データアイテムに対する位置及び反復パターンを決定する。その後のプロセッシングステップS812〜S816は、各々
図5Aに関して上記したようなステップS512〜S516に対応する。
【0108】
図8Bは、第2の実施形態の送信方法により送信されたデータを受信する場合、受信器装置により遂行されるプロセスの一例を示す。ステップS820〜S834は、
図5Bに関連して説明したステップS520〜S534に各々対応する。
【0109】
しかしながら、
図5Bの実施形態とは異なり、ステップS830で、現在処理されるフレームで一つ以上の所望するPLPに対して構成データアイテムが存在しないと判定される場合、あるいはステップS834で一つ以上の所望するPLPを復号化した後に、受信器装置は、上記したような追加データアイテムを含む追加データシグナリングが現在処理されるのに使用可能であるか否かを決定するように進行する。上記のようなデータシグナリングが使用可能である場合、ここに含まれている追加データアイテムは、ステップS844で抽出及び使用される。その後、プロセスは、
図5Bに関して説明したステップS536に対応するステップS836に進行する。連続的なステップS838〜S842は、
図5Bに関して説明したようなステップS538〜S542に各々対応する。
【0110】
ステップS835で、追加データシグナリングが使用可能でないと判定される場合、受信器装置は、ステップS844を遂行せずに、ステップS836に直接進行する。
【0111】
<第3の実施形態による送信方法>
以上に説明したような第1及び第2の実施形態による送信方法において、整数個のPLPに関連したすべての要求される構成データアイテムは、各フレームに含まれることができる。これは、所定フレームのL1-configシグナリング部分110で伝達される所定のPLPに関連するデータがセルフ復号化が可能なように保証し、これについて以下に具体的に説明する。この方法で、所定の反復長の構成データアイテムに割り当てられたL1-シグナリング部分のサイズは、関連部分に含まれているデータスロットの個数により決定され、データスロットは、一例として実際のPLPに対応する構成データアイテム、あるいはダミーPLPに対応するダミーデータにより占有される。
【0112】
しかしながら、本発明の一部実施形態で、データ構成アイテムは、フレームのシーケンス各々に対して一定の長さに維持される所定の反復長を有する構成データアイテムに割り当てられるフレームの各部分のビットサイズでシーケンスの複数のフレームにわたって分割される。上記のような実施形態で、各反復長nに対して、反復長nを有する構成データアイテムのビットサイズの全体和Tが決定され、n単位で分割される。nの各値に対して、T/nと同一のデータの量は、シーケンスの各フレームに割り当てられる。ここで、Tはnで分割できず、追加“ダミー”データ、例えば一つ以上のゼロが関連部分でシーケンスの一つ以上のフレームに含まれ、それによって与えられたnの値に割り当てられるフレームの部分がフレームのシーケンスにわたって一定に維持される。
【0113】
図9は、本発明の実施形態によるフレームシーケンスに配列される構成データアイテムの一例を示す。
図9では、シーケンスで3個のフレームのL1_pre部分208及びL1-Config210部分のみを示す。しかしながら、一般的にフレームは
図2に関して上記した他の部分の一部又は全部をさらに含むことがわかる。
【0114】
この実施形態において、L1-Config部分210は、対応する反復長を有する構成データアイテムを送信するためのn=1部分210a、n=2部分210b、及びn=3部分210cを含む。
【0115】
この実施形態で、反復区間n=1で送信される全体ビットの個数は200ビットと仮定し、n=2でその個数は280ビットと仮定し、n=3でその個数は400ビットと仮定する。nの各値に対して構成データアイテムは、上記したように分割される。n=1に対して、200ビットの構成データは、シーケンスの各フレームのn=1部分210aで送信される。n=2に対して、140ビットの構成データは、シーケンスの各フレームのn=2部分210bで送信される。n=3に対して、400がが3で分割可能でないため、134ビットの構成データは、シーケンスの第1及び第2のフレームのn=3部分210cに含まれ、132ビットは、上記シーケンスの第3のフレームのn=3部分210cに含まれる。n=3部分210cの長さがシーケンスにわたって一定であることを保証するため、2個のゼロ210dは、シーケンスの第3のフレームのn=3部分の最後に追加される。
【0116】
受信の際に、構成データアイテムが正確に分析され、ゼロを除去させるために、シーケンスのフレームのL1-Config部分の定数部分(定数データ302を包含)は、該当する部分に含まれている(もしあれば)ゼロの個数のインジケータだけでなく、L1-Config部分210の上記した部分210a,210b,210cの各ビットサイズのインジケータを含むことができる。L1_Pre部分208は、例えば、シーケンスの一つ以上のフレームの定数部分のビットサイズのインジケータを含むことができる。
【0117】
上記した実施形態において、n=3のデータに対して要求されるゼロ210dは、シーケンスの第3のフレームのn=3部分210cの最後に含まれる。しかしながら、一部の実施形態で、ゼロ(あるいは他のダミーデータ)は、シーケンスの他の所定の位置に含まれることができる。受信器が構成データアイテムを処理する前に指示されるゼロの個数を簡単に廃棄できるため、シーケンスで予め定義されている位置にダミーデータを含むことによって、送信されたデータの受信時に処理を簡略化する。
【0118】
第3の実施形態による送信方法は、第1及び第2の実施形態の送信方法より送信オーバーヘッドで一層多くの節約を可能にする。これは、本発明の方法で、(時々、第1の実施形態による送信方法の場合のように)所望の反復長より長い反復長を割り当てることが不要であり、あるいは(時々、第2の実施形態による送信方法の場合のように)ダミーPLPに対応する追加データアイテムを追加することが不要であるためである。
【0119】
上記したプロセスは、プロセスを遂行するために配列される送信装置により遂行されることがわかる。送信装置は、フレーム構造に符号化されるデータストリーム、例えば、異なるデジタルビデオブロードキャストチャンネルのようなデータストリームを受信する入力通信インターフェースと、上記したような所望の反復長のようなデータを格納できるデータ格納デバイスと一緒にステップを処理するプロセッサ又はプロセッサの集合を含むことができる。また、送信装置は、一般的に無線でデータを送信する出力通信インターフェースを含むことができる。
【0120】
同様に、送信装置により送信されるデータは、一般的に一つ以上の受信器装置により受信され、この受信器装置の各々は、データを無線で受信する入力通信インターフェースと、データ格納手段と共に受信される信号を処理するプロセッサ、あるいはプロセッサの集合と、ビデオディスプレイ、オーディオ送信器、及び/又は一つ以上の選択される、復号化されたデータストリームを出力する出力通信インターフェースを含む。
【0121】
上記したように、フレーム構造で送信されるデータを受信する場合、受信器装置は、例えば、受信器装置でチャンネルの変化に応答して受信される異なるPLPを選択し、異なるPLPはこ異なる反復長に対応する。受信器装置は、選択された各PLPに対応する構成データアイテムを受信し、受信した該当構成データアイテムを用いて対応するPLPを受信する。
【0122】
以上に説明した第2の実施形態による送信方法の場合のように、ダミーPLPに対応する追加データがフレーム構造の一つ以上のフレームに含まれている場合に、一つ以上の受信フレームは、上記したように、ダミーPLP識別子を含むことができる。この場合、受信器装置は、PLP識別子を分析し、PLP識別子に関連した追加データを識別し、追加データを処理する。一部の場合に、これは、追加データを簡略に廃棄することを含むことができる。他の場合に、上記したように、追加データは、追加(extra)データが伝達されることを表す識別子値の受信時に、受信器装置が受信及び処理するように構成される追加データを含むことができる。
【0123】
上記したように、第3の実施形態による送信方法の場合に、L1-Config部分210は、異なる反復長に関連した異なる部分210a,210b,210cに分割することができる。フレーム構造の少なくとも一つのフレームは、受信器装置が受信するように配列されるこれら長さの一つ以上のインジケータを含むことができる。同一の受信時に、受信器装置は、対応するインジケータから部分210a,210b,210cのそれぞれの長さを識別し、それによって異なる部分でデータを処理することができる。
【0124】
さらに、上記のように、フレーム構造の一つ以上のフレームは、ゼロのシーケンスのようなダミー値を、例えば、一つ以上のフレームのL1-Config部分210で含むことができる。この場合、フレーム構造の一つ以上のフレームは、ゼロの個数のインジケータを含むことができ、それによって受信器装置によりゼロは廃棄することができる。
【0125】
上記したように、第1及び第2の実施形態による送信方法では、有利に、与えられるフレームのL1-configシグナリング部分210で伝達される所定のPLPに関連したデータは、セルフ復号化が可能であり、すなわち復号化の開始のためのすべての必要なデータを含み、それによって所定のPLPに関する復号化は、対応する構成データアイテムが受信されるとすぐに、開始可能である。また、所定の構成データアイテムの第1のインスタンスが一度受信及び復号化され、構成データアイテムが予測可能な方式で上記したような反復長及び/又はPLP識別子に基づいて順次に存在するため、同一の構成データアイテムの連続したインスタンスを復号化することは不要である。
【0126】
図10に示すように、各構成データアイテムがそのインスタンスが受信される第1の時間を正確に復号化することが仮定される場合、すべての構成データアイテムは、N+1個のフレーム後に復号化される。ここで、Nは、送信に対して設定される最長の反復長である。
【0127】
受信器装置のプロセッシングリソースでの負担(burden)と、構成データアイテムのインスタンスが受信されて復号化される最初の時間を減少させるため、構成データアイテムのインスタンスは連続するフレームで該当するPLPを識別して受信するために使用される格納されたインスタンスを使用する受信器装置のデータ格納手段に格納することができる。スーパーフレーム内の同一の構成データアイテムの連続的及び反復的なインスタンスは、その後に受信器によりフラグされ、デコーダにより無視されて復号化されないことがある。この実施形態において、格納されたインスタンスは、構成データアイテムの反復されるインスタンスを含むフレームの次のスーパーフレーム内の連続するフレームで該当PLPを識別して受信するために使用される。
【0128】
他の実施形態において、フレーム構造300で送信される所定の構成データアイテムの各インスタンスは、受信器動作の簡単性を維持し、及び/又は復号化エラーを減少させるために復号化される。
【0129】
一部の実施形態において、受信器は、構成データアイテムが既に知られていることを指示するために一つ以上の所定値に対するソフトデコーダに関連した一つ以上の値を設定する。例えば、受信器がソフトデコーダで復号化されるデータアイテムに対するエラー訂正の際に信頼ファクタ(confidence factor)として使われるログ近似比(Log Likelihood Ratio:LLR)を生成する実施形態で、構成データアイテムの追加的で、反復されるインスタンスに対するLLRは、予め知られていることを示すためにスーパーフレームの残りの部分で+/−∞に設定することができる。
【0130】
公知の構成データアイテムは、他のデータ、L1-Configシグナリング部分210及び/又はL1-Dynシグナリング部分212に含まれているデータのような他のデータの復号化を可能にするために使用でき、受信されたデータの一部ビットが(+/−∞に設定された該当LLRにより示されているように)予め知られていることは、エラー訂正の側面で、受信されたデータの他のビットの復号化の堅固さを増加させる。
【0131】
したがって、所定の構成データアイテムがデータ(例えば、所定のフレームのデータ)の第1の集合で受信されて復号化される場合、復号化されたデータは、構成データアイテムを含むデータの追加的な集合の復号化プロセスで、知らされている構成データアイテムのビットがデータの追加的な集合に含まれている追加的なデータアイテムに関連したエラー訂正の堅固さを改善させることを可能にするために使用できる。さらに、これらデータアイテムは、フレームのL1-Configシグナリング部分210、あるいは後にL1-Configシグナリング部分210と一緒に符号化されるL1-Dynシグナリング部分212のような他のシグナリング部分で伝達されるデータアイテムを含むことができる。
【0132】
フレームがスーパーフレームに配列される場合、構成データは、スーパーフレーム別に変更できる。したがって、一部の実施形態では、受信器装置は、各サブフレームで各構成データアイテムの少なくとも第1のインスタンスを復号化する。しかしながら、構成データアイテムが、異なるスーパーフレーム間には頻繁に変更されるため、一部実施形態では、受信器装置は、各スーパーフレームで各構成データアイテムの第1のインスタンスを復号化しない。その代りに、例えば、指示は、構成データアイテムが変更されることを示すL1-Dynシグナリング部分212に含まれ、受信器装置は、この指示の受信に応答して構成データの新たなインスタンスを復号化する。指示は、その該当する構成データアイテムが変更される一つ以上のPLPを指示し、この場合、受信器装置は、指示されるPLPのために構成データアイテムを新たに復号化できる。
【0133】
上述したように、ここで説明されるデータ送信の方法は、サービスプロバイダの要求事項によってネットワークオペレータにより遂行される。
図11は、本発明の実施形態で使用されるサービスプロバイダ1100とネットワークオペレータ1102を含むシステムのコンポーネントを示す。
【0134】
図11を参照すると、サービスプロバイダ1100は、ネットワークオペレータ1102に所望の反復長のようなサービス要求事項、あるいは遅延許容のような所望する反復長が導出されるデータを含む制御データ1106とともに一つ以上のサービス1104を提供する。
【0135】
ネットワークオペレータ1102は、ネットワークゲートウェイ1108でサービスプロバイダからデータを受信する。ネットワークゲートウェイは、追加的にサービス要求事項のPLPに対するマッピングのような機能及び反復長のようなサービス特性を遂行する。
【0136】
ネットワークゲートウェイ1108は、制御データ1112と一緒に一つ以上のPLP1110の各々に関連するデータを送信器1114に送信する。制御データ1112は、反復長のようなPLP特徴を含むことができる。
【0137】
送信器1114は、例えばシグナリング、フレーム生成、及びデータの送信のような機能を遂行することができる。
【0138】
上記のような実施形態は、本発明の実施形態として理解しなければならない。また、本発明の追加的な実施形態が予想され得る。
【0139】
図12は、フレームのL1Configシグナリング部分210に含まれる定数データ302と構成データ304の他の配列を示す。
図12を参照すると、この実施形態で、PLP構成の個数は、使用されるPLPの個数より少ない個数に制限され、PLPは使用されるPLP構成(“PLPモード”)によって分類される。このような方式で、所定のPLPモードに対して共通である構成データアイテムは、所定のPLPモードの各PLPに対して別途に送信される必要がない。この実施形態で、異なるタイプの構成データアイテムは、上記したようにPLP単位で割り当てられ、あるいは異なるPLPモードに基づいて割り当てられることができる。
【0140】
図13A及び
図13Bは、フレームのL1-Configシグナリング部分210に含まれている定数データ302と構成データ304に対するもう一つの配列を示す。
【0141】
図13Aを参照すると、例えば、定数データは、L1-CONFに関連したシグナリングを有する所定のオプションが使用されるか否かを表す“オプションフラグ”データアイテム1300を含む。所定のオプションが使用される場合、オプションに関連したシグナリングフィールドはL1-CONFでシグナリングされ、そうでない場合には、オプションに関連したシグナリングフィールドは含まれない。これは、所定のオプションが使用されない場合、オーバーヘッド減少を可能にする。
【0142】
<表2>は、このフィールドにより指示される一部の異なるオプションの一例を提供する。
【0144】
特に、上記値xx1xxxxxは、本発明の実施形態によるデータの送信方法が遂行されることを指示することに注意しなければならない。これは、
図13Aでデータアイテム1302に対応する。
【0145】
“PARTITION_CYCLE_LENGTH”データアイテム1304は、現在のスーパーフレームでのすべてのPLPに対するL1-CONFのPLPループでシグナリングが完了するサイクルの長さをフレームの個数で指示する。現在のスーパーフレームですべてのPLPのPLPループのシグナリングは、一般的に正確に同一である。各PLPに対するL1-CONFのPLPループでのシグナリングは、現在スーパーフレームのL個のフレームごとに同一のフレーム位置で反復する。ここで、Lは、PARTITION_CYCLE_LENGTHにより与えられる値である。この値は、少なくとも現在のスーパーフレームでは一定に維持される。
【0146】
“PARTITION_NUM_ADD_PLP”データアイテム1306は、部分サイクルでの各フレームがPLPの各クラスタに対する整数個のPLPのシグナリングを伝達するように現在のフレームのPLPループで追加される追加シグナリングブロックの個数を指示し、以下のように具体的に説明される。
【0147】
下記のようなフィールドは、OPTIONS_FLAGフィールドが‘xx1xxxxx’と同一の場合のみに現れる。
【0148】
PLP_PARTITION_CLUSTER_IDデータアイテム1308は、PLP_IDにより識別されるPLPと関連したPLPループでシグナリングの部分クラスタを指示する。部分クラスタIDは、<表3>に定義される。
【0150】
次のようなフィールドは、PARTITION_NUM_ADD_PLPを介してループで示す。
【0151】
RESERVED_2 1310:この32ビットフィールドは、将来的な使用のために予約される。このフィールドの長さ(この場合、32ビット)は、“000”より大きいPLP_PARTITION_CLUSTER_IDの各PLPに関連したPLPループで同一の量のシグナリングを保証するために、PLPループで6個の第1のフィールド(すなわち、PLP_ID、PLP_MODE_ID、PLP_ANCHOR_FLAG、PLP_IN_BAND_A_FLAG、PLP_GROUP_ID、FIRST_LF_IDX)の長さの和と同一である。
【0152】
次のようなフィールドは、OPTIONS_FLAGフィールドが‘xxxxx1xx’と同一の場合のみに現れる。
【0153】
RESERVED_3 1312:この8ビットフィールドは、将来的な使用のために予約される。このフィールドの長さ(すなわち、8)は“000”より大きいPLP_PARTITION_CLUSTER_IDの各PLPに関連したPLPループでの同一の量のシグナリングを保証するためにPLPループでフィールドRESERVED_1の長さと同一である。
【0154】
PLP_PARTITION_CLUSTER_ID 1314:2ビットフィールドは、PLP_IDにより識別されるPLPに関連したPLPループでシグナリングの部分クラスタを表す。部分クラスタIDは、<表3>に定義される。
【0155】
<説明のための実施形態>
下記の説明は、本発明の実際の実施形態に関連され、例として提供される。
【0156】
L1-CONFのオーバーヘッドを減少させるために、L1-CONFのPLPループでシグナリングは、同一の長さの部分に分割され、それによって各フレームは、PLPループで全体シグナリングの1個の部分のみを伝達する。L1-CONFデータは、2個の部分に配列され、第1の部分は、PLP部分シグナリングを除外したL1-CONFですべてのシグナリングデータを含み、第2の部分は、PLPループでシグナリングを含む。第2の部分、すなわちPLPループでシグナリングのみが分割処理することができる。第1の部分は、スーパーフレームのフレームごとに常に現れる。
【0157】
‘xx1xxxxx’と同一のフィールドOPTIONS_FLAGの値は、L1-CONFでPLPループの分割処理が使用されることを指示する。
【0158】
分割処理が使用される場合、各フレームは、現在のスーパーフレームNUM_PLP_PER_SUPER_FRAMEで全体PLPの個数以下の値NUM_PLP_PER_FRAMEと同一の個数のPLPに関連したPLPループでシグナリングを伝達する。分割処理が使用されない場合(すなわち、OPTIONS_FLAG=‘xx0xxxxx’)、2個のフィールドNUM_PLP_PER_FRAME及びNUM_PLP_PER_SUPER_FRAMEは、同一の値を有する。
【0159】
また、フレームは、PARTITION_NUM_ADD_PLPと同一の個数のダミーPLPに関連した追加シグナリングを伝達できる。和NUM_PLP_PER_FRAME+PARTITION_NUM_ADD_PLPは、現在のスーパーフレームのフレームとごに同一の量のL1-CONFシグナリングを保証するために、スーパーフレームで毎フレームに対して一定でなければならない。
【0160】
分割処理が使用される場合、スーパーフレームで毎PLPにはフィールドPLP_PARTITION_CLUSTER_IDにより指示される部分クラスタが割り当てられる。<表3>に定義されているように、PLP_PARTITION_CLUSTER_IDが“000”と同一である場合、所定のPLPと関連したPLPループでシグナリングは、現在のスーパーフレームのフレームごとに送信され、それによってその獲得のためのいかなる遅延も許容されない。ローカルサービス挿入と関連したPLP(PLP_TYPE=“011”又は“100”)は、他の(すなわち、ローカルサービス挿入でない)PLPに比べてPLPループで追加的なシグナリングフィールドを要求し、現在のスーパーフレームのフレームごとに同一の量のシグナリングを保証するために、最初の部分クラスタPLP_PARTITION_CLUSTER_ID=“000”に割り当てられる。
【0161】
上記値PLP_PARTITION_CLUSTER_IDがn(必ず0より大きい)と同一である場合、所定のPLPに関連したPLPループでシグナリングは、n個のフレーム遅延を許可し、それによってスーパーフレームで(n+1)番目のフレームごとに送信できる。
【0162】
L1-CONFの部分ごとにセルフ復号化が可能であることを保証するために(すなわち、受信器は、現在のスーパーフレームのフレームごとに伝達されるときにその情報を復号化及び使用するために)、各部分クラスタn(n>0)に対する整数個のPLPは、現在のスーパーフレームのフレームごとに保証される。PLPループでその関連シグナリングの獲得のためのnフレーム遅延を許容するPLPの実際の個数が部分クラスタ値nと同一でなく、あるいはnの整数倍と同一でない場合、このPLPの一部が低い部分クラスタ値に割り当てられ、あるいは再度割り当てられることができ、それによってスーパーフレームで毎(n+1)番目のフレームの許容可能レートより大きいレート、例えばn番目又はn−1番目のフレームごとに送信される。これとは違い、nフレーム遅延を許容するすべてのPLPは、同一の部分クラスタnに割り当てられ、PARTITION_NUM_ADD_PLPと同一の個数のダミーPLPに関連した追加的なシグナリングは、現在のスーパーフレームの一部フレームで一部分クラスタ(n>0)に追加することができる。以後、もう一つの実施形態で、オーバーヘッド減少を最大化するために、最小個数のダミーPLPのみが要求される場合に考慮されなければならない。この最小個数PARTITION_NUM_ADD_PLPは、実際PLPのすべての個数及びすべての部分クラスタ値nの最小公倍数と同一の周期を通じる該当部分クラスタ値nから決定することができる。ダミーPLPの個数PARTITION_NUM_ADD_PLPに関連した追加的なシグナリングは、将来的な一部目的のために使用することができる。
【0163】
現在のスーパーフレームのl番目のフレームで部分クラスタn(n=0〜N-1)で実際PLPの個数をP
actual(n,l)で表し、現在のスーパーフレームのl番目のフレームで部分クラスタn(n=0〜N-1)に対するPLPループでの追加的なシグナリングに関連したダミーPLPの個数をP
dummy(n,l)で表す場合、毎フレームlのPLPループでのシグナリングは、<数式1>でQにより与えられる定数個のPLPに関連しなければならない。
【0165】
所定のPLPに対するL1-CONFのPLPループでのシグナリングは、現在のスーパーフレームでLフレームごとに同一のフレーム位置で反復される。ここで、Lは、フィールドPARTITION_CYCLE_LENGTHの値である。現在のスーパーフレームで一つのサイクルから他のサイクルに、現在のスーパーフレームのすべてのPLPのPLPループでのシグナリングは、正確に同一である。部分サイクルは、受信器が所望のPLPに関連したPLPループでシグナリングのフレームに現れるパターンを予測することを助ける。また、これは、受信器が現在のスーパーフレームで全体L1-CONFシグナリングが正確に反復す場合を認識することを助ける。サイクル長Lは、すべての部分クラスタ値{n}の最小公倍数と同一である。
【0166】
図14A及び
図14Bは、本発明の実施形態によるフレームのシーケンスでデータ構成アイテムの配列を示す概略図である。
【0167】
一実施形態を提供するために、スーパーフレームの実際PLPの全体個数が5と同一であると仮定する。これら5個のPLP全部がPLPループでその関連したシグナリングの獲得のために1フレーム遅延を許容し、それによって理想的に5個のPLPが部分クラスタn=2に割り当てられなければならない。しかしながら、PLPの個数(=5)が部分クラスタ値(n=2)の整数倍でない。フレームごとに同一の量のL1-CONFシグナリングを有するセルフ復号化可能な部分処理を保証するために、2つの等価代替方式が考慮される。
【0168】
第1の代替方式は、1個のPLPを部分クラスタn=1に割り当て、残りのすべての4個のPLPを部分クラスタn=2に割り当てる。したがって、1個のPLP(PLP#1)がフレームごとに反復される。一方、4個のPLPのシグナリングは、2個のPLPの部分に分割される。第1の2個のPLP(例えば、PLP#2、PLP#3)のシグナリングは、奇数フレーム(例えば、1,3,5,7)で反復され、それに反して他の2個のPLP(例えば、PLP#4、PLP#5)のシグナリングは、偶数フレーム(例えば、2,4,6,8)で反復される。これは、
図14Aに示す。
【0169】
第2の代替方式で、5個のすべてのPLPは、部分クラスタn=2に割り当てられ、1個のダミーPLPに関連した追加的なシグナリングが部分クラスタn=2に追加される。最初の3個のPLP(例えば、PLP#1、PLP#2、PLP#3)のシグナリングは、奇数フレーム(例えば、1,3,5,7など)で反復され、一方で、残りの2個のPLP(例えば、PLP#4及びPLP#5)のシグナリング及びダミーPLPに関連した追加的なシグナリングは、偶数フレーム(例えば、2,4,6,8)で反復される。これは、
図14Bに示す。
【0170】
分割処理が使用されない場合、毎フレームは、5×Aと同一のシグナリング量を有するPLPループを有する。ここで、Aは、PLPループでPLP別シグナリングの量を表す。分割処理が使用される場合、毎フレームは、2個の代替方式で3×Aと同一のシグナリング量を有するPLPループを有する。PLPループのオーバーヘッド減少は、((5-3)×A)/(5×A)=40%と同一である。L1-CONFの定数部分(すなわち、フレームごとに反復される部分)でのシグナリングの量(=C)を説明する場合、全体オーバーヘッド減少量は(2×A)/(C+5×A)である。
【0171】
本発明の実施形態では、例えば、デジタルビデオブロードキャスティングの次世代携帯用(Digital Video Broadcasting Next Generation Handheld:DVB-NGH)システムのコンテキストで説明する。一実施形態で、DVB-NGHシステムにおいて、DVB-NGH受信器による受信に対する追加データは、2世代地上波DVB-T2システム内に現在含まれている未来拡張フレーム(Future Extension Frame:FEF)スロット内で送信される。他の実施形態では、ここで説明されるコンセプトは、既存のDVB-T2システムで“ピギーバック(piggy-back)”に設計されない独立型(stand-alone)DVB-NGHシステムに同一に適用することが予測できる。しかしながら、ここで説明される実施形態は、単なる一例であると理解し、他の実施形態が他の無線放送システムあるいはユニキャストシステムに関連する。さらに、他の実施形態は、他のデータ送信システムに適用され、それによってデジタルビデオ信号の使用のみに限定されないことを予測できる。
【0172】
本発明の実施形態で、下記のような用語の制限されない説明が任意の実施形態を説明するために使用される。一部の実施形態で、物理フレーム/スロットは、ターゲット伝達システムに該当する信号が存在する(送信される)所定のRF周波数上の時間で区間となると考慮される。一部の実施形態では、FEF/追加スロットは、ターゲット伝達システムの信号が存在しない(送信されない)所定のRF周波数上の時間で区間となると考慮される。一部の実施形態で、物理スーパーフレームは、複数の物理フレーム及びFEFを含むエンティティであると考慮される。一部の実施形態で、物理構成は、2個の物理スーパーフレームの境界のみで変更できる。一部の実施形態において論理フレームは、固定した個数のQAM(Quadrature Amplitude Modulation)セルとターゲット伝達システムの物理フレームへのデータ伝達のために所定の構造を有するコンセプトコンテナとなることが考慮される。一部の実施形態で、論理スーパーフレームは、複数の論理フレームを含むエンティティとなることが考慮される。一部の実施形態で、論理シグナリング情報は、2個の論理スーパーフレームの境界のみで変更できる。一部の実施形態で、論理チャンネルは、ターゲット伝達システムを介してデータの伝達に対して実質的に同一のサイズ及び送信確率を有する論理フレームのフローとなり得る。一部の実施形態で、論理チャンネルグループは、論理チャンネルのグループであり、それによってグループで1個の論理チャンネルの論理フレームを伝達する物理フレームがグループで他の論理チャンネルの論理フレームを伝達する物理フレームから時間で分離されるようにする(すなわち、時間でゼロオーバーラップ)。一実施形態で、転送ストリームは、伝達システム(例えば、DVB-NGH)によりエンドユーザー(end user)に伝達されるサービスの組立(ensemble)に対するデータのストリームであると考慮される。転送ストリームは、伝達システムによりサービス要求事項により定義される複数の論理チャンネルに構造化することができる。
【0173】
図15は、本発明の一実施例による無線ブロードキャスティングシステム1200を概略的に示す。
【0174】
図15を参照すると、この構造は、複数のサービス#1〜#M1204と一部の実施形態で、サービス要求情報を含む制御チャンネル1206を提供するサービスプロバイダ1202を含む。サービスプロバイダ1202は、ネットワークゲートウェイ1212を介してブロードキャスティングネットワークオペレータ1210でサービス及び制御情報を提供する。ネットワークゲートウェイ1212は、図示したように、サービスデータ及び要求事項のPLP及びPLPサービス特性へのマッピングを提供するように配列できる。一実施形態で、サービスデータのマッピングは、サービス及び/又はサービスコンポーネントをマッピングすることを含むことができる。
【0175】
ネットワークゲートウェイ1212は、複数のPLP#1〜#N 1214及び一部の実施形態でシグナリングと、共通PLPデータ及び/又は補助ストリーム(auxiliary stream)を伝達する制御PLP 1216を介して複数の送信器1220,1222に駆動可能に接続する。図示したように、各送信器1220,1222は、その中でも後述するように、シグナリング生成と、フレーム生成及び送信を遂行するように構成される信号プロセッサブロック1230,1232を少なくとも含む。
【0176】
その後、ネットワークオペレータ1210の送信器1220,1222は、DVB-NGHハンドセットのような受信器通信ユニット1240,1242にエアー無線信号、例えばDVB-NGH信号を送信/放送する。受信器通信ユニット1240,1242は、下記に説明したように、受信された信号をプロセッシングと復号化する各信号プロセッサブロック1250,1252を含む。
【0177】
DVBシステムは、明確さのために別途に図示しないが、他の受信器及び送信器を含むことができる。
【0178】
本発明の実施形態により、送信器1220,1222の信号プロセッサブロック1230,1232及び受信器通信ユニット1240,1242の対応する信号プロセッサブロック1250,1252は、DVBシステムでデータストリームの送信及び受信を改善させるために適用される。
【0179】
図16は、本発明の望ましい実施形態による受信器無線通信ユニットのブロック構成図である。
【0180】
図16を参照すると、受信器無線通信ユニット1600は、この実施形態で、デュプレックスフィルタ(duplex filter)あるいは受信器1600内で受信と送信チェーンとの間のアイソレーションを提供するアンテナスイッチ1604に望ましく接続するアンテナ1602を含むDVB-NGHユニットである。
【0181】
本発明の技術分野でよく知られているように、受信器チェーンは、受信器フロントエンド回路1606(受信、フィルタリング、及び中間(intermediate)又は基底帯域周波数変換を效率的に提供)を含む。フロントエンド回路1606は、信号プロセッシング機能部1650,1652に直列に接続される。信号プロセッシング機能ブロック1650,1652からの出力は、DVB信号を表示する例に対して、スクリーン又は平面パネルディスプレイのように適合した出力デバイス1610に提供される。また、受信器チェーンは、全体加入部制御を維持する制御器1614を含む。また、制御器1614は、受信器フロントエンド回路1606及び信号プロセッシング機能ブロック1650,1652(一般的に、DSPにより実現)に接続される。制御器は、復号化/符号化機能、同期パターン、コードシーケンスのような動作体制を選択的に格納するメモリデバイス1616に接続する。
【0182】
本発明の実施形態により、メモリデバイス1616は、受信器無線通信ユニット1600により構成/プロファイル情報を格納し、信号プロセッシング機能ブロック1650,1652により処理される。さらに、タイマ1618は、受信器通信ユニット1600内の動作(例えば、時間関連信号の受信)、特にDVB-NGH信号の受信に関するタイミングを制御するように制御器1614に駆動可能に接続する。
【0183】
また、一部の通信ユニットは、完全性のために送信器/変調回路1622及び電力増幅器1624を介して直列にアンテナ1602に接続する、キーパッドのような入力デバイス1620を含む送信器部分を含むことができる。送信器/変調回路1622と電力増幅器1624は、制御器1614に実現可能に反応する。明らかに、受信器1600内の多様なコンポーネントは、アプリケーション特定又は設計選択される最終構造(ultimate structure)を有する分散あるいは統合されたコンポーネント形態を用いて実現できる。
【0184】
本発明の実施形態により、信号プロセッシング機能1650,1652を持ち、信号プロセッシング機能1650,1652の制御及びガイドによる受信器フロントエンド回路1606、メモリデバイス1616、タイマ機能1618、及び制御器1614とともに、受信器1600のDVB-NGHを受信してプロセッシングするために適用される。
【0185】
通常の知識を有する受信器信号プロセッシング機能1250,1252がDVB信号、フレーム、及びスーパーフレームに対する復号化以外にこれらを符号化及び生成するために配列されても、
図15のネットワークオペレータ送信器1220,1222のような無線送信器が、無線通信ユニット1600の送信器部分として少なくとも類似した機能ブロックを含むことを理解することができる。
【0186】
図17は、本発明の一部の実施形態による論理フレーム1700の構造の一例を示す。本発明の実施形態で、論理フレーム1700は、ネットワークオペレータの送信器1220,1222の信号プロセッサブロック1230,1232のように、ネットワークエンティティに含まれている信号プロセッサにより符号化及び構成することができる。同様に、論理フレームは、
図16の受信通信ユニット1600で
図15の信号プロセッシング機能1250,1252により受信及び復号化することができる。
【0187】
簡略性のために、以下の説明は、送信器信号プロセッサブロック1230,1232の動作の側面で特徴を説明し、通常の知識を持った者は実際にその逆動作が対応する受信信号プロセッサブロック1250,1252により遂行されることを容易に理解できる。このような場合、上記動作の一側のみが説明され、その逆側面の動作は本質的に暗示される。
【0188】
論理フレーム(LF)1700は、L1-POSTシグナリングフィールド1702と、多重PLPと、一部選択的実施形態では、その以後に一つ以上の補助ストリーム1714と、一部選択的実施形態では、その以後に一つ以上のダミーセル1716と、一部選択的実施形態で、その以後に追加的に特定タイプの一部PLP1717(
図4に図示せず)とを含むデータコンテナとして定義される。これと共に、信号プロセッシング論理は、論理フレーム1700の余り能力を正確に満たすために、一つ以上の補助ストリーム1714と一つ以上のダミーセル1716を配列する。一部の実施形態で、補助ストリームは、例えば電力レベルメッセージをサポートする目的と、同期目的あるいは例外的なケースのために物理フレームに移動することができる。一部の実施形態において、補助ストリーム及びダミーセルのために使用されるセルの全体個数は、論理フレームの全体容量の50%を超えないように設定することができる。他の実施形態では、信号プロセッシング論理は、補助ストリーム及びダミーセルのために使用されるセルの全体個数を、(一般的な動作条件による例に対して)論理フレームの全体容量の所定の他のパーセントに設定し、あるいは動的に設定することができる。
【0189】
したがって、各論理フレーム1700は、L1-POSTシグナリング1702で開始する。本発明の実施形態で、L1-POSTシグナリング1702は、以後に一つ以上の共通PLP1704と、その以後に、順次にタイプ1及びタイプ4のデータPLP(図示のように)1706,1712と、タイプ2のデータPLP1708と、補助ストリーム1714、ダミーセル1716、及びタイプ3のデータPLP1710が存在する。一部の実施形態において、データPLPの各タイプは、論理フレームで送信/受信されず、それによってデータPLP1706,1708,1710,1712の各々は、論理フレーム1700ごとに含まれることができない。
【0190】
一実施形態において、論理フレーム1700は、L1-POSTシグナリングを使用するセルと共に開始され、これとは異なり、他の実施形態では、一部のセルがL1-POSTシグナリングを採用できない。したがって、論理フレーム1700は、共通PLP1704と、異なるタイプのデータPLP(タイプ1,2,3,4)1706,1708,1710,1712と、補助ストリーム1714と、ダミーセル1716を含むグループからいずれか一つを含むことができ、これらのうちいずれかに適用可能である。
【0191】
一部実施形態において、信号プロセッシング論理は、論理フレーム1700内でPLP自身の位置を論理フレームから論理フレームへ動的に変更できる。
【0192】
他の実施形態で、上記したような論理フレーム1700は、物理フレームへの論理フレームのマッピングを容易にする。
【0193】
図18は、本発明の一実施形態による論理フレーム構造、例えば、
図17の論理フレーム構造でPLPをマッピングするマッピング配列500の一例を示す。一例のマッピング配列1800は、L1-POSTシグナリング802と共通PLP部分1804を提供するコード部分を含む完全論理フレームを示す。また、マッピング配列1800は、タイプ1及びタイプ4のデータPLP1806〜1808、タイプ2のデータPLP1810〜1812、補助データストリーム1814、ダミーセル1816、及びタイプ3のデータPLP1817を提供するコード部分の一例を示す。一実施形態で、共通PLP部分1804、データタイプ1、タイプ3、及びタイプ4のPLPは、図示のように、論理フレーム別に正確に1個のサブスライスを有する。サブスライスは、単一PLPからの‘セルのグループ’として定義され、単一PLPは、インターリビング以前に、論理フレームで連続的なアドレスを用いてセルで送信される。このような方式で、タイプ1のPLPのセルは、常に相互に隣接する。タイプ2PLPのセルは、論理フレームにわたったブロックで拡散される。タイプ2PLPは、論理フレームで多重サブスライスを有し、サブスライスは、RF信号にマッピングされる場合、増加されるダイバーシティのために論理フレームで拡散される。
【0194】
一実施形態で、実際のシナリオで、データタイプ2のPLP1810,1812は、図示のように、論理フレーム別に一つ以上のサブスライスを有する。一実施形態において、補助ストリーム1814及びダミーセル1816だけでなく、PLPのサブスライスは、信号プロセッサにより下記のように論理フレームのセルにマッピングできる。
【0195】
論理フレーム1800は、L1-POSTシグナリング1802で始まる。
【0196】
共通PLP1804は、L1-POSTシグナリング部分1802以後に直ちに論理フレーム1800の開始で送信される。
【0197】
タイプ4のデータPLP1806,1808により一部ピギーバックされるタイプ1のデータPLPは、共通PLP1804の次に送信される。
【0198】
タイプ2のデータPLP1810,1812は、タイプ1及びタイプ4のデータPLP1806,1808の次に送信される。
【0199】
もし存在する場合、補助ストリーム又はストリーム1814は、データタイプ2 1810,1812の次に位置し、これはダミーセル1816の次に位置することができる。
【0200】
もし存在する場合、データタイプ3のPLP1817は、ダミーセル1816の次に送信される。
【0201】
また、L1-POSTシグナリングと共に、PLPと、補助ストリーム及びダミーセルは、信号プロセッサにより論理フレーム1800の容量を正確に満たすように構成される。
【0202】
図19を参照すると、本発明の一部実施形態により、識別されるフレームタイプを有する論理フレーム構造1900でPLPをマッピングするマッピング配列1900の一例を示す。論理フレーム構造1900で、L1-POSTシグナリングのセルは、信号プロセッサにより論理フレーム1900の最初の部分にマッピングされる。共通PLP1902のセルは、信号プロセッサにより論理フレーム1900の2番目の部分にマッピングされる(例えば、他のタイプのPLPより低いセルアドレスを持たなければならない)。特定の論理フレーム1900に対するいずれかの一つの共通PLP1902のセルは、アドレスを増加させる順に、論理フレームのセルアドレスの単一隣接範囲に連続してマッピングできる。もし存在する場合、特定の論理フレーム1900に対するピギーバックのタイプ4PLPを共に有するタイプ1PLPのセル1904は、アドレスを増加させる順に信号プロセッサにより、論理フレームのセルアドレスの単一隣接範囲に連続してマッピングされる。タイプ1及びタイプ4のPLP1904のすべてのセルは、存在する場合、共通PLP1902の次に位置し、存在する場合、タイプ2PLP1906、補助ストリーム、及びダミーセル、あるいはタイプ3PLP以前に位置することができる。一実施形態において、特定の論理フレーム1900に対するタイプ2PLPのセル1906は、複数のサブスライスに分割され、各サブスライスは、図示のようにすべてのタイプ2PLPに対するサブスライス区間1908に含まれる。PLPの各サブスライス1916は、信号プロセッサによりアドレスを増加させる順に、論理フレーム1900のセルアドレスの隣接範囲にマッピングすることができる。一実施形態において、最初のタイプ2PLPの最初のサブスライス1914のセルは、信号プロセッサにより最後のタイプ1PLP1904の最後のセルの次に開始されるように構成することができる。これらは、同一の順に処理されるPLPを有する、各PLPに対する第2のサブスライスのセル1918の次に順次に位置する、他のタイプ2PLPの最初のサブスライスのセルの次に位置しなければならない。信号プロセッサにより構成される配列は、最後のPLPの最後のサブスライスがマッピングされるまで連続する。
【0203】
図20は、本発明の一部実施形態による論理フレーム構造で入力ストリーム同期(Input Stream Synchronisation:ISSY)フィールド2020を含む論理フレーム構造2000の一例を示す。論理フレーム構造2000は、L1-POSTシグナリングフィールドと、その次の共通PLP2002と、その次のタイプ1及びタイプ4のPLP2004と、タイプ2PLP2006と、補助ストリームと、ダミーセル及びタイプ3PLPを含む。論理フレーム構造2000で最初のタイプ1PLPは、複数の基底帯域(BB)フレーム2008を含む。基底帯域フレーム2008は、BBヘッダーフィールド2010と、その次の1個のPLPに対するデータ2012と、帯域内シグナリング2014及び追加パディング2016を含む。この実施形態では、少なくとも一つの(例えば、最初の)基底帯域フレームの帯域内シグナリング2014は、シグナリング部分2018とISSYフィールド2020を含む。したがって、連続する基底帯域フレーム2008は、BBヘッダーフィールド2010と、その次の1個のPLPに対するデータ2012と、帯域内シグナリング2014(ISSYフィールド2020を含まない)及び追加パディング716を含む。
【0204】
一実施形態において、図示されている3バイトのISSYフィールド2020は、変調器クロックレート1/Tでクロック化されるカウンタの値を伝達でき、受信器により再生成された出力ストリームの正確なタイミングを再生成するために使用することができる。一実施形態で、ISSYフィールド2020は、1個の論理フレーム2000で所定のPLPの少なくとも一つの(例えば、最初の)基底帯域フレームの帯域内シグナリングタイプBで送信される。1個の論理フレーム2000で多重関連PLPのイベントで、ISSYフィールド2020は、少なくとも一つのPLP、すなわちアンカー(anchor)PLPの少なくとも一つ(最初)の基底帯域フレームの帯域内シグナリングタイプBで送信できる。この方式で、入力ストリーム同期(ISSY)フィールド2020を含む論理フレーム構造2000は、基本的に1個の論理フレームで多重関連PLPに対するすべてのデータパケットが遅延及び/又はジッター(jitter)と類似した経験をする事実によってシグナリングオーバーヘッドを減少させることができる。
【0205】
図21は、本発明の一部実施形態による論理スーパーフレーム構造2100の一例を示す。論理スーパーフレーム2100で論理フレーム#m2110,2120(明瞭性ののために簡略化した例で2個のみを有する)の個数は、信号プロセッサにより構成された、構成可能シグナリングL1-CONFでシグナリングされる構成可能パラメータであり得る。この実施形態で、所定の論理スーパーフレーム2100で論理フレーム2110,2120の最大個数は‘255’と同一である。
【0206】
一般的に、L1_Preは、送信され、フレームフォーマットに関する情報の最小量を伝達し、それによって小さいオーバーヘッドを招く。L1_Preを使用して、NGH受信器は、次のNGH論理フレームがスケジューリングされるだけでなく、NGH物理スロットの開始/終了及びその区間を知っている。
【0207】
一実施形態において、(L1-ダイナミックの他のコンポーネントと比較して)L1-POSTシグナリングフォーマット2012,2112とL1-POSTの構成可能部分(L1-CONF)をシグナリングするL1_PREに定義されるすべてのパラメータは、信号プロセッサにより2個の論理スーパーフレーム2100の境界のみで変更できる。L1_Pre、L1-configurable、及びL1-dynamicのコンセプトが物理フレームのコンテキストのみで予め知られていることを明らかにする必要がある。
【0208】
したがって、一実施形態で、受信器は、帯域内タイプAのみを受信する場合、(
図16のタイマ1618内に含まれているカウンタのような)カウンタは、L1構成可能パラメータでの変更を有する次の論理スーパーフレーム800を表すように構成することができる。この方式で、受信器は、変更が適用される場合、認知された論理スーパーフレーム2100の最初の論理フレームでL1-POST2102,2112から新たなL1-CONFパラメータを確認できる。
【0209】
一実施形態において、データPLP2104,2114は、毎論理フレームにマッピングされる必要はない。上記のような状況で、データPLP2104,2114は、信号プロセッサにより論理スーパーフレーム2100で多重論理フレーム2110,2120を介してジャンプするように構成することができる。このフレーム区間I
JUMPはPLP_LF_INTERVALパラメータにより決定することができ、データPLPが現れる最初の論理フレームは、PLP_FIRST_LF_IDXパラメータにより決定される。パラメータPLP_LF_INTERVALとPLP_FIRST_LF_IDXは、構成可能シグナリングL1-CONFを用いてシグナリングできる。論理スーパーフレーム2100間のデータPLP2104,2114の固有マッピングを有するために、論理スーパーフレーム2100別論理フレーム2110,2120の個数は、信号プロセッサにより毎データPLP2104,2114に対する‘PLP_LF_INTERVAL’の係数(factor)で分割するように構成できる。一例で、データPLP2104,2114は、信号プロセッサにより(LF_IDX−PLP_FIRST_LF_IDX)mod PLP_LF_INTERVAL=0である論理フレーム2110,2120にマッピングすることができる。
【0210】
一実施形態において、論理スーパーフレームに含まれている論理フレームの個数は、毎データPLPに対して論理スーパーフレーム別に整数個の順方向誤り訂正(Forward Error Correction:FEC)ブロックが存在するように信号プロセッサにより選択することができる。
【0211】
L1-CONFの一例は、次のようである。
【0212】
PLP_ANCHOR_FLAG:一例で、PLP_ANCHOR_FLAGは、PLP_IDにより識別されるPLPがすべての関連PLPに対するアンカーPLPであるか否かをを表す1ビットフィールドであり得る。例えば、値‘1’は、アンカーPLPを表すことができる。
【0213】
PLP_IN BAND_A_FLAG:一例で、PLP_IN BAND_A_FLAGは、現在のPLPが帯域内タイプAシグナリング情報を伝達するか否かを表す1ビットフィールドであり得る。例えば、このフィールドが値‘1’に設定される場合、関連PLPは、帯域内タイプAシグナリング情報を伝達する。一例で、PLP_IN-BAND_A_FLAGフィールドが値‘0’に設定される場合、帯域内タイプAシグナリング情報は伝達することができない。PLP_ANCHOR_FLAGの値が‘0’に設定される場合(すなわち、アンカーPLPでない場合)、PLP_IN-BAND_A_FLAGの値は‘0’に設定することができる。
【0214】
PLP_TYPE:一例で、PLP_TYPEは、関連PLP_MODEのタイプを表す3ビットフィールドであり得る。PLP_TYPEは、以下の<表4>によってシグナリングできる。
【0216】
PLP_ISSY_MODE:一例で、PLP_ISSY_MODEは、ISSY-BF、ISSY-LF、あるいはISSY-UPモードが所定のPLPのために使われるか否かを表す2ビットフィールドであり得る。モードは、下記の<表5>によってシグナリングできる。
【0218】
<帯域内タイプA>
L1_POST_DELTA:一実施形態において、L1_POST_DELTAは、QAMセルでL1_PREシグナリングを伝達する最後のセルと現在のNGHフレームで開始される最初の論理フレームの最初のセルとの間のギャップを表す24ビットフィールドである。この値(HEX)FFFFFFは、現在NGHフレームで新たな論理フレームが開始されないことを意味する。
【0219】
LC_NEXT_FRAME_DELTA:一実施形態で、LC_NEXT_FRAME_DELTAは、現在のNGHフレームと現在の論理チャンネルを伝達する次のNGHフレームとの間のT周期で相対的タイミングを表す24ビットフィールドである。
【0220】
PLP_RF_IDX_NEXT:一実施形態で、LCタイプD PLPに対して、PLP_RF_IDX_NEXTは、PLPが発生する次の論理フレーム(n+2)の次の論理フレームで現在のPLPのRF周波数を表す3ビットフィールドである。この値は、L1_PREのLC_CURRENT_FRAME_RF_IDXにより解析できる。LCタイプA,B,Cに対して、このフィールドは、将来的な使用のために予約できる。
【0221】
図22は、本発明の一部実施形態による論理フレーム2210,2212のシーケンスを含む論理チャンネル構造2200の一例を示す。
【0222】
しかしながら、この実施形態において、論理チャンネル(LC)2200は、各々がL1-POSTシグナリング2202で開始される、論理フレーム2210,2212のシーケンスとして定義される。この実施形態例で、LC2200は、ネットワークで使用可能な‘1’〜‘N’個のRF周波数のパターンを介して送信可能な(明瞭性のために簡略化された例で3個のRF周波数、RF1 2214、RF2 2216、RF3 2218を有する)。ネットワークにおいて1個の転送ストリームでM個の論理チャンネルが存在できる。
【0223】
論理チャンネルの4個のタイプ、すなわち物理フレームに対するマッピングを表すタイプA、タイプB、タイプC、及びタイプDが定義される。
【0224】
したがって、論理チャンネルは、グループで配列され、グループで単一受信チューナ(tuner)を使用するグループのすべての論理チャンネルメンバーを受信することが(時々及び常に)可能であり、それによって受信器1600が2個の論理チャンネルを復号化することが可能になる。
【0225】
論理チャンネルの各グループは、固有識別子LC_GROUP_IDにより識別される。
【0226】
図示されている例で、第1の論理チャンネルLC1 2224,2226,2228及び第2の論理チャンネルLC2 2230,2232は、同一のグループに属し、LC1 2224,2226,2228はタイプCで構成され、LC2はタイプAで構成される。(送信器側で)信号プロセッサは、時間ドメインでゼロオーバーラップ(zero overlap)を有する論理チャンネルを構成することに留意しなければならない。
【0227】
図23は、本発明の一部実施形態による論理フレームのシーケンスを含む論理チャンネルタイプA構造2300の一例を示す。
【0228】
図23を参照すると、一実施形態において、論理チャンネル(LC)タイプAは、信号プロセッサにより論理チャンネル2308の各論理フレーム(LF)2304,2306が単一RFチャンネル2302上で一つの物理DVB-NGHフレーム2310にマッピングされる場合に対応するように構成される。したがって、この方式で、各物理DVB-NGHフレーム2310は、信号プロセッサにより論理チャンネル2308の一つの論理フレーム2304,2306のみからセルを含むように構成することができる。所定の論理チャンネル2308の論理フレーム2304,2306を伝達するすべての物理フレームは、信号プロセッサにより、例えば、フレームインデックス番号(FRAME_IDX)を除き、同一の長さ及び同一のL1-PREシグナリングを有するように構成することができる。この方式で、論理フレームと物理DVB-NGHフレームとの間の1:1マッピングが達成できる。論理チャンネルタイプA構造2300で未来拡張フィールド(FEF)2312は、DVB-NGHのFEFであり、DVB-T2システムのFEFでないことに留意しなければならない。
【0229】
したがって、
図23に示した例において、タイプAのLC2308は、1個のLF2304のすべてのセルにマッピングされ、1個のLF2304のすべてのセルは、第2のLF2306(タイプAの同一のLC2308から)のすべてのセルを伝達するために連続して使われる同一の物理フレーム2310を有する1個の物理フレーム2310で伝達される。
【0230】
論理チャンネルタイプAに対して、各論理フレームは第1の論理フレームセルが第1の物理フレームデータセル(物理フレームで最小データセルアドレス)にマッピングされ、最後の論理フレームセルが最後の論理フレームデータセル(物理フレームで最大データセルアドレス)にマッピングされる方式を使用して1個の物理フレームに同期化される。すべての論理フレームは、単一RF周波数上で伝送される。したがって、論理フレームのシーケンスは、物理フレームのシーケンス上で、所定の論理チャンネルを伝達する物理フレーム別に正確に1個の論理フレームを用いて伝送される。
【0231】
図24は、本発明の一部実施形態による論理フレームのシーケンスを含む論理チャンネルタイプB構造1100の一例を示す。
【0232】
図24を参照すると、論理チャンネルタイプBは、一実施形態で、信号プロセッサにより論理チャンネル(LC)1108の各論理フレーム2404,2406が単一RFチャンネル2410上で多重(N)DVB-NGH物理フレーム2402,2403にマッピングされる場合に対応するように構成される。この実施形態において、信号プロセッサは、物理フレームが同一の長さを有するように配列される。この実施形態で、信号プロセッサは、各論理フレームが分割されて同一のRFチャンネル2410で多重DVB-NGH物理フレーム2402,2403にマッピングされるように配列され、これによって各DVB-NGH物理フレーム2402,2403は、同一の論理チャンネル2408の多重論理フレーム2404,2406からのセルを含むことができる。信号プロセッサは、すべてのDVB-NGH物理フレームを構成し、フィールドL1_POST_DELTA及びFRAME_IDXを含まない一例で、同一のL1_PREシグナリング2412を有する。したがって、この例で、1個の論理フレームは、2個以上のDVB-NGH物理フレームに時間-多重化できる。
【0233】
論理チャンネルタイプBに対して、論理フレームセルのストリームは、論理フレームの第1のセルが物理フレームに含まれているデータセルのうちいずれか一つにマッピングされる方式を使用して、物理フレームデータセルのストリームにマッピングされる。上記した最初のセルより以後のP個のセルである論理フレームストリームのセルは、上記した第1の論理フレームがマッピングされる物理フレームセルより以後のP個のセルである物理フレームストリームセルにマッピングされなければならない。論理フレームが現在物理フレームで完了しない場合、論理フレームは、物理フレームの第1のデータセルから同一の論理チャンネルの次の物理フレームで続く。論理フレームが現在物理フレームで完了する場合、同一の論理チャンネルのその次の論理フレームは、いずれのギャップなしに直ちに開始される。すべての論理フレームは、単一RF周波数で伝えられる。論理チャンネルタイプBは、論理チャンネルタイプAの拡大集合(superset)であり、論理チャンネルタイプAの拡大集合は特定ケースを含む。
【0234】
図25は、本発明の一部実施形態による論理フレームのシーケンスを含む論理チャンネルタイプC構造2500の一例を示す。
【0235】
図25を参照すると、論理チャンネルタイプC構造2500は、信号プロセッサにより第1の論理チャンネル2512,2514,2516の各論理フレーム及び第2の論理チャンネル2518,2520,2522の各論理フレームが多重(M)RFチャンネル、RF1 2502,RF2 2504,RF3 2506上で多重(N)物理DVB-NGHフレームにマッピングされる場合に対応するように構成される。一実施形態において、異なるRFチャンネル2502,2504,2506からの物理DVB-NGHフレームは、信号プロセッサにより1個の単一チューナ(図示せず)を有する受信に対して許容される時間で分離できる。図示されている一実施形態において、異なるRFチャンネル2502,2504,2506からの物理DVB-NGHフレームは、信号プロセッサにより相互に異なる長さとなるように構成することができる。
【0236】
一実施形態において、各論理フレームは、多重(M)RFチャンネル2502,2504,2506上で分割されて多重DVB-NGH物理フレームをマッピングし、それによって各物理DVB-NGHフレームは、同一の論理チャンネルの多重論理フレームからのセルを含むことができる。
【0237】
一実施形態において、すべての物理DVB-NGHフレームは、信号プロセッサにより同一のL1_PREシグナリング2510を有するように構成することができ、例えば同一のL1_PREシグナリング2510は、フィールドL1_POST_DELTA、LC_CURRENT_FRAME_POSITION、LC_CURRENT_FRAME_RF_IDX、LC_NEXT_FRAME_RF_IDX、及びFRAME_IDXを含めない。
【0238】
したがって、図示の実施形態では、第1の論理チャンネルLC1及び第2の論理チャンネルLC2は、全部タイプCであり、同一のLCグループのメンバーであり得る。上記実施形態で、LC1は、まず、第1のRFチャンネルRF1 2502で送信され、その後に第2のRFチャンネルRF2 2504、その次に第2のRFチャンネルRF1 2502が送信される。このプロセスは、反復される。
【0239】
図示のような実施形態では、LC2が第3のRFチャンネルRF3 2506で送信され、その後に第2のRFチャンネルRF2 2504、その次に第3のRFチャンネルRF3 2506で送信される。また、このプロセスは反復される。この方式で、各論理チャンネルは、使用される各論理チャンネルの固有サイクル及び固有周波数の集合を有する。
図25で、(送信)信号プロセッサは、信号の時間及び周波数多重化を用いて異なるRFチャンネル間をスイッチする受信器に対する時間ギャップを設定する。
【0240】
論理チャンネルタイプCに対して、論理チャンネルを伝達するために使用される物理フレームは、異なるRF周波数で送信され、異なるRF周波数を使用する連続した物理フレームは、時間分離される必要があることを除き、論理フレームは、論理チャンネルタイプBに対する方式と同一の方式を使用してマッピングされる。論理チャンネルタイプCは、論理チャンネルタイプBの拡張集合で、この拡張集合は特定ケースを含む。
【0241】
図26は、本発明の一部実施形態による論理フレーム2608,2610のシーケンスを含む論理チャンネルタイプD構造2600の一例を示す。
【0242】
図26を参照すると、一実施形態では、論理チャンネルタイプDは、信号プロセッサにより論理チャンネルの各論理フレームが多重(N)RF周波数(明瞭性のために簡略化した例で図示されている3個のRF周波数2602,2604,2606)上で多重(N)物理DVB-NGHフレーム(明瞭性ののために簡略化した例で図示されている時間2608,2610で3個の物理DVB-NGHフレーム)に1対1でマッピングされる場合に対応するように構成される。物理DVB-NGHフレーム2608,2610は、信号プロセッサにより同一の長さで時間-同期化されるように構成することができる。この方式で、時間同期は、物理DVB-NGHフレーム2608,2610それぞれのプリアンブル(preamble)P1が同一のフレームインデックスを用いて論理チャンネルを伝達して同一の時間で開始することを可能にする。一実施形態では、物理DVB-NGHフレーム2608,2610は、信号プロセッサにより1個の論理フレームのみからのセルを含むように構成されることができ、それによって、一実施形態で、各論理フレームは、すべての同時物理フレームで使用可能なように構成することができる。したがって、一実施形態で、1個の論理フレームは、各々が1個のRFチャンネルにマッピングされる時間同期化される物理DVB-NGHフレームの集合にマッピングされる。
【0243】
論理チャンネルタイプDの論理フレームは、LC_NUM_RF列(column)とLC_LF_SIZE/LC_NUM_RF行(row)を有する単一論理フレーム行列で配列される。パラメータLC_NUM_RF及びLC_LF_SIZEは、L1_PREシグナリングを使用して提供され、各々所定の論理チャンネルに対する1個の論理フレームのRF周波数の個数及びそのセルサイズを表すことができる。論理チャンネルタイプDの各論理フレームは、論理フレームの各列を第1の物理フレームデータセル(物理フレームに含まれている最小データセルアドレス)にマッピングされる論理フレームの最初のセルと最後の物理フレームデータセル(物理フレームに含まれている最大データセルアドレス)にマッピングされる最後の論理フレームセルを有する各列の該当RF周波数のセルにマッピングされる方式で、RF周波数当たり1個の論理フレームを有する、1個の並列物理フレームの集合に同期化する。したがって、論理フレームのシーケンスは、物理フレームの各集合当たり正確に1個の論理フレームを有し、RF周波数当たり1個の物理フレームを有する物理フレームの集合のシーケンスを用いて伝えられる。所定の論理タイプDを伝達するために使用されるRF周波数の集合が構成可能である。
【0244】
図27A及び
図27Bは、本発明の一部実施形態による論理チャンネル構造2700でL1_Preシグナリングフィールドの表の一例を示す。
【0245】
図27A及びBを参照すれば、一実施形態で、すべての同期化される物理フレームは上記したフィールドを除き、同一のL1_PREシグナリングを有するように構成することができる。論理チャンネル構造2700に含まれているL1_PREシグナリングフィールドの表の一列に含まれている新しいフィールドの個数は、信号プロセッサにより導入される。
【0246】
L1_POST_DELTA:一例で、L1_POST_DELTAは、QAMセルでL1-PREシグナリングを伝達する最後のセルと現在のNGHフレームで開始する最初の論理フレームの最初のセルとの間のギャップを表す24ビットフィールドであり得る。この値(HEX)FFFFFFは、いかなる新たな論理フレームも現在のNGHフレームで開始されないことを意味するように構成できる。
【0247】
LC_GROUP_ID:一例で、LC_GROUP_IDは、(現在のNGHフレームで伝達される)現在の論理チャンネルが属している論理チャンネルのグループの識別子(ID)を提供する2ビットフィールドであり得る。一部実施形態において、、単一チューナを用いて論理チャンネルグループのすべての論理チャンネルメンバーを受信することができる。
【0248】
LC_NUM:一例で、LC_NUMは、現在のNGHフレームで伝達可能な(すなわち、そのIDがLC_GROUP_IDにより与えられた)現在のLCグループの論理チャンネルメンバーの全体個数を表す3ビットフィールドであり得る。一実施形態で、LC_NUMの最小値は、‘1’に設定することができる。
【0249】
LC_ID:一例で、LC_IDは、現在のDVB-NGHフレームで伝達される現在の論理チャンネルの識別子(ID)を表す3ビットフィールドであり得る。一例で、LC_IDの値は、‘0’から‘LC_NUM-1’までの範囲で構成することができる。
【0250】
LC_TYPE:一例で、LC_TYPEは、現在のNGHフレームで伝達される現在の論理チャンネルのタイプを表す3ビットフィールドであり得る。
【0251】
LC_NUM_RF:一例で、LC_NUM_RFは、現在の論理チャンネルにより使用されるRFチャンネルの個数NRFを表す3ビットフィールドであり得る。周波数は、L1-POSTシグナリングの構成可能パラメータ内でリストできる。
【0252】
LC_CURRENT_FRAME_RF_POS:一例で、LC_CURRENT_FRAME_RF_POSは、現在の論理チャンネルにより使用されるRFチャンネのサイクルで現在のDVB-NGHフレームのRFチャンネルの位置を表す3ビットフィールドであり得る。
【0253】
LC_CURRENT_FRAME_RF_IDX:一例で、LC_CURRENT_FRAME_RF_IDXは、現在の論理チャンネルを伝達するために使用される現在のDVB-NHGフレームのRFチャンネルのインデックスを表す3ビットフィールドであり得る。
【0254】
LC_NEXT_FRAME_RF_IDX:一例で、LC_NEXT_FRAME_RF_IDXは、現在の論理チャンネルを伝達するために使用される次のDVB-NGHフレームのRFチャンネルのインデックスを表す3ビットフィールドであり得る。
【0255】
LC_NEXT_FRAME_DELTA:一例で、LC_NEXT_FRAME_DELTAは、現在のNGHフレームと現在の論理チャンネルを伝達する次のNGHフレームとの間のT周期での相対的タイミングを表す24ビットフィールドであり得る。
【0256】
図28は、本発明の上記した実施形態により、一部の信号プロセッサにより導入される論理チャンネルタイプ(LCタイプ)2800の表の一例を示す。
【0257】
図28を参照すると、次のようである。
【0258】
LC_TYPE-A2802:この例で、LC_TYPE-A2802は、単一RFチャンネルで伝送される論理チャンネルを表す3ビットフィールドであり得る。論理チャンネルの各論理フレームは、1個のNGHフレームで伝送される。これは、バンドリング(bundling)が時間ドメイン又は周波数ドメインで使用されない場合である。
【0259】
LC_TYPE-B2804:この例で、LC_TYPE-B2804は、単一RFチャンネルで伝送される論理チャンネルを表す3ビットフィールドであり得る。論理チャンネルの各論理フレームは、1個以上のNGHフレームで伝送することができる。これは、(例えば、単一RFチャンネル上でNGHフレームにわたって)バンドリングが時間ドメインで使用される場合である。
【0260】
LC_TYPE-C2806:この例で、LC_TYPE-C2806は、1個以上のRFチャンネルを伝達する論理チャンネルを表す3ビットフィールドであり得る。論理チャンネルの各論理フレームは、1個以上のRFチャンネル上で1個以上のNGHフレームで伝送することができる。これは、(すなわち、多重RFチャンネル上の時間ドメインでNGHフレームにわたって)バンドリングが時間ドメイン及び周波数ドメインで使用される場合である。
【0261】
LC_TYPE-D2808:この例で、LC_TYPE-D2808は、論理チャンネルが一つ以上のRFチャンネルで伝送されることを表す3ビットフィールドであり得る。論理チャンネルの各論理フレームは、RF周波数別に1個のNGHフレームを有する並列及び時間-同期化したNGHフレームの集合で伝送することができる。これは、時間周波数スライシング(Time Frequency Slicing:TFS)が使用される(すなわち、各々が異なるRF周波数上の、時間-同期化したNGHフレームの集合にわたる)場合である。
【0262】
図示のように、他の使用可能なビットパターンは、将来的にされる2810のために予約され得る。
【0263】
図29は、本発明の一部実施形態による論理チャンネルを受信する受信器の初期スキャニング動作2900の一例を示すフローチャートである。
【0264】
図29を参照すると、信号プロセッサ、すなわち
図16の信号プロセッサ1250,1252は、ステップ2904で、全体RF周波数がスキャンしたか否かを判定する。ステップ2904で、すべてのRF周波数がスキャンされない場合、信号プロセッサ1250,1252は、ステップ2906でRF周波数を選択する。信号プロセッサ1250,1252は、その後にステップ2908でP1を検出し、ステップ2906から選択されたRF周波数がステップ2910でサポートされる信号であるか否かを判定する。判定の結果、信号がサポートされる場合、ステップ2912で信号プロセッサ1250,1252は、L1_PREを復号化する。そうでないと、信号がサポートされない場合、信号プロセッサは、ステップ2908に戻ってP1を検出する。L1_PREがステップ2912で復号化された場合、信号プロセッサ1250,1252は、LC IDがステップ2914で既にスキャンされたか否かを判定する。LC IDがステップ2914で既にスキャンされた場合、信号プロセッサ1250,1252は、ステップ2916で現在のLCに対して指示される次のRF以外の異なるRFに移動した後、ステップ2912に戻ってL1_PREを復号化する。LC IDがステップ2914で既にスキャンされていない場合、信号プロセッサ1250,1252は、L1-POSTがステップ2918で使用可能であるか否かを判定する。
【0265】
L1-POSTがステップ2918で使用可能でない場合、信号プロセッサ1250,1252は、ステップ2920で現在のLCの次のRFに移動し、ステップ2912に戻ってL1_PREを復号化する。L1-POSTが使用可能である場合、信号プロセッサ1250,1252は、ステップ2922でL1-POSTを復号化し、ステップ2904に戻り、すべてのRF周波数がスキャンされたか否かを判定する前にステップ2924でL1-CONFを抽出する。すべてのRF周波数がスキャンされた場合、信号プロセッサ1250,1252は、ステップ2902で初期スキャニング動作を終了する。
【0266】
したがって、このような方式で、初期スキャニングステップの間、受信器は、各LCにより使用される(ステップ2924で、RFチャンネル及び反復パターン及びサイクル、順序、インデックス、及び中心周波数を介して各LCにより使用される)周波数ホッピングパターンを獲得することが可能である。
【0267】
図30は、本発明の一部実施形態による論理チャンネルを受信する受信器のノーマル受信動作3000のフローチャートの一例を示す。
【0268】
図30を参照すると、信号プロセッサ、すなわち
図16の信号プロセッサ1250,1252は、ステップ3002で所望のLC及びPLPを決定する。すると、信号プロセッサ1250,1252は、ステップ3006でP1を検出する前に、ステップ3004で最初のRF周波数を選択する。その後、信号プロセッサ1250,1252は、ステップ3008で、信号がサポートされるか否かを判定する。信号がステップ3008でサポートされない場合、信号プロセッサ1250,1252は、ステップ3006に戻ってP1を更に検出する。信号がステップ3008でサポートされる場合、信号プロセッサ1250,1252は、ステップ3010で、L1_PREフィールドを復号化する。ステップ3012で、信号プロセッサ1250,1252は、現在のLCが所望するLCであるか否かを判定する。現在のLCがステップ3012で所望するLCでない場合、信号プロセッサ1250,1252は、その後にステップ3016で現在の所望しないLCのすべての次のRF周波数を導出及び記録し、ステップ3010に戻ってL1_PREを復号化する前に、ステップ3014で、現在の所望しないLC又は以前の所望しないLCが次のRF周波数と異なるRF周波数に移動する。
【0269】
現在のLCがステップ3012で所望するLCである場合、信号プロセッサ1250,1252は、ステップ3018でL1-POSTが使用可能であるか否かを判定する。その判定結果、L1-POSTが使用可能でない場合、信号プロセッサ1250,1252は、ステップ3010に戻ってL1-PREを復号化する前にステップ3020で現在のLCの次のRFチャンネルに移動する。
【0270】
その結果、ステップ3018でL1-POSTが使用可能である場合、信号プロセッサ1250,1252は、ステップ3022でL1-POSTを復号化し、所望するPLPをステップ3024に復号化する。その後、信号プロセッサ1250,1252は、帯域内シグナリングを抽出し、ステップ3028に進行する前に、ステップ3026で時間及び周波数で所望するPLPを追跡する。
【0271】
したがって、このような連続する受信段階で、所望するLCのLFを位置させることを可能にするために、受信器は、NGHフレームごとにL1_PREを復号化し、分析する必要がない。LCに関連したL1-PREシグナリング及びそのLFをNGHフレームにマッピングすることは、初期スキャニング段階及び初期受信段階でより速い獲得を有利にする。
【0272】
構成可能L1-POSTシグナリング(L1-CONF)の信号フィールドの一例は、<表6>のように示される。
【0274】
論理チャンネル構造2700で、L1-CONFシグナリングフィールドの表の例内に含まれている複数の新規フィールドは、信号プロセッサにより導入される。
【0275】
LC_NUM_LF:この8ビットフィールドは、現在論理チャンネルの現在論理スーパーフレームに含まれている論理フレームの個数を表す。このフィールドの最小値は、‘1’である。
【0276】
LC_LF_SIZE:この22ビットフィールドは、QAMセルで、現在論理チャンネルの現在論理スーパーフレームに含まれている毎論理フレームのサイズを表す。
【0277】
下記のようなフィールドは、周波数ループで現れる。
【0278】
LC_RF_IDX:この3ビットフィールドは、このループ内にリストされている各周波数のインデックスを表す。LC_RF_IDX値は、0とLNC_NUM_RF1との間の固有値で割り当てられる。多重RFチャンネルにわたった周波数生成又はスライシングの場合(すなわち、LC_TYPE=‘01x’及びLC_NUM_RF>1)、このフィールドは、現在の論理チャンネルの構造内で各周波数のインデックスを表す。
【0279】
LC_RF_POS:この8ビットフィールドは、現在論理チャンネルの論理フレームを伝達するために使用されるRFチャンネルの1サイクルで、このループ内でリストされている各周波数の位置を表す。現在の論理チャンネルが1個の単一RFチャンネルを使用する場合(すなわち、LC_NUM_RF=1)、このフィールドの値は、‘11111111’と同一でなければならない。このフィールドを表す8ビットのシーケンスでi番目のビット位置での‘1’と同一の値は、LC_RF_IDXにより与えられたインデックスを有するRFチャンネルが現在の論理チャンネルの論理フレームを伝達するRFチャンネルのサイクルでのi番目の位置で使用されることを表す。所定の論理の論理フレームを伝達するRFチャンネルの1サイクルの最大長さは、8である。
【0280】
FREQUENCY:この32ビットフィールドは、そのインデックスがLC_RF_IDXであるRFチャンネルの中心周波数をHzを用いて表す。論理チャンネル構造内の周波数の順序は、LC_RF_IDXにより指示される。FREQUENCYの値は、周波数が信号を構成する時間で知られないことを表す‘0’に設定することができる。このフィールドが0に設定される場合、受信器により周波数として解析されてはならない。
【0281】
このFREQUENCYフィールドは、多重RFチャンネルが使用される場合(すなわち、LC_TYPE=‘01x’及びLC_NUM_RF>1)、論理チャンネル構造の一部を形成する信号を検索することを補助するために受信器によって使用され得る。値が一般的にメイン送信器で設定され、送信器(transposer)で変更されないため、このフィールドの正確性は信頼されてはならない。
【0282】
PLP_FIRST_LF_IDX:この8ビットフィールドは、現在のPLPを伝達する論理スーパーフレームの第1の論理フレームのインデックスを表す。PLP_FIRST_LF_IDXの値は、PLP_LF_INTERVALの値より小さくなければならない。
【0283】
PLP_LF_INTERVAL:この8ビットフィールドは、論理スーパーフレーム内の該当するPLPからのセルを伝達する任意の2個の論理フレーム間の複数の論理フレームで区間(I
JUMP)を表す。論理スーパーフレームの論理フレームごとに現れないPLPに対して、このフィールドの値は、連続的な論理フレーム間の区間と同一でなければならない。例えば、PLPが論理フレーム1,4,7で現れる場合、このフィールドは、‘3’に設定される。論理フレームごとに現れるPLPに対して、このフィールドは、‘1’に設定されなければならない。
【0284】
動的L1-POSTシグナリング(L1-DYN)のシグナリングフィールドの一例は、下記の<表7>のように表現される。
【0286】
論理チャンネル構造2700で、L1-DYNシグナリングフィールドの表の例に含まれている複数の新たなフィールドは、信号プロセッサにより導入される。
【0287】
LF_IDX:この8ビットフィールドは、現在の論理スーパーフレーム内の現在の論理フレームのインデックスである。論理スーパーフレームの最初の論理フレームのインデックスは、‘0’に設定されなければならない。
【0288】
一部の実施形態において、フローチャートに示されている一部又はすべてのステップは、ハードウェアで実現でき、フローチャートに示されている一部又はすべてのステップは、ソフトウェアで実現できる。帯域内シグナリングタイプAのシグナリングフィールドの一例は、次の<表8>のように示される。
【0290】
L1_POST_DELTA:この24ビットフィールドは、QAMセルで、L1_PREシグナリングを伝達する最後のセルと現在のNGHフレームで開始される最初の論理フレームの最初のセルとの間のギャップを表す。値(HEX)FFFFFFは、現在のNGHフレームでいかなる新たな論理フレームも開始しないことを表す。
【0291】
LC_NEXT_FRAME_DELTA:この24ビットフィールドは、現在のNGHフレームと現在の論理チャンネルを伝達する次のNGHフレームとの間のT周期での相対的タイミングを表す。
【0292】
PLP_RF_IDX_NEXT:LC type D PLPに対して、この3ビットフィールドは、PLPが発生する次の論理フレーム以後の論理フレームで現在のPLPのRF周波数を表す。この値は、L1_PREのパラメータLC_CURRENT_FRAME_RF_IDXによって解析されなければならない。LCタイプA,B,及びCに対して、このフィールドは、将来的な使用のために予約される。
【0293】
図31は、本発明の一部実施形態による伝達システムにおけるデータサービスの伝送に対するステージでの全体的な概要(overview)3100を示す。
【0294】
図31を参照すると、第1のステージは、転送階層3120にわたって、送信階層3130でサービス階層3110からデータPLP3132にデータサービス3112をマッピングさせることを含む。多様なデータサービス3112は、転送階層3120でコンポーネント部分3122に分割され、PLP3132にマッピングされる。転送階層3120での制御データ3124は、送信階層3130で一つ以上の共通PLP3134にマッピングされる。
【0295】
第2のステージは、本発明の一部の実施形態により、PLP3132,3134を論理チャンネル、例えば第1のLC(LC1)3136及び第2のLC(LC2)3138にマッピングする。
【0296】
第3のステージは、本発明の一部の実施形態により、スケジューラ/マルチプレクサ3140を介して伝達システムにより使用される異なるRFチャンネル3142で物理フレームで論理チャンネル3136,3138のマッピングを提供する。
【0297】
本発明の一部側面がDVB-NGHシステムに対するその適用可能性を参照して説明したが、本発明は、このような特定無線ブロードキャスティングシステムに限定されないことがわかる。上記したコンセプトは、他の無線ブロードキャスティング及び通信システムに適用されることが予想される。また、本発明の一部の実施形態は、既存のDVB-T2システムに“ピギーバック”されるDVB-NGHシステムに対するその適用可能性を参照し、例えば以前に割り当てられた未来拡張フィールド(FEF)を使用して説明したが、本発明は、新たな独立型(stand-alone)DVB-NGH(又は類似した)システムに適用されることが理解できる。
【0298】
従来のDVB-T2システムを考慮して、上記したようなコンセプトは、(受信側及び送信側の各々で各プロセッサの構成及び制御、プロセッシング符号化あるいは復号化により)少なくとも一つ以上の下記のような新規な特徴を説明する。
【0299】
・QAMセルで固定した能力を有する論理フレーム及びL1-POST(論理シグナリング)、共通PLP、データPLP(異なるタイプの順序で)、補助ストリーム、及びダミーセルを有する論理フレーム構造のコンセプト、
・構成可能シグナリングが1個の論理スーパーフレーム内で定数に維持される論理スーパーフレーム及び他の特性のコンセプト、
・同期目的のためにLCの論理フレームごとに伝達されるISSYフィールド(帯域内タイプB)、
・時間及び周波数ドメインを通じるバンドリング及びスライスを有する論理フレームと、この論理フレーム及び論理スーパーフレームを物理フレームにマッピングするための異なる論理チャンネルタイプのコンセプト、
・論理チャンネルグループのコンセプト、ここでグループのすべてのLCメンバーが一つの単一チューナを用いて受信するように時間で十分に分離されるそのスロットを有する(例えば、受信器が1個の単一チューナで同一のLCグループの多重LCを受信することができる)、
【0300】
<上記のすべての特徴を反映する最適化した階層1のシグナリング>
したがって、本発明の上記したような実施形態は、以上に説明したような新たなコンセプト及び/又は新たなデータフォーマットの各々を可能にするために送信及び受信側で両方とも信号プロセッサを説明する。各信号プロセッサは、プロセッサの動作に関連した方法と共に、送信又は受信通信ユニットについて説明される。これら動作方法は、任意のコンピュータ基盤の製品により遂行される実行可能なコードで格納され得る。
【0301】
図32は、本発明の実施形態により、信号プロセッシング機能を実現するように採用される代表的なコンピュータシステム3200を示す。このようなタイプのコンピュータシステムは、アクセスポイント及び無線通信ユニットで使用できる。また、関連技術分野の当業者は、他のコンピュータシステム又は構造を用いて本発明の実施形態を実現する方法を認識する。
【0302】
図32を参照すると、コンピュータシステム3200は、例えばデスクトップ、ラップトップあるいはノートブックコンピュータ、携帯用コンピュータデバイス(PDA、携帯電話、パームトップ(palmtop)など)、メインフレーム、サーバ、クライアント、あるいは他の任意のタイプの所定のアプリケーション又は環境に対して、実施形態又は適合できる特別なあるいは一般的な目的のコンピュータデバイスを表すことができる。コンピュータシステム3200は、プロセッサ3204のような一つ以上のプロセッサを含むことができる。プロセッサ3204は、例えばマイクロプロセッサ、マイクロ制御器、あるいは他の制御モジュールのような一般的なあるいは特定目的のプロセッシングエンジンを用いて実現することができる。この実施形態で、プロセッサ3204は、バス3202又は他の通信媒体に接続する。
【0303】
また、コンピュータシステム3200は、情報とプロセッサ3204により実行される命令を格納するランダムアクセスメモリ(RAM)又は他の動的メモリのようなメインメモリ3208を含むことができる。また、メインメモリ3208は、プロセッサ3204により実行される命令の実行中に臨時変数又は他の中間情報を格納するために使用することができる。コンピュータシステム3200は、プロセッサ3204に対する固定情報及び命令を格納する読み取り専用メモリ(Read Only Memory:ROM)あるいはバス3202に接続される他の静的(static)格納デバイスを含むことができる。
【0304】
さらに、コンピュータシステム3200は、例えばメディアドライブ3212と除去可能な格納インターフェース3220を含む情報格納システム3210を含むことができる。メディアドライブ3212は、ハードディスクドライブ、フロッピー(登録商標)ディスクドライブ、磁気テープドライブ(magnetic tape drive)、光ディスクドライブ、コンパクトディスク(CD)あるいはデジタルビデオドライブ(DVD)読み取り又は書き込みドライブ(R又はRW)、あるいは他の除去可能あるいは固定したメディアドライブのような固定したあるいは除去可能な格納媒体をサポートするドライブあるいは他のメカニズムを含むことができる。格納メディア3218は、例えばハードディスク、フロッピー(登録商標)ディスク、磁気テープ、光ディスク、CD又はDVD、あるいは他のメディアドライブ3212により、固定あるいは読み取り及び書き込み除去可能なメディアを含むことができる。図示されている実施形態のように、格納メディア3218は、特定コンピュータソフトウェアあるいはそれに格納されたデータを有するコンピュータ読み取り可能格納媒体を含むことができる。
【0305】
他の実施形態において、情報格納システム3210は、コンピュータプログラムあるいは他の命令語あるいはデータがコンピュータシステム3200にローディングされることを許容する他の類似したコンポーネントを含むことができる。上記のようなコンポーネントは、例えば、除去可能格納ユニット3222、プログラムカートリッジ、カートリッジインターフェースのようなインターフェース3220、除去可能なメモリ(例えば、フラッシュメモリ又は他の除去可能メモリモジュールとメモリスロット、他の除去可能格納ユニット3222、及びソフトウェア及びデータを除去可能格納ユニット3218からコンピュータシステム3200に伝送されることを許容するインターフェース3220を含むことができる。
【0306】
また、コンピュータシステム3200は、通信インターフェース3224を含むことができる。通信インターフェース3224は、コンピュータシステム3200と外部デバイスとの間でソフトウェア及びデータを伝送させるように許容するために使用することができる。通信インターフェース3224の実施形態は、モデム、(イーサネット(登録商標)(Ethernet(登録商標))あるいは他のNICカードのような)ネットワークインターフェース、(例えば、ユニバーサルシリアルバス(Universal Serial Bus:USB)ポートのような)通信ポート、PCMCIAスロット及びカードなどを含むことができる。通信インターフェース3224を介して伝送されるソフトウェア及びデータは、電気的、電磁気的、及び光学的になる信号、あるいは通信インターフェース3224により受信される他の信号の形態である。これら信号は、チャンネル3228を介して通信インターフェース3224に提供される。このチャンネル3228は、信号を伝達し、無線媒体、有線又はケーブル、光ファイバ、あるいは他の通信媒体を用いて実現することができる。チャンネルの一部例は、電話ライン、移動電話リンク、RFリンク、ネットワークインターフェース、ローカルあるいは広域ネットワーク、及び他の通信チャンネルを含む。
【0307】
本願で、用語“コンピュータプログラム製品”、“コンピュータ読み取り可能媒体”は、一般的に一例として、メモリ3208、格納デバイス3210、又は格納ユニット3222のようなメディアを参照して使用することができる。これら及びコンピュータ読み取り可能メディアの他の形態は、プロセッサが特定動作を遂行することを招く、プロセッサ3204により使用される一つ以上の命令語を格納することができる。一般的に(コンピュータプログラムあるいは他のグルーピングの形態でグルーピングされる)‘コンピュータプログラムコード’と称される命令語は、実行される場合、コンピュータシステム3200が本発明の実施形態の機能を遂行することを可能にする。コードは、直接にプロセッサがこのためにコンパイルされる、及び/あるいはこのために他のソフトウェア、ハードウェア、及び/又はファームウェアエレメント(例えば、標準機能を実行するライブラリ(library))と組み合わせる特定動作を実行することを招くことに留意しなければならない。
【0308】
エレメントがソフトウェアを用いて実現される一実施形態で、ソフトウェアは、コンピュータ読み取り可能媒体に格納でき、例えば除去可能格納ドライブ3222、ドライブ3212又は通信インターフェース3224を用いてコンピュータシステム3200にローディングできる。制御モジュール(この実施形態では、ソフトウェア命令語あるいはコンピュータプログラムコード)は、プロセッサ3204により実行される場合、プロセッサ3204は、ここで説明されることと共に本発明の機能を遂行するようになる。
【0309】
特に、上記したような本発明のコンセプトは、上記したような動作のうちいずれか一つを遂行するために構成される信号プロセッサを含む集積回路に対する半導体製造社により適用可能であることが予想される。さらに、本発明のコンセプトは、無線分散に対する信号を構成し、処理し、符号化及び/又は復号化する回路に適用することができる。また、例えば、半導体製造社は、デジタル信号プロセッサのような独立型デバイス、あるいは注文型半導体(Application-Specific Integrated Circuit:ASIC)及び/又は他のサブシステムエレメントの設計の際に、本発明のコンセプトを採用することができる。
【0310】
明瞭性の目的のために、上記説明は、異なる機能ユニット及びプロセッサを参照して本発明の実施形態を説明したことがわかる。しかしながら、異なる機能ユニットあるいはプロセッサ間の機能性の適合した分散は、例えば、信号プロセッサ1250,1252に関して、本発明から外れずに使用できることは明らかである。例えば、分離されたプロセッサ又は制御器により実行される図示の機能性は、同一のプロセッサあるいは制御器により実行され得る。それによって、特定の機能ユニットに対する参照番号は、厳格な論理あるいは物理構造又は組織の指示よりは、上記したような機能性を提供する適合した手段に対する参照番号として理解する。
【0311】
本発明の側面は、ハードウェア、ソフトウェア、ファームウェアあるいはそれらの組み合わせを含む適合した形態で実現することができる。本発明は、選択的に、少なくとも部分的には、一つ以上のデータプロセッサで実行されるコンピュータソフトウェア及び/又はデジタル信号プロセッサあるいはFPGAデバイスのような構成可能モジュールコンポーネントとして実現することができる。したがって、エレメント及び本発明の一実施形態のコンポーネントは、適合した方式を使用して物理的に、機能的に、論理的に実現することができる。実質的に、機能性は、単一ユニット、あるいは複数のユニットを用いて、あるいは他の機能ユニットの一部として実現することができる。
【0312】
本発明が一部の実施形態に関連して説明しても、ここでは特定形態に限定されるように意図されない。その上、本発明の権利範囲は、以下の請求項により制限される。その上、特徴が特定実施形態と関連して説明されても、本発明の技術分野の当業者は、上記したような実施形態の多様な特徴が本発明により結合されることを認識できる。請求項で、‘含む(comprising)’との用語は、他のエレメントあるいはステップの存在を排除しない。
【0313】
さらに、別途にリストされてあっても、複数の手段と、エレメントあるいは方法のステップは、例えば単一ユニットあるいはプロセッサにより実現することができる。追加的に、個別的な特徴が異なる請求項に含まれても、これらは可能なかぎり有利に組み合わせられ、相互に異なる請求項での包含事項は、特徴の結合が実現できず、及び/あるいは有利でないことを暗示しない。また、1個のカテゴリーの請求項で特徴の包含事項は、該当カテゴリーに対する限定を暗示しないが、その特徴は、適合した場合、他の請求項のカテゴリーにも同一に適用可能であることを表す。
【0314】
したがって、デジタルビデオ放送システムにおけるデータストリームの送信及び受信に関連した信号プロセッサ、通信ユニット、通信システム、及びその方法が説明され、従来技術の上記したような短所が格段に緩和される。
【0315】
以上、本発明の詳細な説明において具体的な実施形態に関して説明したが、特許請求の範囲を外れない限り、様々な変更が可能であることは、当該技術分野における通常の知識を持つ者には明らかである。したがって、本発明の範囲は、前述の実施形態に限定されるものではなく、特許請求の範囲の記載及びこれと均等なものに基づいて定められるべきである。