【実施例】
【0023】
図1は、本発明の一実施形態による電圧制御電流源によるバス調整システム100(システム100)の一実施例を示している。システム100は、ブーストコンバータ102、PWMコントローラ116、電流源104(電流ISPを含む)、ソース側キャパシタンス128、及び電気バス106を含んでいる。
【0024】
ブーストコンバータ102は、インダクタ110、同期スイッチ112(ハイサイド同期整流器/FET)、及びアース側スイッチ114(ローサイドFET)を含んでいる。ブーストコンバータ102を使用して、例えば限定しないが、宇宙機の電力バス、ブースト側コンデンサ、衛星の電力バス、船舶の電気バス、自動車の電気バス、電力網の電気バス、バッテリーバスなどを調整することができる。ブーストコンバータ102は、電流源104に連結される。更に、ブーストコンバータ102は、電気バス106に連結されて、電気バス106の電圧を電流源104の電圧より高くなるまで上昇させる。
【0025】
アース側スイッチ114は、インダクタ110に連結されて、PWMコントローラ116によって制御されるPWMデューティサイクルに従って、インダクタ110をアース108に連結しる。これについては
図2を参照して後述で更に詳しく説明する。アース側スイッチ114は、例えば限定しないが、電界効果トランジスタ(FET)、強制転流同期整流器などを含むことができる。アース側スイッチ114がオンになると、電流D×ISPはインダクタ110を通ってアース108へと流れる。
【0026】
同期スイッチ112は、インダクタ110に連結されて、PWMデューティサイクルに従ってインダクタ110を電気バス106に連結することにより、電気バス106にバス電流を送達する。これについては
図2を参照して後述で更に詳しく説明する。同期スイッチ112は、例えば限定しないが、流同期整流器スイッチ、双方向同期整流器スイッチ、強制転流同期整流器、電界効果トランジスタ(FET)などを含むことができる。同期スイッチ112がオンになると、電流(1−D)×ISPは電気バス106へと流れる。
【0027】
PWMコントローラ116は、同期スイッチ112に連結されて、バス電流が電流源104由来のソース電流及びPWMデューティサイクルと比例するようにPWMデューティサイクルを制御する。このようにして、PWMコントローラ116は、第1のPWMデューティサイクル信号122(PWM’)を生成することにより同期スイッチ112を駆動し、且つ第2のPWMデューティサイクル信号124(PWM)を生成することによりアース側スイッチ114を駆動する。第1のPWMデューティサイクル信号122(PWM’)は第1のPWMデューティサイクルを含み、第2のPWMデューティサイクル信号124(PWM)は第2のPWMデューティサイクルを含む。
図1に示される実施形態では、第2のPWMデューティサイクルは第1のPWMデューティサイクルの逆であり、第1のPWMデューティサイクルは第2のPWMデューティサイクルの逆である。PWMコントローラ116が平均してデューティサイクルDで動作するとき、電流D×ISPはアース側スイッチ114を介してアース108に分路され、電流(1−D)×ISPは電気バス106に受け渡される。PWMコントローラ116については、
図2を参照して後述で更に詳細に説明する。
【0028】
ソース側のキャパシタンス128は、インダクタ110に連結されて、例えば限定しないが、リップルコンデンサ、電流源104のリップルを減少させるように動作可能なコンデンサなどを含むことができる。一般に、ソース側のキャパシタンス128は、電流源104(例えば、ソーラアレイ)を越えた地点に配置されて、電流源104のリップル電圧を低下させることができる。しかしながら、ソース側のキャパシタンス128とブーストコンバータ102内のインダクタ110とはLCフィルタを形成することができ、このフィルタは、LCフィルタが減衰されない状態で低周波数負荷の遷移状態が生じるとリンギングを生じる傾向を有する。
【0029】
種々の実施形態を使用して、LCフィルタを減衰させることができる。例えば、一実施形態では、LCフィルタは過剰に減衰されて、したがってリンギングを生じない。しかしながら、過剰に減衰されたLCフィルタの減衰キャパシタは、高周波数のバイパスキャパシタの3倍以上の大きさを有さなければならず、且つバスの全電圧について評価されなければならないため、この減衰キャパシタは非常に大きなものになる。別の実施形態では、電流モード制御を使用することにより、ピーク電流フィードバックループを用いて(例えば、ピーク電流フィードバック信号222(lpk FB)を用いて)LCフィルタを減衰させる。これについては
図2を参照して後述で更に詳細に説明する。また別の実施形態は、ソース側キャパシタンス128と並行に連結されたRC回路を使用してLCフィルタを減衰させることを含む。これについては
図2を参照して後述で更に詳細に説明する。
【0030】
電流源104は電源を含むことができ、この電源は、限定しないが例えば、バッテリ、ソーラアレイ、燃料電池、衛星及び宇宙機航空機用電源、船上発電機、列車電源、潜水艦電源、ソーラ及びエンジン電池式の長期的な航空機及び宇宙機(有人及び無人)用電源、反応炉の過熱熱電対などである。
【0031】
電気バス106は、例えば限定しないが、ブースト側キャパシタ、衛星の電力バス、船舶の電気バス、自動車の電気バス、電力網の電気バス、バッテリのバスなどを含むことができる。電気バス106は、周波数切り換えリップルを許容可能なレベルまで低下させるために、追加の出力キャパシタ126又はLCフィルタ(図示しない)も含むことができる。
【0032】
図2は、本発明の一実施形態による電圧制御電流源によるバス調整システム200(システム200)の一実施例を示している。システム200は、ブーストコンバータ102(
図1)、及びフィードバック制御ループ224を含む。フィードバック制御ループ224は、電圧フィードバック増幅器202、PWMコントローラ116(
図1)、及び内側フィードバックループ212を含む。
【0033】
ブーストコンバータ102は、ブーストコンバータ102のインダクタ110(
図1)とソース側キャパシタンス128とによって形成されるLCフィルタを減衰及び/又は安定化させる。ブーストコンバータ102はピーク電流フィードバック信号222(lpk FB)を含むことができる。
【0034】
電圧フィードバック増幅器202は、電気バス106の電圧をサンプリングして、電気バス106の電圧に基づいて電圧フィードバック信号204を生成する。基準電圧を含むデューティサイクルフィードバック信号208は、差分回路206によって電圧フィードバック信号204から抽出されて、エラー信号210(
図1のERR)を供給する。
【0035】
PWMコントローラ116は、(ブーストコンバータ102からの)ピーク電流フィードバック信号222と、上述のエラー信号210(
図1のERR)とを受け取る。次いで、PWMコントローラ116は、第1のPWMデューティサイクル信号122(
図1)及び第2のPWMデューティサイクル信号124(
図1)を含むフィードバック制御信号を生成する。フィードバック制御信号124はブーストコンバータ102を制御し、次いでブーストコンバータ102は、電気バス106(
図1)に送達されるバス電流を制御する。これにより、フィードバック制御信号214のPWMデューティサイクルはピーク電流フィードバック信号222に比例し、電気バス106に送達されるバス電流はエラー信号210(電圧エラー信号/ERR)に比例する。上述のように、エラー信号210(ERR)は、電気バス106の電圧を含む電圧フィードバック信号204と、基準電圧を含むデューティサイクルフィードバック信号208との比較に基づいている。一実施形態では、PWMコントローラ116はアナログフィードバック制御信号(図示しない)を生成することができ、PWMは、このアナログフィードバック制御信号を変調することによりアナログフィードバック制御信号に比例するフィードバック制御信号214を生成する。
【0036】
内側フィードバックループ212は、クリッパ216及びローパスフィルタ220を含んでいる。内側フィードバックループ212は、フィードバック制御信号214のPWMデューティサイクル(例えば、第1のPWMデューティサイクル信号122及び/又は第2のPWMデューティサイクル信号124)を平均する。クリッパ216は、フィードバック制御信号214を受け取って、平均してフィードバック制御信号214のPWMデューティサイクルに比例する波形(例えば、0〜5Vのピーク矩形波)を生成し、クリップされた信号218を生成する。ローパスフィルタ220は、このクリップされた信号218を受け取って、フィードバック制御信号214のデューティサイクルに比例するデューティサイクルフィードバック信号208(D FB)を生成する。ローパスフィルタ220はフィードバック制御信号214を平均するように機能し、したがってデューティサイクルフィードバック信号208はフィードバック制御信号214のPWMデューティサイクルの平均電圧に基づく基準電圧を含む。
【0037】
電流源104が不変の電流源(例えば、ソーラパネル)から構成される場合、フィードバック制御ループ224は、電気バス106に比例する電流(1−D)を送達することができる。フィードバック制御ループ224の利得は、電流源104の電流の振幅に比例して変動する。したがって、電圧制御電流源によるバス調整システム200は、電圧制御電流源として機能する。
【0038】
電圧制御電流源によるバス調整システム200(PWMエラー増幅器)は、エラー信号210(即ち、電圧フィードバック信号204−デューディサイクルフィードバック信号208)を強制的に約0Vにする。(1−D)は、電気バス106に送達される電流に比例しているため、エラー信号210は、電気バス106に送達される電流に比例する。LCフィルタを安定化させるために使用されるフィードバック制御ループ224は、電流モード制御でなくともよい。LCフィルタ安定化のための他の方法は、例えば限定しないが、コンデンサの入力電流のAC電流フィードバック、インダクタの集中電圧、インダクタの直流電流の測定などである。
【0039】
一実施形態では、LCフィルタは、ソース側キャパシタンス128と並列に連結されるRC回路(図示しない)を用いて減衰される。一般に、RC回路の減衰コンデンサは、RC回路とLCフィルタの共鳴周波数とを併せた周波数の方が有意に低くなるように、ソース側キャパシタンス128(LCフィルタのコンデンサ)より有意に大きくなければならない。したがって、このように有意に低い周波数においてLCフィルタを減衰するために、減衰コンデンサと直列のRC回路のレジスタを選択しなければならない。
【0040】
図3は、本発明の一実施形態による電圧制御電流源によるバス調整プロセス300を示す例示的なフロー図である。プロセス300に関連して実行される種々のタスクは、フトウェア、ハードウェア、ファームウェア、又はそれらの何らかの組み合わせにより、機械的に実行される。プロセス300は任意の数の追加タスク又は代替タスクを含むことができ、
図3に示されるタスクは図示される順序で実行されなくともよく、プロセス300は、本明細書には記載しない追加的な機能性を有するもっと包括的な手順又はプロセスに組み込むことができる。
【0041】
説明を目的として、プロセス300に関する以下の記載では、
図1及び2に関連して上述した要素に言及することがある。実用的な実施形態では、プロセス300の複数の部分は、システム100〜200の様々な要素、例えば、ブーストコンバータ102、電流源104、電気バス106、電圧フィードバック増幅器202、PWMコントローラ116、クリッパ216、ローパスフィルタ220などによって実行される。プロセス300は、
図1及び2に示された実施形態に類似の機能、材料、及び構造を有しうる。したがって、共通の特徴、機能、及び要素についてはここでは繰返して説明しない。
【0042】
プロセス300は、インダクタ110及びアース108に連結されたアース側スイッチ114においてチャージ電流(D×ISP、例えば
図1を参照)を受け取ることにより開始される(タスク302)。
【0043】
続いて、プロセス300は、第2のPWMデューティサイクル信号124に従って、アース側スイッチ114を用いてチャージ電流(D×ISP、例えば
図1を参照)を制御する(タスク304)。第2のPWMデューティサイクル信号124は、インダクタ110をチャージするためのチャージ用PWMデューティサイクルとして機能する第2のPWMデューティサイクルを含む。
【0044】
続いて、プロセス300は、チャージ電流(D×ISP、例えば
図1を参照)によりインダクタ110をチャージする(タスク306)。
【0045】
続いて、プロセス300は、電流源104から電気バス106に送達されたバス電流((1−D)×ISP、
図1)を、第1のPWMデューティサイクル信号122に従って、同期スイッチ112を用いて制御する(タスク308)。上述のように、第1のPWMデューティサイクル信号122は、第1のPWMデューティサイクルを含む。
【0046】
続いて、プロセス300は、電気バス106の電圧と、基準電圧を含むデューティサイクルフィードバック信号208との比較に基づくエラー信号210と比例するように、PWMデューティサイクルを制御する(タスク310)。
【0047】
続いて、プロセス300は、バス電流((1−D)×ISP、
図1)を用いて電気バス106を電圧調整する(タスク312)。
【0048】
図4は、本発明の一実施形態による電圧制御電流源によるバス調整器の動作プロセス400を示す例示的なフロー図である。プロセス400に関連して実行される種々のタスクは、ソフトウェア、ハードウェア、ファームウェア、又はそれらの何らかの組み合わせにより、機械的に実行される。プロセス400は任意の数の追加タスク又は代替タスクを含むことができ、
図4に示されるタスクは図示される順序で実行されなくともよく、プロセス400は、本明細書には記載しない追加的な機能性を有するもっと包括的な手順又はプロセスに組み込むことができる。
【0049】
説明を目的として、プロセス400に関する以下の記載では、
図1及び2に関連して上述した要素に言及することがある。実用的な実施形態では、プロセス400の複数の部分は、システム100〜200の様々な要素、例えば、ブーストコンバータ102、電流源104、電気バス106、電圧フィードバック増幅器202、PWMコントローラ116、クリッパ216、ローパスフィルタ220などによって実行される。プロセス400は、
図1及び2に示された実施形態に類似の機能、材料、及び構造を有しうる。したがって、共通の特徴、機能、及び要素についてはここでは繰返して説明しない。
【0050】
プロセス400は、チャージ電流(D×ISP、
図1)を受け取ることにより開始される(タスク402)。
【0051】
続いて、プロセス400は、インダクタ110及びアース108に連結されたアース側スイッチ114を用いて、第2のPWMデューティサイクル信号124に従って、インダクタ110を通るチャージ電流(D×ISP、
図1)の流れを制御する(タスク404)。上述のように、第2のPWMデューティサイクル信号124は、インダクタ110をチャージするためのチャージ用PWMデューティサイクルである第2のPWMデューティサイクルを含んでいる。
【0052】
続いて、プロセス400は、インダクタ110及びアース側スイッチ114に連結された同期スイッチ112などの同期スイッチを用いて、第1のPWMデューティサイクル信号122に従って、インダクタ110から電気バス106へのインダクタ電流((1−D)×ISP、
図1)の流れを制御する(タスク406)。上述のように、第1のPWMデューティサイクル信号122は、フィードバック制御信号214に比例する第1のPWMデューティサイクルを含み、フィードバック制御信号214のPWMデューティサイクルは、ピーク電流フィードバック信号222に比例する。
【0053】
続いて、プロセス400は、同期スイッチ112に電気バス106を連結する(タスク408)。電気バス106へのバス電流は、電気バス106の電圧フィードバック信号204と、基準電圧を含むデューティサイクルフィードバック信号208との比較(例えば、差分回路206による)に基づくエラー信号210に比例している。
【0054】
続いて、プロセス400は、フィードバック制御ループ224を使用して、インダクタ110及びソース側キャパシタンス128を含むLCフィルタを減衰させる(タスク410)。
【0055】
或いは、プロセス400は、続いて、ソース側キャパシタンス128に並列に連結されたRC回路を使用してLCフィルタを減衰させる(タスク412)。
【0056】
このように、本発明の実施形態は、過電流がアースに分路された電源調整器に基づく電圧−電流伝達関数を提供する。このようにして、電圧制御電流源により、電流源のバンクを使用したときに種々の動作モード間に認識可能な変化が生じることを防止しながら、従来の設計と比較して、安定化及び負荷の過渡変化への応答の迅速化が容易に行えるバス調整システムが提供される。
【0057】
上記の記載は、互いに「接続された」又は「連結された」要素、ノード、又は機構に言及している。本明細書において使用される場合、特に断らない限り、「接続された」とは、必ずしも機械的にではないが、一の要素/ノード/機構が別の要素/ノード/機構に直接に接合されている(又は直接に連絡している)ことを意味する。同様に、特に断らない限り、「連結された」とは、必ずしも機械的にではないが、一の要素/ノード/機構が別の要素/ノード/機構に直接又は間接に接合されている(或いは直接又は間接に連絡している)ことを意味する。このように、
図1及び2は要素の例示的な配置を示しているが、本発明の一実施形態には追加的な介在要素、素子、機構、又は構成要素が存在してよい。
【0058】
本明細書において使用される語句及び表現とその変形形態は、特に断らない限り、限定的にではなく、非限定的に解釈されるべきである。例えば、「含む」という語句は、「限定せずに含む」などを意味し、「例」という語句は、議論されているアイテムの包括的又は限定的なリストではなく、その例示的な事例を提供するものであり、「従来の」、「常套的な」、「通常の」、「標準的な」、「既知の」といった形容詞、及び同様の意味を有する語句は、アイテムを所与の期間に限定するものでも、所与の時点で利用可能なアイテムに限定するものでもなく、現在、又は未来のいずれかの時点で利用可能又は既知でありうる従来の、常套的な、通常の、又は標準的な技術を包含する。
【0059】
同様に、接続詞「及び」で連結されたアイテムのグループは、グループ内に存在するそれらのアイテムの各々すべてが必要であることを意味しているのではなく、特に断らない限り、「及び/又は」で連結されていると理解されるべきである。同様に、接続詞「又は」で連結されたアイテムのグループは、グループ内のアイテムが互いに排他的であることを意味しているのではなく、特に断らない限り、「及び/又は」で連結されていると理解されるべきである。更に、本発明のアイテム、要素、又は構成要素が単数形で記載又は特許請求されているとしても、単数形に限ることが特に明記されていない限り、複数形もその範囲内に含まれると考慮される。「一又は複数の」、「少なくとも」、「限定しないが」、又はその他同様の表現のような、意味を拡大する語句及び表現は、そのような広義の表現が使用されない場合には狭義の事例が意図される又は必要とされることを意味するものではない。
【0060】
本発明は、以下の実施形態にも関する。
1.バス調整のための電圧制御電流源であって、
電流源に連結するように動作可能なインダクタと、
インダクタに連結されて、第1のパルス幅変調(PWM)デューティサイクルに従ってインダクタを電気バスに連結することにより、バス電流を電気バスに送達するように動作可能な同期スイッチと、
同期スイッチに連結されたPWMコントローラであって、バス電流が電流源由来のソース電流及び第1のPWMデューティサイクルに比例するように、第1のPWMデューティサイクルを制御するように動作可能なPWMコントローラと
を備えている電圧制御電流源。
2.第1のPWMデューティサイクルがフィードバック制御信号に比例している、実施形態1に記載のバス調整のための電圧制御電流源。
3.バス電流が、電気バスの電圧と基準電圧との比較に基づくエラー信号に比例している、実施形態1に記載のバス調整のための電圧制御電流源。
4.基準電圧がPWMデューティサイクルの平均電圧に基づいている、実施形態3に記載のバス調整のための電圧制御電流源。
5.同期スイチが同期整流器スイッチである、実施形態1に記載のバス調整のための電圧制御電流源。
6.電気バスが、宇宙機の電力バス、衛星の電力バス、船舶の電気バス、自動車の電気バス、及び電力網の電気バスからなる群より選択される少なくとも一つから構成される、実施形態1に記載のバス調整のための電圧制御電流源。
7.インダクタに連結されて、PWMコントローラによって制御される第2のPWMデューティサイクルに従ってインダクタをアースに連結するように動作可能なアース側スイッチを更に備えている、実施形態1に記載のバス調整のための電圧制御電流源。
8.インダクタに連結された電流源を更に備えている、実施形態1に記載のバス調整のための電圧制御電流源。
9.電気バスの電圧が電流源の電圧より高い、実施形態8に記載のバス調整のための電圧制御電流源。
10.電流源が、ソーラアレイ、バッテリ、燃料電池、及び発電機からなる群より選択される少なくとも一つの電源から構成される、実施形態8に記載のバス調整のための電圧制御電流源。
11.インダクタに連結されたコンデンサを更に備えており、このコンデンサが、インダクタに連結された電流源上のリップルを減少させるように動作可能である、実施形態1に記載のバス調整のための電圧制御電流源。
12.電圧制御電流源によるバス調整方法であって、
第1のPWMデューティサイクルに従って、同期スイッチを用いて、電流源から電気バスに送達されるバス電流を制御することと、
電気バスの電圧と基準電圧との比較に基づくエラー信号に比例するように、第1のPWMデューティサイクルを制御することと
を含む方法。
13.同期スイッチが同期整流器スイッチである、実施形態12に記載の方法。
14.インダクタ及びアースに連結されたアース側スイッチにおいてチャージ電流を受け取ることと、
第1のPWMデューティサイクルの逆に基づくアース側スイッチを用いてチャージ電流を制御することと、
チャージ電流でインダクタをチャージすることと
を含む、実施形態12に記載の方法。
15.バス電流を用いて電気バスを電圧制御することを更に含む、実施形態12に記載の方法。
16.電圧制御電流源によりバス調整器を動作させる方法であって、
チャージ電流を受け取ることと、
インダクタ及びアースに連結されたアース側スイッチを用いて、第2のPWMデューティサイクルに従って、インダクタを通るチャージ電流の流れを制御することと、
インダクタ及びアース側スイッチに連結された同期スイッチを用いて、フィードバック制御信号に比例する第1のPWMデューティサイクルに従って、インダクタ由来のインダクタ電流の流れを制御することと
を含む方法。
17.電気バスを同期スイッチに連結することを更に含む、実施形態16に記載の方法。
18.電気バスへのバス電流が、電気バスの電圧と基準電圧との比較に基づくエラー信号に比例する、実施形態17に記載の方法。
19.内側フィードバックループによりLCフィルタを減衰させることを更に含み、このLCフィルタがインダクタとソース側キャパシタンスとを含む、実施形態16に記載の方法。
20.ソース側キャパシタンスと並列に連結されたRC回路を用いて、インダクタ及びソース側キャパシタンスを含むLCフィルタを減衰させることを更に含む、実施形態16に記載の方法。
また、本願は以下に記載する態様を含む。
(態様1)
バス調整のための電圧制御電流源であって、
電流源に連結するように動作可能なインダクタと、
インダクタに連結されて、第1のパルス幅変調(PWM)デューティサイクルに従ってインダクタを電気バスに連結することにより、電気バスにバス電流を送達するように動作可能な同期スイッチと、
同期スイッチに連結されたPWMコントローラであって、バス電流が、電流源由来のソース電流及び第1のPWMデューティサイクルに比例するように、第1のPWMデューティサイクルを制御するように動作可能なPWMコントローラと
を備えている、バス調整のための電圧制御電流源。
(態様2)
第1のPWMデューティサイクルがフィードバック制御信号に比例している、態様1に記載のバス調整のための電圧制御電流源。
(態様3)
バス電流が、電気バスの電圧と基準電圧との比較に基づくエラー信号に比例しており、且つ
基準電圧がPWMデューティサイクルの平均電圧に基づいている、
態様1に記載のバス調整のための電圧制御電流源。
(態様4)
同期スイッチが同期整流器スイッチであり、且つ
電気バスが、宇宙機の電力バス、衛星の電力バス、船舶の電気バス、自動車の電気バス、及び電力網の電気バスからなる群より選択される少なくとも一つから構成されている、
態様1に記載のバス調整のための電圧制御電流源。
(態様5)
インダクタに連結されて、PWMコントローラによって制御される第2のPWMデューティサイクルに従ってインダクタをアースに連結するように動作可能なアース側スイッチを更に備えている、態様1に記載のバス調整のための電圧制御電流源。
(態様6)
インダクタに連結された電流源を更に備えており、且つ
電気バスの電圧が電流源の電圧より高い、
態様1に記載のバス調整のための電圧制御電流源。
(態様7)
電流源が、ソーラアレイ、バッテリ、燃料電池、及び発電機からなる群より選択される少なくとも一つの電源から構成されている、態様6に記載のバス調整のための電圧制御電流源。
(態様8)
インダクタに連結されたコンデンサであって、インダクタに連結された電流源上のリップルを減少させるように動作可能であるコンデンサを更に備えている、態様1に記載のバス調整のための電圧制御電流源。
(態様9)
電圧制御電流源によるバス調整方法であって、
第1のPWMデューティサイクルに従って、同期スイッチを用いて、電源から電気バスに送達されるバス電流を制御することと、
電気バスの電圧と基準電圧との比較に基づくエラー信号に比例するように、第1のPWMデューティサイクルを制御することと
を含む方法。
(態様10)
同期スイッチが同期整流器スイッチである、態様9に記載の方法。
(態様11)
インダクタ及びアースに連結されたアース側スイッチにおいてチャージ電流を受け取ることと、
第1のPWMデューティサイクルの逆に基づくアース側スイッチを用いてチャージ電流を制御することと、
チャージ電流でインダクタをチャージすることと
を含む、態様9に記載の方法。
(態様12)
バス電流を用いて電気バスを電圧制御することを更に含む、態様9に記載の方法。