【文献】
Huawei, HiSilicon,Discussion on TDD-FDD CA with more than two carriers,3GPP TSG RAN WG1 Meeting #74bis R1-134349,2013年10月11日,セクション1−セクション3
【文献】
CATT,UCI transmission for FDD-TDD carrier aggregation,3GPP TSG RAN WG1 Meeting #74bis R1-134097,2013年10月11日,セクション1−セクション5
(58)【調査した分野】(Int.Cl.,DB名)
前記判定部は、前記FDDセルで送信される下り制御情報に含まれるDAIを用いて、前記FDDセルの各DLサブフレームで送信されるDL信号の検出を制御することを特徴とする請求項1に記載のユーザ端末。
TDDの特定のULサブフレームに割当て可能となるFDDセルのDLサブフレーム数が所定値より大きくなる場合、前記送信部は、前記FDDセルで送信する下り制御情報に含まれるDAIが所定値に達した際に、FDDセルの残りのDLサブフレームで送信されるDL assignmentの送信を停止することを特徴とする請求項6に記載の基地局。
【発明を実施するための形態】
【0013】
上述したように、LTE、LTE−Aシステムでは、Duplex modeとしてFDDとTDDの2つが規定されている(上記
図1A参照)。また、Rel.10からは、基地局内CA(Intra−eNB CA)がサポートされている。しかし、Rel.10/11におけるCAは、同一Duplex−mode(FDD+FDD Intra−eNB CA、又はTDD+TDD Intra−eNB CA)に限られていた(上記
図1B参照)。
【0014】
一方で、Rel.12以降のシステムでは、複数CC間で異なるDuplex−mode(TDD+FDD)を適用した基地局内CA(Intra−eNB CA)が想定されている(上記
図1C参照)。基地局内CA(Intra−eNB CA)は、複数セル間で1つのスケジューラを用いてスケジューリングを制御する。つまり、ユーザ端末は、送達確認信号(ACK/NACK(以下、「A/N」とも記す))等の上り制御信号(UCI)を特定セル(プライマリセル(PCell))にのみフィードバックすればよい。
【0015】
一方で、複数CC(セル)間で異なるDuplex−modeを適用してCAを行う場合(TDD−FDD CA)、ユーザ端末がどのようにA/Nフィードバックを行うかが問題となる。例えば、TDD−FDD CAにおいて、各セルが従来のフィードバックメカニズムをそのまま適用することが考えられる。
【0016】
図2Aは、FDDを適用するセル(以下、「FDDセル」とも記す)においてユーザ端末がPDSCH信号に対するA/Nを従来のタイミングでフィードバックする場合を示している。この場合、ユーザ端末は、PDSCH信号が割当てられたDLサブフレームから所定(例えば、4ms)後のULサブフレームでA/Nをフィードバックする。
【0017】
図2Bは、TDDを適用するセル(以下、「TDDセル」とも記す)においてユーザ端末がPDSCH信号に対するA/Nを従来のタイミングでフィードバックする場合を示している。この場合、ユーザ端末は、PDSCH信号が割当てられたDLサブフレームにあらかじめ割当てられた(対応づけられた)ULサブフレームでA/Nをフィードバックする。
【0018】
Rel.10におけるTDDは、ULとDLの構成比率が複数パターン定められており(DL/UL Configuration0-6)、各DL/UL構成においてULサブフレームに割当てられるDLサブフレームが決められている。例えば、
図2Bは、DL/UL構成2(DL/UL Config.2)の場合を示しており、各DLサブフレームは所定のULサブフレームに割当てられている(対応付けられている)。
図2Bにおいて、各DLサブフレーム(特別サブフレームを含む)に付された番号は、対応するULサブフレームからさかのぼるサブフレーム数を示している。
【0019】
Rel.10では、CAを適用する場合(
図1B参照)もA/Nフィードバックタイミング(DL HARQタイミング)はCAを適用しない場合と同じとなる。Rel.11では、ULとDLの構成比率が異なるTDDセルを複数用いるCAが導入された。この場合は、A/Nフィードバックタイミングは、既存TDDの7種のUL/DL構成比率(DL/UL configuration 0−6)のいずれかと同じものを使用することとなった。すなわち、既存システムでは、FDDのCAではFDDで規定されたA/Nフィードバックタイミングを用い、TDDのCAではTDDで規定されたA/Nフィードバックタイミングのいずれかを用いることとなっていた。但し、ULでCAを適用する場合であっても、PUCCHを用いたA/N送信は特定セル(PCell)でのみ行うことが規定されている。
【0020】
既存システムでは、FDDとTDD間で異なるA/Nフィードバックタイミングが規定されているため、複数セル(複数CC)間で異なるDuplex−modeを適用してCA(TDD−FDD CA)を行う場合のPUCCH送信方法をどのように行うかが問題となる。
【0021】
例えば、TDD−FDD CAにおいて、TDDセルがPCell(FDDセルがセカンダリセル(SCell))に設定され、A/Nフィードバック等をPCellのPUCCHのみ用いて行う場合を想定する。つまり、ユーザ端末は、TDDセルのDL信号に対するA/N、FDDセルのDL信号に対するA/Nを、TDDセルのULサブフレームのPUCCHに集約して多重する。この場合のA/Nフィードバックタイミング(HARQタイミング)として、本発明者らは以下の3通りの方法を検討している。
【0022】
<方法1>
図3Aに、SCellとして設定されるFDDセルのA/Nのフィードバックを、TDDセル(PCell)のDL/UL構成のフィードバックタイミングと同様に行う場合を示す(方法1)。具体的に、
図3Aでは、DL/UL構成2(Config2)を適用するTDDセル(PCell)と、FDDセル(SCell)間でCAを行う際に、TDDセル及びFDDセルのA/NフィードバックをTDDのDL/UL構成2のフィードバックタイミングで行う場合を示している。
【0023】
この場合、ユーザ端末は、FDDセルで送信されるDL信号のA/Nをフィードバックするサブフレーム(TDDセルのULサブフレーム)を無線基地局から指定されなくとも判断することができる。これにより、ユーザ端末に対して新たなシグナリングの通知を不要とすると共に、既存システムの仕組みをリユースすることができる。さらに、TDDセルとFDDセルで、DLスケジューリングとそのA/Nフィードバックタイミングが常に同じであるから、基地局は、セル間のフィードバック遅延のずれを考慮せずにスケジューリングすることが可能となるため、簡易なアルゴリズムでスケジューラを構成することができる。
【0024】
一方で、方法1のフィードバック方法を用いる場合、SCellとして設定されるFDDセルのDLサブフレームで送信されるDL信号に対応するA/Nを全てフィードバックすることが困難となる。例えば、TDDセルのULサブフレームと時間領域で同一タイミングとなるFDDセルのDLサブフレーム(
図3AにおけるSF#2、#7)で送信されるDL信号に対するA/Nをフィードバックすることができない。特に、TDDセル(PCell)がULサブフレームの比率が高いDL/UL構成(例えば、Config0)を適用する場合、方法1ではTDDセルのULサブフレームに対してFDDセルのDLサブフレームの割当てが大きく制限される(
図3B参照)。その結果、FDDセルのDLサブフレームの中でA/NフィードバックできるDLサブフレームが低減する。A/NフィードバックができないDLサブフレームにはスケジューリングすることができないため、結果的にDLリソース利用効率が大きく劣化するという問題がある。
【0025】
<方法2>
図4Aに、FDDセル(SCell)のA/Nを、PCellが設定されるTDDのDL/UL構成のフィードバックタイミングに従うのではなく、他のTDD DL/UL構成のフィードバックタイミングで制御する場合を示す(方法2)。なお、FDDセルがフィードバックタイミングとして適用するTDD DL/UL構成は、参照DL/UL構成(TDD Reference DL/UL configuration)と呼ぶ。
【0026】
図4Aでは、TDDセル(PCell)がDL/UL構成0のA/Nフィードバックタイミングを適用し、FDDセル(SCell)が参照DL/UL構成としてDL/UL構成2を適用する場合を示している。この場合、TDDセル(PCell)がULサブフレームの比率が高いDL/UL構成(例えば、Config0)を適用する場合であっても、TDDセルのULサブフレームに対するFDDセルのDLサブフレームの割当ての制限を緩和することができる。なお、FDDセルに適用する参照DL/UL構成は、TDD−FDD CA端末に対して上位レイヤ等により設定(Configure)しても良いし、あらかじめTDDセル(PCell)のDL/UL構成比率などに応じて定められたものとしても良い。
【0027】
このように、FDDセルに対して参照DL/UL構成を適用することにより、TDDセルのDL/UL構成に関わらず、FDDセルのA/Nフィードバックタイミングを柔軟に制御することが可能となる。但し、
図4Aに示す場合も、参照DL/UL構成においてULが設定されるサブフレーム(
図4AにおけるSF#2、#7)のA/Nフィードバック設定されないため、当該サブフレームへのDLスケジューリングが不可能となってしまう。既存のTDDにおける7つの参照DL/UL構成では、UL比率が10%〜60%であり、その分だけDL割り当てができないことになる。
【0028】
<方法3>
図4Bに、TDD−FDD CA(TDDがPCell)において、TDDセルのULサブフレームに対してFDDセルの全てのDLサブフレームに対するA/Nの割当てが可能となるフィードバック方法(フィードバックメカニズム)を示す(方法3)。
図4Bでは、TDDセル(PCell)がDL/UL構成2のA/Nフィードバックタイミングを適用し、FDDセル(SCell)がDL/UL構成2をベース(基準)として、FDDセルの全てのDLサブフレームにおけるA/Nの割当てが可能となるフィードバックタイミング(DL/UL構成2+α)を適用している。
【0029】
つまり、DL/UL構成2でULが設定されるサブフレーム(
図4BにおけるFDDセルのSF#2、#7)に対してもA/Nフィードバックを行う。なお、当該サブフレーム(SF#2、#7)のA/Nのフィードバック先としては、例えば、隣接サブフレームと同じフィードバック先とすることができる。なお、
図4Bに示す方法3では、FDDセルのA/Nフィードバックタイミングとして、DL/UL構成をベースとして利用する場合を示しているが、本実施の形態はこれに限られない。FDDセルの全てのDLサブフレームにおけるA/Nの割当てが可能となるフィードバックメカニズムであれば適用可能である。
【0030】
このように、本発明者らは、TDD−FDD CAにおいて、SCellが設定されるFDDセルのA/Nフィードバック(DLサブフレームの割当て)制限を抑制すると共に、A/Nフィードバックタイミングの柔軟性を図るために、A/Nフィードバックタイミング(A/Nフィードバックメカニズム)を新たに定義することを検討している。
【0031】
方法3に示す新規A/Nフィードバックメカニズム(新規HARQタイミング)により、TDD−FDD CAにおいて、TDDセルがPCellに設定され、PCellのPUCCHのみ用いてA/N送信を行う場合であっても、FDDセルのDLサブフレームで送信される全てのDL信号に対応するA/Nフィードバックが可能となる。これにより、基地局は、方法1や方法2と比較して、DLデータ信号(PDSCH信号)の割当てを柔軟に制御することが可能となる。
【0032】
一方で、FDDセルの全てのDLサブフレームに対するA/Nを、TDDセルの所定のULサブフレームに集約してフィードバックする場合、既存システムのPUCCHフォーマットで送信可能なビット数より大きくなる場合がある。かかる場合、ユーザ端末は、A/Nフィードバックを適切に行えなくなるおそれがある。以下に、本実施の形態で利用可能なPUCCHフォーマットについて説明する。
【0033】
<PUCCHフォーマット>
既存システムでは、送達確認信号(A/N信号)やチャネル品質情報(CQI)等の上り制御信号のPUCCH送信として、複数のフォーマット(PUCCHフォーマット)が規定されている。
【0034】
FDDセルにおいてCAを適用しない場合(Non−CA)、各ユーザ端末から1サブフレームでフィードバックされるA/Nは1〜2ビットとなる。この場合、ユーザ端末は、PUCCHフォーマット1a/1bを適用して、1又は2ビットのA/NをBPSK又はQPSKを利用して(BPSK又はQPSK変調して)送信する。
【0035】
FDDセルにおいてCA(2CC)を適用する場合、各ユーザ端末から1サブフレームでフィードバックされるA/Nは最大4ビット必要となる。この場合、ユーザ端末は、PUCCHフォーマット1bに基づくチャネルセレクション(PUCCH format 1b with channel selection)を適用して、最大4ビットのA/Nを送信することができる。
【0036】
PUCCHフォーマット1bに基づくチャネルセレクション(以下、単に「チャネルセレクション」とも記す)では、最大4ビットのA/Nを、複数のPUCCHリソース候補とQPSKシンボルを用いて表現する。ユーザ端末は、各セルのA/Nの内容に応じて、所定のPUCCHリソース/QPSKシンボル点を選択してフィードバックする。
【0037】
また、FDDセルにおいて3CC以上のCAを適用する場合、各ユーザ端末から1サブフレームでフィードバックされるA/Nは最大10ビット(5CCの場合)必要となる。この場合、ユーザ端末は、PUCCHフォーマット3を適用して、最大10ビットのA/Nを送信することができる。
【0038】
TDDでは、複数のDLサブフレームにそれぞれ対応するA/Nを1つのULサブフレームに割当てるため、CAを適用しない場合(Non−CA)であっても、2ビットを超えるA/Nフィードバックが必要となる。そのため、TDDでは、複数のDLサブフレームのA/Nをまとめて1つのA/NとみなすA/Nバンドリングがサポートされている。また、TDDでは、CAを適用しない場合であっても、上記PUCCHフォーマット1bに基づくチャネルセレクションやPUCCHフォーマット3を設定することも可能となっている。
【0039】
また、TDDでは、各CCにおいて複数のDLサブフレーム分のA/Nを1つのULで送信する。このため、TDDセルにおいてCA(2CC)を適用する場合、1つのULサブフレームに多重されるA/Nが4ビットを超える場合がある。例えば、TDDにおいてDL/UL構成2をCA(2CC)する場合、1つのULでフィードバックすべきA/Nは、最大で16ビット(4サブフレーム×2CW×2CC)となる。上述したように、既存システムのTDDでは、4ビットを超える場合に、A/Nの空間バンドリング(Bundling)を適用して2CW分を1ビットのA/Nとすることがサポートされている。
【0040】
ユーザ端末は、A/Nの空間バンドリングを適用することにより、1つのULサブフレームでフィードバックするA/Nを最大8ビット(=16/2)とすることができる。さらにTDDのPUCCHフォーマット1bに基づくチャネルセレクションでは、前記最大8ビットのA/Nを符号系列(RM Code input Bits)を利用することによりFDDと同じ4ビットに変換する。このようにすることで、より多いA/Nビットのフィードバックをサポートすることができる。
【0041】
一方、TDDセルにおいて3CC以上のCAを適用する場合、各ユーザ端末から1サブフレームでフィードバックされるA/Nは最大20ビット(5CCの場合)必要となる。このため、TDDセルにおける既存のPUCCHフォーマット3では、最大20ビットのA/Nフィードバックをサポートしている。
【0042】
このように、TDDセルでは、2CCのCAを行う場合、ユーザ端末は、PUCCHフォーマット1bに基づくチャネルセレクションを適用することにより、最大8ビット(例えば、各セル4ビット)までのA/Nをフィードバックすることができる。また、3CC以上のCA(例えば、5CC)を行う場合、ユーザ端末は、PUCCHフォーマット3を適用することにより、最大20ビット(例えば、各セル4ビット)までのA/Nをフィードバックすることができる。
【0043】
一方で、上述したように、TDD−FDD CAにおいて、新規HARQタイミング(上記方法3)を適用する場合、ULサブフレームに割当てられるA/Nのビット数が既存のPUCCHフォーマットでサポート可能なビット数より大きくなるおそれがある。例えば、TDD−FDD CA(2CC)において新規HARQタイミング(上記方法3)を適用する場合、
図5に示すように、TDDセルのULサブフレームに多重されるFDDセルの複数のA/Nのビット数の合計が所定値(例えば、4ビット)より大きくなる。その結果、ユーザ端末はチャネルセレクションを適用してA/Nフィードバックを行うことができなくなる。
【0044】
なお、
図5Aは、TDDセル(PCell)がDL/UL構成2のA/Nフィードバックタイミングを適用し、FDDセル(SCell)がDL/UL構成2をベースとした新規HARQタイミング(上記方法3)を適用する場合を示している。また、
図5Bは、TDDセル(PCell)がDL/UL構成4のA/Nフィードバックタイミングを適用し、FDDセル(SCell)がDL/UL構成4をベースとした新規HARQタイミング(上記方法3)を適用する場合を示している。
【0045】
また、TDD−FDD CA(3CC以上)において新規HARQタイミング(上記方法3)を適用する場合、1つのFDDセルから4ビットを超える(例えば、5ビット)A/NをTDDセルのULサブフレームに多重すると合計で20ビットより大きくなる。この場合、ユーザ端末はPUCCHフォーマット3を適用してA/Nフィードバックを行うことができなくなる。
【0046】
このように、本発明者らは、TDD−FDD CAにおいて、TDDセルがPCell(FDDセルがSCell)に設定され、PCellのPUCCHに各セルのA/Nを集約して割当てる場合に、新規A/Nフィードバックメカニズム(上記方法3)を適用すると、既存のPUCCHフォーマットが適用できなくなる場合が生じることを見出した。
【0047】
そこで本発明者らは、TDD−FDD CAにおいて、TDDセルのULサブフレームに複数CC(TDDセル及びFDDセル)のA/Nを集約して割当ててフィードバックする場合に、新規A/Nフィードバックメカニズムを適用すると共に、TDDセルのULサブフレームのPUCCHに多重するA/Nビット数に応じてA/Nの割当てを制御することを着想した。具体的には、新規A/NフィードバックメカニズムによってTDDの特定のULサブフレームに割当て可能となるFDDセルのDLサブフレーム数が所定値より大きくなる場合であっても、FDDセルの各DLサブフレームに対するDL信号のスケジューリングを制御すると共に、ユーザ端末側でのDL信号の検出を効果的に行うことを見出した。
【0048】
TDD−FDD CA(TDDがPCell)において、新規HARQタイミング(上記方法3)を適用することにより、TDDセルのULサブフレームに対して全てのFDDセルのDLサブフレーム割当てを可能とする。さらに、新規HARQタイミングを適用する場合であっても、TDDセルのULサブフレームに多重されるA/Nビット数に応じてSCellの一部のDLサブフレームにおけるDLデータ信号の割当て制限することにより、既存のPUCCHフォーマットの適用を可能とすることができる。
【0049】
以下に、本実施の形態にかかる具体的なA/Nフィードバック制御について図面を参照して詳細に説明する。なお、以下の説明では、FDDセルが利用する新規HARQタイミングとして、DL/UL構成2又はDL/UL構成4をベースとする場合を例に挙げて説明するが、本実施の形態で適用可能な新規HARQタイミングはこれに限られない。また、本実施の形態は、基地局内CA(TDD−FDD CA)に限られず、複数セル毎にスケジューラが独立して設けられ、各セルでそれぞれスケジューリングを制御する基地局間CA(TDD−FDD CA)にも適用可能である。
【0050】
(第1の態様)
第1の態様では、TDD−FDD CAにおいて、2CCまでのA/Nフィードバック方法について説明する。なお、以下の説明では、TDDセルがPCell(FDDセルがSCell)として設定され、TDDセルのULサブフレームの上り制御チャネルに複数CC(TDDセル及びFDDセル)のA/Nを集約して割当ててPUCCH送信を行う場合を示す。さらに、ユーザ端末が、新規HARQタイミング(上記方法3)を適用する場合について説明する。なお、A/Nを上りデータ(PUSCH信号)と同時にフィードバックする場合には、セル毎にA/NをPUSCHに多重してフィードバックしてもよい。
【0051】
図6Aは、DL/UL構成2を適用するTDDセル(PCell)と、FDDセル(SCell)とのCAにおいて、FDDセルにTDDセルで適用するDL/UL構成2を基準とした新規HARQタイミングを適用する場合を示している。
図6Bは、DL/UL構成0を適用するTDDセル(PCell)と、FDDセル(SCell)とのCAにおいて、FDDセルにTDDセルとは異なるDL/UL構成2を基準とした新規HARQタイミングを適用する場合を示している。なお、
図6では、FDDセルについてULサブフレームを省略している。
【0052】
また、
図7Aは、DL/UL構成4を適用するTDDセル(PCell)と、FDDセル(SCell)とのCAにおいて、FDDセルにTDDセルで適用するDL/UL構成4を基準とした新規HARQタイミングを適用する場合を示している。
図7Bは、DL/UL構成0を適用するTDDセル(PCell)と、FDDセル(SCell)とのCAにおいて、FDDセルにTDDセルとは異なるDL/UL構成4を基準とした新規HARQタイミングを適用する場合を示している。
【0053】
図6A、Bに示す場合、TDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに割当てられるFDDセルのDLサブフレーム数が所定値(例えば、4)より大きくなる。その結果、TDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに多重するFDDのA/Nが所定値(例えば、4ビット)より大きくなる。この場合、PUCCHフォーマット1bに基づくチャネルセレクションを適用することができなくなる。
【0054】
同様に、
図7A、Bに示す場合も、TDDセルの特定のULサブフレーム(SF#2)に多重するFDDセルの複数のDLサブフレームのA/Nが所定値(例えば、4ビット)より大きくなる。この場合、PUCCHフォーマット1bに基づくチャネルセレクションを適用することができなくなる。
【0055】
そのため、本実施の形態では、TDDセルのULサブフレームに多重されるA/Nのビット数が所定値より大きくならないように、A/Nの割当てを行う。具体的には、ユーザ端末は、TDDセルのULサブフレームの上り制御チャネルに多重するA/Nのビット数が所定値以下となるようにA/Nの割当てを行う。
【0056】
例えば、新規HARQタイミングによってTDDの特定のULサブフレームに割当て可能となるFDDセルのDLサブフレーム数が所定値より大きくなる場合に、当該TDDの特定のULサブフレームに割当て可能なFDDセルのDLサブフレームのうち、一部のDLサブフレームに対するDL信号(DLデータ信号、DL assignment)の割当てを制限する。ここで、所定値とは、TDDセルのULサブフレームに割当て可能となる最大ビット数(サブフレーム数)とすることができる。例えば、TDDセルにおけるDLサブフレームのA/Nの4ビットを考慮する場合、FDDセルから多重するA/Nのビット数を4以下(DLサブフレーム数を4以下)となるようにFDDセルのDL信号のスケジューリングを制御する。
【0057】
図8Aは、上記
図6Aに示した新規HARQタイミングを適用する場合に、TDDの特定のULサブフレーム(SF#2)に割当て可能なFDDセルのDLサブフレーム(SF#4、#5、#6、#7、#8)のうち、一部のDLサブフレーム(SF#8)に対するDL信号の割当てを制限する場合を示している。これにより、新規HARQタイミングを適用する場合であっても、ユーザ端末はPUCCHフォーマット1bに基づくチャネルセレクションを適用してA/Nフィードバックを行うことができる。また、ユーザ端末は、検出したA/Nビット数(DLサブフレーム数)が所定値を超えた段階(SF#4、#5、#6、#7を検出した段階)で残りのDLサブフレーム(SF#8)のDL信号の検出を停止することができる。
【0058】
また、
図8Bは、上記
図6Bに示した新規HARQタイミングを適用する場合に、TDDの特定のULサブフレーム(SF#2)に割当て可能なFDDセルのDLサブフレーム(SF#4、#5、#6、#7、#8)のうち、一部のDLサブフレーム(SF#7)に対するDL信号の割当てを制限する場合を示している。
【0059】
図9Aは、上記
図7Aに示した新規HARQタイミングを適用する場合に、TDDの特定のULサブフレーム(SF#2)に割当て可能なFDDセルのDLサブフレーム(SF#0、#1、#2、#3、#4、#5)のうち、一部のDLサブフレーム(SF#0と#5)に対するDL信号の割当てを制限する場合を示している。また、
図9Bは、上記
図7Bに示した新規HARQタイミングを適用する場合に、TDDの特定のULサブフレーム(SF#2)に割当て可能なFDDセルのDLサブフレーム(SF#0、#1、#2、#3、#4、#5)のうち、一部のDLサブフレーム(SF#2と#5)に対するDL信号の割当てを制限する場合を示している。なお、FDDセルのDLサブフレームに対するDL信号の割当て制限は、ユーザ端末毎に動的に制御することができる。
【0060】
このように、
図8、
図9に示すように、新規HARQタイミングによってTDDの特定のULサブフレームに割当て可能となるFDDセルのDLサブフレーム数が所定値より大きくなる場合であっても、FDDセルの一部のDLサブフレームに対するDL信号の最大割当て数は、新規HARQタイミングの基準となるDL/UL構成におけるDL信号の最大割り当て数を超えないよう制限する。これにより、新規HARQタイミングを適用する場合であっても、PUCCHフォーマット1bに基づくチャネルセレクションを適用することが可能となる。また、端末観点では受信信号用バッファ等の設定を前記基準となるDL/UL構成と同じとできるため、最小限の追加構成でこの方法を実現できる。一方で、端末ごとに異なるサブフレームを動的に制限することができるため、システム観点ではすべてのDLサブフレームに割り当てすることが可能となる。このように、端末の仕組みや実装を大きく変えることなく、FDDセルのすべてのDLサブフレームを活用することが可能となる。
【0061】
<基地局動作/ユーザ端末動作>
上述したように、本実施の形態では、新規HARQタイミングを適用するTDD−FDD CAにおいて、基地局が、TDDの1つのULサブフレームに割当てられるFDDセルのDLサブフレーム数(A/Nビット数)が所定値を超えないようにDL信号(PDSCH信号、DL assignment)のスケジューリングを制御する。一方で、ユーザ端末は、1つのULサブフレームに割当てを行うA/Nビット数(又はDLサブフレーム数)が所定値を超えないことを前提として(所定値以下と仮定して)、DLサブフレームで送信されるDL信号の検出を行う。
【0062】
この際、基地局/ユーザ端末は、DAI(Downlink Assignment Index)を利用してDL信号の送信/検出を制御することができる。DAIは、A/Nバンドリングが適用されるTDDにおいてDLサブフレームのカウンタに利用され、下り制御情報(DCI)に含められる。以下に、DAIについて説明する。
【0063】
ユーザ端末に対して連続する4つのサブフレーム(SF#0〜#3)においてDLデータが送信される場合を想定する。この場合、ユーザ端末がSF#1のDL割当て(PDCCH信号)を検出ミスすると、ユーザ端末はSF#0、#2、#3の3つのサブフレームでDLデータが送信されたと判断する。そのため、ユーザ端末がサブフレーム方向においてA/Nバンドリングを行うと、これら3つのサブフレーム(SF#0、#2、#3)がOK(ACK)であればACKをフィードバックすることとなる。また、PUCCHフォーマット1bに基づくチャネルセレクションであっても、端末は3つのACKをフィードバックすることになるため、基地局は、割り当てた4つのサブフレームのうち、どれが誤りとなったのかを判断できない。このように、ユーザ端末側で検出ミスすると、正しくDL HARQを行うことができない。
【0064】
このような問題を解決するために、TDDでは下り制御情報(DCI)中に2ビットのDAIがサポートされている。DAIは、カウンタの役割をしており、DL割当て1つ毎に1ずつ値が増加する。つまり、ユーザ端末が途中でDL割当てを検出ミスしている場合、DAIのカウント値の増加が1でなくなるため、検出ミスを把握することができる。
【0065】
本実施の形態では、FDDセルで送信されるDL信号の下り制御情報(DCI)にDAIを設定することで、割り当てサブフレーム数が所定値に達した後のユーザ端末動作を簡易化することができる。
【0066】
例えば、
図10に示すように、DAIが所定値(新規HARQタイミングの基準となるDL/UL構成におけるDL信号の最大割り当て数、例えば、DL/UL構成2の場合、最大値の4)に達した場合に、次のFDDセルのサブフレームでDLが割り当てられることはないため、ユーザ端末は、FDDセルのサブフレーム(SF#8)で送信されるDL信号のDL assignmentの検出を停止する。そして、各DAI値に対応するFDDセルのDLサブフレーム(SF#4、SF#5、SF#6、SF#7)で送信されるDL信号の送達確認信号をTDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに割当てる。なお、DAIが所定値に達しなければ、ユーザ端末はFDDセルのSF#8を含むすべてのサブフレーム(SF#4、SF#5、SF#6、SF#7、SF#8)でDL assignmentの検出動作を継続する。
【0067】
また、基地局は、TDDの特定のULサブフレーム(SF#2)に割当て可能となるFDDセルのDLサブフレーム数(SF#4〜#8)が所定値より大きくなる場合、FDDセルで送信するDL信号の下り制御情報に含まれるDAIが所定値に達した際に、FDDセルの残りのDLサブフレーム(SF#8)で送信されるDL信号(例えば、PDSCH信号、DL assignment)の送信を停止する(
図10参照)。
【0068】
なお、基地局/ユーザ端末は、DL信号(PDSCH信号、DL assignment)を割当てないFDDセルのDLサブフレーム(SF#8)において、ULグラントの送信/検出を制御することができる。例えば、
図10Aに示すように、ユーザ端末は、DL assignmentの検出を停止すると共に、ULグラントの検出も同様に行わない。また、基地局は、DL assignmentの送信を停止すると共に、ULグラントの送信も同様に行わない(オプション1)。この場合、ユーザ端末は、FDDセルにおける受信・検出動作を完全停止することで、省電力化を図ることができる。
【0069】
あるいは、
図10Bに示すように、ユーザ端末は、DL assignmentの検出を停止する一方で、FDDセルで送信されるDL信号のULグラントの検出は行ってもよい。また、基地局は、DL assignmentの送信を停止する一方で、FDDセルで送信されるDL信号のULグラントの送信は行う(オプション2)。この場合、ユーザ端末は、当該ULグラントに基づいて、FDDセルのULサブフレームのPUSCHで上りデータ(PUSCH信号)等を送信することができるため、ULリソースの利用効率を向上することができる。また、当該サブフレームではULグラントだけ検出すればよく、DL割り当ての検出動作は不要なため、端末負荷を抑えることができる。
【0070】
<変形例>
なお、上記説明では、TDDセルのULサブフレームに割当てるA/Nのビット数が所定値を超える場合に、SCellのDLサブフレームに割当てるDL信号を制限する場合を示したが、これに限られない。例えば、TDDセルのULサブフレームのPUCCHに割当てるA/Nビット数が所定値を超える場合に、PUCCHフォーマット1bに基づくチャネルセレクションでなく、PUCCHフォーマット3を適用することも可能である。この場合、FDDセルの全てのDLサブフレームにDL信号が割当てられる場合であっても、DL信号の割当てを制限せずにTDDセルのULサブフレームにA/Nを割当ててフィードバックすることが可能となる。
【0071】
(第2の態様)
第2の態様では、TDD−FDD CAにおいて、3CC以上のA/Nフィードバック方法について説明する。なお、以下の説明では、TDDセルがPCell(FDDセルがSCell)として設定され、TDDセルのULサブフレームの上り制御チャネルに複数CC(TDDセル及びFDDセル)のA/Nを集約して割当ててPUCCH送信を行う場合を示す。さらに、ユーザ端末が、新規HARQタイミング(上記方法3)を適用する場合について説明する。
【0072】
まず、3CC以上(例えば、5CC)でCAを行う場合に、新規HARQタイミングの適用によりTDDセルの特定のULサブフレームに割当てるA/Nビット数が20ビットを超える場合について、4つのケースを例に挙げて説明する(
図11〜
図14参照)。なお、
図11〜
図14では、FDDセルについてULサブフレームを省略し、DLサブフレームのみ示している。
【0073】
<ケース1>
図11は、DL/UL構成2を適用するTDDセル(PCell)と、FDDセル(SCell1〜4)とのCAにおいて、FDDセルにTDDセルで適用するDL/UL構成2を基準とした新規HARQタイミングを適用する場合を示している。この場合、TDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに割当てられる各CCのFDDセルのDLサブフレーム数が所定値(例えば、4)より大きくなる(ここでは、各SCellでDLサブフレーム数が5)。その結果、TDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに多重するTDDセル及び複数のFDDのA/Nのビット数が所定値(例えば、20ビット)より大きくなる(ここでは、24ビット)。この場合、PUCCHフォーマット3を適用することができなくなる。
【0074】
<ケース2>
図12は、DL/UL構成0を適用するTDDセル(PCell)と、FDDセル(SCell1〜4)とのCAにおいて、FDDセルにTDDセルとは異なるDL/UL構成2を基準とした新規HARQタイミングを適用する場合を示している。この場合、TDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに割当てられる各CCのFDDセルのDLサブフレーム数が所定値より大きくなる(ここでは、各SCellでDLサブフレーム数が5)。その結果、TDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに多重するTDDセル及び複数のFDDのA/Nのビット数が所定値より大きくなり(ここでは、21ビット)、PUCCHフォーマット3を適用することができなくなる。
【0075】
<ケース3>
図13は、DL/UL構成4を適用するTDDセル(PCell)と、FDDセル(SCell1〜4)とのCAにおいて、FDDセルにTDDセルで適用するDL/UL構成4を基準とした新規HARQタイミングを適用する場合を示している。この場合、TDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに割当てられる各CCのFDDセルのDLサブフレーム数が所定値より大きくなる(ここでは、各SCellでDLサブフレーム数が6)。その結果、TDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに多重するTDDセル及び複数のFDDのA/Nのビット数が所定値より大きくなり(ここでは、28ビット)、PUCCHフォーマット3を適用することができなくなる。
【0076】
<ケース4>
図14は、DL/UL構成0を適用するTDDセル(PCell)と、FDDセル(SCell1〜4)とのCAにおいて、FDDセルにTDDセルとは異なるDL/UL構成4を基準とした新規HARQタイミングを適用する場合を示している。この場合、TDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに割当てられる各CCのFDDセルのDLサブフレーム数が所定値より大きくなる(ここでは、各SCellでDLサブフレーム数が6)。その結果、TDDセルの特定のULサブフレーム(SF#2)の上り制御チャネルに多重するTDDセル及び複数のFDDのA/Nのビット数が所定値より大きくなり(ここでは、25ビット)、PUCCHフォーマット3を適用することができなくなる。
【0077】
そのため、本実施の形態では、TDDセルのULサブフレームに多重されるA/Nのビット数が所定値より大きくならないように、A/Nの割当てを行う。具体的には、ユーザ端末は、TDDセルのULサブフレームの上り制御チャネルに多重するA/Nのビット数が所定値以下となるようにA/Nの割当てを行う。
【0078】
例えば、新規HARQタイミングによってTDDの特定のULサブフレームに割当て可能となる各セルのA/Nビット数(DLサブフレーム数)が所定値より大きくなる場合に、当該特定のULサブフレームに割当て可能なFDDセルのDLサブフレームのうち、一部のDLサブフレームに対するDL信号の割当てを制限する。例えば、特定のULサブフレームに対して、PCell(TDDセル)のDLサブフレームへ割当てるDL信号を優先的に確保した上で、複数のSCell(FDDセル)のDLサブフレームに割当てるDL信号のスケジューリングを制御する。以下に、上記ケース1〜ケース4に本実施の形態を適用する場合について説明する。
【0079】
<ケース1>
図15は、上記
図11に示した新規HARQタイミングを適用する場合に、TDDの特定のULサブフレーム(SF#2)に割当て可能な各SCell(FDDセル)のDLサブフレーム(SF#4、#5、#6、#7、#8)のうち、一部のDLサブフレームに対するDL信号(PDSCH信号、DL assignment)の割当てを制限する場合を示している。なお、DL信号の割当てを制限するDLサブフレームは、CC毎に制御することができる。ここでは、SCell1に対して、DLサブフレーム5のDLデータ信号(PDSCH信号)の割当てを制限し、SCell4に対して、DLサブフレーム6のDLデータ信号の割当てを制限する場合を示している。なお、その他のCCについても各DLサブフレームに対するDL信号の割当てを制限する。これにより、新規HARQタイミングを適用する場合であっても、ユーザ端末はPUCCHフォーマット3を適用してA/Nフィードバックを行うことができる。
【0080】
<ケース2>
図16は、上記
図12に示した新規HARQタイミングを適用する場合に、TDDの特定のULサブフレーム(SF#2)に割当て可能な各SCell(FDDセル)のDLサブフレーム(SF#4、#5、#6、#7、#8)のうち、一部のセルのDLサブフレームへのDLデータ信号の割当てを制限する場合を示している。ここでは、SCell1〜SCell3については、DL信号の割当ての制限を行わない。一方で、SCell4に対して、DLサブフレーム8のDL信号の割当てを制限する場合を示している。つまり、TDDセルにおけるA/Nビット数が1であるため、5CCのA/Nビット数が20を超えない範囲で、各SCellのA/Nビット数を4ビットより大きくすることができる。
【0081】
DL信号の割当ての優先順位としては、プライマリセル(TDDセル)をセカンダリセル(FDDセル)より優先する。また、セカンダリセルが複数ある場合には、セカンダリセルに付されたインデックス番号が若い順を優先してDL信号の割当てを行うことができる。なお、セカンダリセルの一部にTDDセルが設定される場合には、TDDセルをFDDセルより優先してDL信号の割当てを行うことができる。このようにすることで、優先順位を示す新たな上位レイヤシグナリングを導入せずにDL割り当て制限の優先順位を決めることができる。
【0082】
一方、DL信号の割り当て優先順位を示す新たな上位レイヤシグナリングを導入しても良い。このようにすることで、CAにおけるセルの優先順位を示すプライマリ・セカンダリの関係と、セカンダリセルのインデックス番号とは独立してDL割り当て順位を指定することができる。マクロセルとスモールセルでCAを行う
図1Bおよび
図1Cのような環境では、広帯域・大容量なセルが常にプライマリセルである場合や、インデックス番号が若いとは限らず、最新の(つまり最後に追加された)セカンダリセルが一番大容量である場合も考えられる。したがって、DL信号の割り当て優先順位をセルの優先順位とは異なる設定にできるようにすることで、より柔軟なCA運用が可能となる。
【0083】
<ケース3>
図17は、上記
図13に示した新規HARQタイミングを適用する場合に、TDDの特定のULサブフレーム(SF#2)に割当て可能な各SCell(FDDセル)のDLサブフレーム(SF#0、#1、#2、#3、#4、#5)のうち、所定CCにおける一部のDLサブフレームに対するDL信号(PDSCH信号)の割当てを制限する場合を示している。ここでは、SCell1に対して、DLサブフレーム1、5のDL信号(PDSCH信号)の割当てを制限し、SCell4に対して、DLサブフレーム3、5のDL信号の割当てを制限する場合を示している。なお、その他のCCについても各DLサブフレームに対するDL信号の割当てを制限する。これにより、新規HARQタイミングを適用する場合であっても、ユーザ端末はPUCCHフォーマット3を適用してA/Nフィードバックを行うことができる。
【0084】
<ケース4>
図18は、上記
図14に示した新規HARQタイミングを適用する場合に、TDDの特定のULサブフレーム(SF#2)に割当て可能な各SCell(FDDセル)のDLサブフレーム(SF#0、#1、#2、#3、#4、#5)のうち、所定CCにおける一部のDLサブフレームに対するDL信号(PDSCH信号)の割当てを制限する場合を示している。ここでは、SCell1〜SCell3については、DLサブフレーム5のDL信号(PDSCH信号)の割当てを制限する。一方で、SCell4に対して、DLサブフレーム3、5のDL信号(PDSCH信号)の割当てを制限する場合を示している。つまり、TDDセルにおけるA/Nビット数が1であるため、5CCのA/Nビット数が20を超えない範囲で、SCellのA/Nビット数を4ビットより大きくすることができる。DL信号の割当ての優先順位としては、上記ケース2と同様に行うことができる。
【0085】
このように、
図15〜
図18に示すように、新規HARQタイミングによってTDDの特定のULサブフレームに割当て可能となるFDDセルのDLサブフレーム数が所定値より大きくなる場合であっても、FDDセルの一部のDLサブフレームに対するDL信号の割当てを制限する。これにより、新規HARQタイミングを適用する場合であっても、PUCCHフォーマット3を適用することが可能となる。また、端末観点では受信信号用バッファ等の設定を前記基準となるDL/UL構成と同じとできるため、最小限の追加構成でこの方法を実現できる。一方で、端末ごとに異なるサブフレームを動的に制限することができるため、システム観点ではすべてのDLサブフレームに割り当てすることが可能となる。このように、端末の仕組みや実装を大きく変えることなく、FDDセルのすべてのDLサブフレームを活用することが可能となる。
【0086】
<基地局動作/ユーザ端末動作>
上述したように、本実施の形態では、新規HARQタイミングを適用するTDD−FDD CAにおいて、基地局が、TDDのULサブフレームに割当てられる複数セルのDLサブフレーム数(A/Nビット数)が所定値を超えないようにDL信号(PDSCH信号、DL assignment)のスケジューリングを制御する。一方で、ユーザ端末は、当該ULサブフレームに割当てを行うA/Nビット数(又はDLサブフレーム数)が所定値を超えないことを前提として(所定値以下と仮定して)、DLサブフレームで送信されるDL信号の検出を行う。
【0087】
例えば、
図19に示すように、TDDセル(PCell)の特定のULグラント(SF#2)に対して割当てる複数のFDDセルのA/Nビット数が所定値(20ビット)に達した場合を想定する。この場合、ユーザ端末は、フィードバックするA/Nが20ビットに達した時点で、各FDDセルのサブフレーム(ここでは、SF#8)で送信されるDL信号のDL assignmentの検出を停止する。そして、20ビット以内に納まったDLサブフレームに対するA/Nのフィードバックを行う。
【0088】
また、基地局は、TDDの特定のULサブフレーム(SF#2)に割当て可能となるTDDのDLサブフレーム数及び各FDDセルのDLサブフレーム数(SF#4〜SF#8)が所定値より大きくなる場合、A/Nビット数が所定値(20ビット)に達した際に、FDDセルの残りのDLサブフレーム(SF#8)で送信されるDL信号(例えば、PDSCH信号、DL assignment)の送信を停止する(
図19参照)。TDDセル及びFDDセルにおけるDL信号の割当ての優先順位(又は、DL信号の割当て制限順位)としては、上記ケース2で示した方法を利用することができる。
【0089】
なお、基地局/ユーザ端末は、DL信号(PDSCH信号、DL assignment)を割当てないFDDセルのDLサブフレーム(SF#8、SF#3)において、ULグラントの送信/検出を制御することができる。例えば、
図19に示すように、ユーザ端末は、DL assignmentの検出を停止すると共に、ULグラントの検出も同様に行わない。また、基地局は、DL assignmentの送信を停止すると共に、ULグラントの送信も同様に行わない(オプション1)。この場合、ユーザ端末は、FDDセルにおける受信・検出動作を完全停止することで、省電力化を図ることができる。
【0090】
あるいは、
図20に示すように、ユーザ端末は、DL assignmentの検出を停止する一方で、FDDセルで送信されるDL信号のULグラントの検出は行ってもよい。また、基地局は、DL assignmentの送信を停止する一方で、FDDセルで送信されるDL信号のULグラントの送信は行う(オプション2)。この場合、ユーザ端末は、当該ULグラントに基づいて、FDDセルのULサブフレームのPUSCHで上りデータ(PUSCH信号)等を送信することができるため、ULリソースの利用効率を向上することができる。また、当該サブフレームではULグラントだけ検出すればよく、DL割り当ての検出動作は不要なため、端末負荷を抑えることができる。
【0091】
また、上述したように、基地局は、DL信号の割当て制限を行う場合、ユーザ端末毎及び/又はCC毎に制御(スケジューリング)することができる。
図21に、ユーザ端末1、ユーザ端末2に対して、CC毎にDL信号の割当てを制御する場合の一例を示す。
図21では、ユーザ端末1に対して、SCell1のDLサブフレーム5、SCell4のDLサブフレーム6のDL信号(PDSCH信号、DL assignment)の送信を制限する。一方で、ユーザ端末2に対して、SCell1のDLサブフレーム8、SCell4のDLサブフレーム4のDL信号の送信を制限する。
【0092】
(無線通信システムの構成)
以下、本実施の形態に係る無線通信システムの一例について、詳細に説明する。
【0093】
図22は、本実施の形態に係る無線通信システムの概略構成図である。なお、
図22に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域幅を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)が適用することができる。また、この無線通信システムは、IMT−Advancedと呼ばれても良いし、4G、FRA(Future Radio Access)と呼ばれても良い。
【0094】
図22に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a及び12bとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続すること(dual connectivity)ができる。また、無線基地局11と無線基地局12間で基地局内CA(Intra−eNB CA)、又は基地局間CA(Inter−eNB CA)が適用される。また、無線基地局11と無線基地局12の一方はFDDを適用し、他方はTDDを適用することができる。
【0095】
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrier等と呼ばれる)を用いて通信が行なわれる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz等)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。ユーザ端末20と無線基地局12間のキャリアタイプとしてニューキャリアタイプ(NCT)を利用してもよい。無線基地局11と無線基地局12(又は、無線基地局12間)は、有線接続(Optical fiber、X2インターフェース等)又は無線接続されている。
【0096】
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置に接続されてもよい。
【0097】
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、eNodeB、マクロ基地局、送受信ポイントなどと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、ピコ基地局、フェムト基地局、Home eNodeB、マイクロ基地局、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。各ユーザ端末20は、LTE、LTE−Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
【0098】
無線通信システムにおいては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC−FDMA(シングルキャリア−周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC−FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
【0099】
ここで、
図22に示す無線通信システムで用いられる通信チャネルについて説明する。下りリンクの通信チャネルは、各ユーザ端末20で共有されるPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH、拡張PDCCH)とを有する。PDSCHにより、ユーザデータ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCHおよびPUSCHのスケジューリング情報等が伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。また、拡張PDCCH(EPDCCH)により、PDSCH及びPUSCHのスケジューリング情報等が伝送されてもよい。このEPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重される。
【0100】
上りリンクの通信チャネルは、各ユーザ端末20で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、ユーザデータや上位制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、ACK/NACK等が伝送される。
【0101】
図23は、本実施の形態に係る無線基地局10(無線基地局11及び12を含む)の全体構成図である。無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
【0102】
下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
【0103】
ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下りリンクの制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
【0104】
また、ベースバンド信号処理部104は、上位レイヤシグナリング(RRCシグナリング、報知信号等)により、ユーザ端末20に対して、当該セルにおける通信のための制御情報を通知する。当該セルにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅、フィードバック用のリソース情報等が含まれる。各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
【0105】
一方、上りリンクによりユーザ端末20から無線基地局10に送信されるデータについては、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
【0106】
ベースバンド信号処理部104では、入力されたベースバンド信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
【0107】
図24は、本実施の形態に係る無線基地局10が有するベースバンド信号処理部104の主な機能構成図である。
図24に示すように、無線基地局10が有するベースバンド信号処理部104は、制御部301と、下り制御信号生成部302と、下りデータ信号生成部303と、マッピング部304と、デマッピング部305と、チャネル推定部306と、上り制御信号復号部307と、上りデータ信号復号部308と、判定部309と、を少なくとも含んで構成されている。
【0108】
制御部301は、PDSCHで送信される下りユーザデータ、PDCCH及び/又は拡張PDCCH(EPDCCH)で伝送される下り制御情報、下り参照信号等のスケジューリングを制御する。また、制御部301は、PUSCHで伝送される上りデータ、PUCCH又はPUSCHで伝送される上り制御情報、上り参照信号のスケジューリングの制御(割当て制御)も行う。上りリンク信号(上り制御信号、上りユーザデータ)の割当て制御に関する情報は、下り制御信号(DCI)を用いてユーザ端末に通知される。
【0109】
具体的に、制御部301は、上位局装置30からの指示情報や各ユーザ端末20からのフィードバック情報に基づいて、下りリンク信号及び上りリンク信号に対する無線リソースの割り当てを制御する。つまり、制御部301は、スケジューラとしての機能を有している。また、Inter−eNB CAでは、制御部301は複数CC毎に独立に設けられており、Intra−eNB CAでは、制御部301は複数CCに対して共通に設けた構成とすることができる。
【0110】
また、制御部301は、上述した新規HARQタイミングによってTDDの特定のULサブフレームに割当て可能となるFDDセルのDLサブフレーム数が所定値より大きくなる場合に、当該TDDの特定のULサブフレームに割当て可能なFDDセルのDLサブフレームのうち、一部のDLサブフレームに対するDL信号の割当てを制限する。具体的に、制御部301は、SCellが設定されるセル(例えば、FDDセル)の所定のDLサブフレームにおける、DL assignment、PDSCH信号の割当てを制限する(上記
図8、
図9、
図15〜
図20参照)。また、制御部301は、DAIを利用してDL信号の送信を制御することができる(上記
図10参照)。また、制御部301は、ユーザ端末毎及びCC毎にPDSCH信号の割当てを制限することができる(上記
図21)。
【0111】
下り制御信号生成部302は、制御部301により割当てが決定された下り制御信号(PDCCH信号及び/又はEPDCCH信号)を生成する。具体的に、下り制御信号生成部302は、制御部301からの指示に基づいて、下りリンク信号の割当て情報を通知するDL割当て(DL assignment)と、上りリンク信号の割当て情報を通知するULグラント(UL grant)を生成する。例えば、下り制御信号生成部302は、制御部301からの指示に基づいて、所定のDLサブフレームに対するDL assignmentの割当てを制限する。また、下り制御信号生成部302は、制御部301からの指示に基づいて、FDDセルの下り制御情報(DCI)にDAIを含める。
【0112】
下りデータ信号生成部303は、下りデータ信号(PDSCH信号)を生成する。下りデータ信号生成部303により生成されるデータ信号には、各ユーザ端末20からのCSI等に基づいて決定された符号化率、変調方式に従って符号化処理、変調処理が行われる。
【0113】
マッピング部304は、制御部301からの指示に基づいて、下り制御信号生成部302で生成された下り制御信号と、下りデータ信号生成部303で生成された下りデータ信号の無線リソースへの割当てを制御する。
【0114】
デマッピング部305は、ユーザ端末から送信された上りリンク信号をデマッピングして、上りリンク信号を分離する。チャネル推定部306は、デマッピング部305で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を上り制御信号復号部307、上りデータ信号復号部308に出力する。
【0115】
上り制御信号復号部307は、上り制御チャネル(PUCCH)でユーザ端末から送信されたフィードバック信号(送達確認信号等)を復号し、制御部301へ出力する。上りデータ信号復号部308は、上り共有チャネル(PUSCH)でユーザ端末から送信された上りデータ信号を復号し、判定部309へ出力する。判定部309は、上りデータ信号復号部308の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に結果を制御部301に出力する。
【0116】
図25は、本実施の形態に係るユーザ端末20の全体構成図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部(受信部)203と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。
【0117】
下りリンクのデータについては、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部204でFFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下りリンクのデータの内、下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
【0118】
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(H−ARQ (Hybrid ARQ))の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理等が行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
【0119】
図26は、ユーザ端末20が有するベースバンド信号処理部204の主な機能構成図である。
図26に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401(フィードバック制御部)と、上り制御信号生成部402と、上りデータ信号生成部403と、マッピング部404と、デマッピング部405と、チャネル推定部406と、下り制御信号復号部407と、下りデータ信号復号部408と、判定部409と、を少なくとも含んで構成されている。
【0120】
制御部401は、無線基地局から送信された下り制御信号(PDCCH信号)や、受信したPDSCH信号に対する再送制御判定結果に基づいて、上り制御信号(フィードバック信号)や上りデータ信号の生成を制御する。下り制御信号は下り制御信号復号部407から出力され、再送制御判定結果は、判定部409から出力される。
【0121】
また、制御部401は、PDSCH信号に対する送達確認信号(ACK/NACK)のフィードバックを制御するフィードバック制御部としても機能する。具体的に、制御部401は、CAが適用される通信システムにおいて、送達確認信号をフィードバックするセル(又は、CC)や、送達確認信号を割当てるPUCCHリソースの選択を制御する。
【0122】
例えば、TDD−FDD CA(TDDがPCell)において、制御部401(フィードバック制御部)は、TDDセルのULサブフレームの上り制御チャネルに各セルのDL信号のA/Nを集約して割当てる場合に、FDDセルの全てのDLサブフレームのA/Nの割当てが可能となるフィードバックメカニズムを適用すると共に、TDDセルのULサブフレームの上り制御チャネルに多重するA/Nのビット数に応じてA/Nの割当てを制御する。具体的に、制御部401は、TDDセルのULサブフレームの上り制御チャネルに多重するA/Nのビット数が所定値以下となるように送達確認信号の割当てを行う。
【0123】
上り制御信号生成部402は、制御部401からの指示に基づいて上り制御信号(送達確認信号やチャネル状態情報(CSI)等のフィードバック信号)を生成する。また、上りデータ信号生成部403は、制御部401からの指示に基づいて上りデータ信号を生成する。なお、制御部401は、無線基地局から通知される下り制御信号にULグラントが含まれている場合に、上りデータ信号生成部403に上りデータ信号の生成を指示する。
【0124】
マッピング部404(割当て部)は、制御部401からの指示に基づいて、上り制御信号(送達確認信号等)と上りデータ信号の無線リソース(PUCCH、PUSCH)への割当てを制御する。例えば、マッピング部404は、フィードバック(PUCCH送信)を行うCC(セル)に応じて、当該CCのPUCCHに送達確認信号の割当てを行う。
【0125】
デマッピング部405は、無線基地局10から送信された下りリンク信号をデマッピングして、下りリンク信号を分離する。チャネル推定部406は、デマッピング部405で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を下り制御信号復号部407、下りデータ信号復号部408に出力する。
【0126】
下り制御信号復号部407は、下り制御チャネル(PDCCH)で送信された下り制御信号(PDCCH信号)を復号し、スケジューリング情報(上りリソースへの割当て情報)を制御部401へ出力する。
【0127】
下りデータ信号復号部408は、下り共有チャネル(PDSCH)で送信された下りデータ信号を復号し、判定部409へ出力する。判定部409は、下りデータ信号復号部408の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に結果を制御部401に出力する。
【0128】
判定部409は、TDDセルのULサブフレームに割当てられるFDDセルのDLサブフレーム数が所定値を超えないと仮定してDL信号の検出を行うことができる。また、判定部409は、TDDのULサブフレームに割当てられるFDDセルのDLサブフレーム数が所定値を超えた場合に、DL信号の検出を停止することができる。
【0129】
また、判定部409は、FDDセルで送信されるDL信号の下り制御情報に含まれるDAIを用いて、FDDセルの各DLサブフレームで送信されるDL信号の検出を制御することができる。例えば、DAIが所定値に達した場合に、判定部409が、FDDセルで送信されるDL信号に含まれるDL assignmentの検出を停止し、制御部401が、各DAI値に対応するDLサブフレームで送信されるDL信号の送達確認信号をTDDセルのULサブフレームの上り制御チャネルに割当てる。この際、判定部409は、DL assignmentの検出を停止すると共に、ULグラントの検出を停止してもよいし、DL assignmentの検出を停止する一方で、FDDセルで送信されるDL信号のULグラントの検出を行ってもよい。
【0130】
以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。例えば、上述した複数の態様を適宜組み合わせて適用することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。