(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述した上部免震装置が作動している状態において、上部脚部と下部脚部とは、積層ゴム及びダンパを介して接続されている。よって、地震が発生し、この地震による振動を受けて下部脚部で振動が発生したときには、振動が積層ゴム及びダンパを介して上部脚部へ伝達されることとなる。小さな地震の場合は積層ゴム及びダンパが振動を吸収するため、上部脚部に伝わる振動を抑制することができ、上部脚部よりも上側に設けられる機器への影響を抑制することができる。しかし、大きな地震の場合、積層ゴム及びダンパでは瞬時に振動を抑制することができないため、上部脚部も大きく振動してしまい、上部脚部よりも上側に設けられる機器への影響が大きくなってしまう。すなわち、地震による大きな振動が上部脚部よりも上側に設けられる機器に伝わり、この機器が破損・故障するおそれがある。従って、下部脚部から上部脚部への振動の伝達の低減が求められている。
【0006】
本発明は、振動の伝達を低減させることが可能な走行式荷役装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る走行式荷役装置は、荷物の荷役作業を行う荷役部と、荷役部を支持するガーダ部と、ガーダ部を支持すると共に、上側本体部と下側本体部とに分割された本体部と、本体部の下部に設けられて本体部をレールに沿って走行させる走行部と、上側本体部と下側本体部との間に設けられた免震部と、を備え、免震部は、下側本体部で所定値以上の地震が発生したときに上側本体部の下側本体部に対する所定方向への相対的な滑り移動の拘束が解除され、上側本体部の下側本体部に対する相対的な滑り移動を可能とし、上側本体部と下側本体部とが滑り機構によって接続されており、弾性機構及び減衰機構が滑り機構とは並列に設けられて
おらず、滑り機構は上記所定方向に沿って複数設けられており、滑り機構の滑り面は平面状となっている。
【0008】
本発明に係る走行式荷役装置では、所定の大きさ以上の地震が発生し下側本体部で所定値以上の振動が発生した場合には、上側本体部の下側本体部に対する所定方向への相対的な滑り移動の拘束が解除され、上側本体部の下側本体部に対する相対的な滑り移動が可能とされる。所定の大きさ以上の地震が発生し、下側本体部が大きく振動した際、上側本体部は下側本体部に対して滑り移動するため、下側本体部の振動が上側本体部へ伝わることを抑制することができる。その結果、大地震が発生しても本体部よりも上側に設けられた機器の破損を抑制することができる。
【0009】
また、所定の力を受けると破断するシャーピンと、下側本体部に設けられ、シャーピンが挿入される第1のシャーピン挿入部と、上側本体部に設けられ、シャーピンが挿入される第2のシャーピン挿入部と、シャーピンが破断した状態又はシャーピンが第1及び第2のシャーピン挿入部に挿入されていない状態において、上側本体部の下側本体部に対する所定方向の位置を調整可能な位置調整部と、を備えていてもよい。地震が発生してシャーピンが破断し、上側本体部が下側本体部に対し所定方向へ僅かでも移動した後には、上側本体部を元の位置に戻して再度シャーピンを挿入する復旧作業を行う必要がある。シャーピンを第1及び第2のシャーピン挿入部へ挿入するには、上側本体部を下側本体部に対して正確に位置決めしなければならない。そこで、位置調整部を設けることで、下側本体部に対する上側本体部の位置決めを正確に行うことができる。
【0010】
また、免震部は、上側本体部に取り付けられた上側ブラケットと、下側本体部に取り付けられた下側ブラケットと、を有しており、上側ブラケットは、滑り面が形成されると共に所定方向へ延伸する第1滑り部を有し、下側ブラケットは、第1滑り部の滑り面と接触する滑り面が形成されると共に所定方向へ延伸する第2滑り部を有していてもよい。このように、第1滑り部及び第2滑り部は所定方向へ延伸している。よって、この延伸する距離の分だけ、上側ブラケットが下側ブラケットに対して相対的に移動する際のストロークを確保することができる。
【0011】
また、第2滑り部は、第1滑り部の滑り面と接触する滑り部材と、下側本体部と滑り部材との間に設けられた積層ゴムと、を有していてもよい。この場合、振動の加速度が許容値よりも小さい場合には、積層ゴムの変形により、下側本体部の振動の上側ブラケットへの伝達を抑えることができる。また、振動の加速度が許容値よりも大きい場合には、積層ゴムの変形だけでは下側ブラケット側の振動(移動)を吸収しきれなくなるが、第1滑り部に対して滑り部材が滑ることによって、下側本体部が上側本体部に対して滑り移動する。すなわち、上側本体部が下側本体部に対して相対的に滑り移動する。これにより、所定の大きさ以上の地震が発生し、下側本体部が大きく振動した際、下側本体部の振動が上側本体部へ伝わることを抑制することができる。その結果、大地震が発生しても本体部より上側に設けられた機器の破損を抑制することができる。
【発明の効果】
【0012】
本発明によれば、振動の伝達を低減させることが可能な走行式荷役装置を提供することができる。
【発明を実施するための形態】
【0014】
以下、図面を参照しつつ本発明に係る走行式荷役装置の実施形態について説明する。なお、図面の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を省略する。
【0015】
(第1実施形態)
本実施形態に係る走行式荷役装置は、例えば岸壁に設けられ、着岸した船舶への荷物(例えば、ばら物やコンテナ)の積載、又は船舶からの荷物の陸揚げ等の荷役作業に用いられる。走行式荷役装置1は、荷物の荷役作業を行う荷役部2と、荷役部2を支持するガーダ部3と、ガーダ部3を支持すると共に上側本体部11と下側本体部12とに分割された本体部10と、本体部10の下部に位置しておりレールRに沿って本体部10を走行させるための走行部20と、を備えている。
【0016】
荷役部2は、荷物の荷役作業を行うためのものであり、クレーンの場合にはグラブトロリ式、ロープトロリ式やホイスト式等を採用することができ、アンローダの場合にはグラブバケット式、グラブトロリ式やスパイラルコンベア式等を採用することができる。
【0017】
ガーダ部3は、荷役部2を支持する。ガーダ部3は、レールRと交差する水平方向に延伸するように、本体部10に対して取り付けられている。ガーダ部3は、本体部10に対して取り付けられるガーダ3Aと、一端がガーダ3Aに接続されると共に他端がガーダ3Aに対し起伏可能とされたブーム3Bと、を有している。
【0018】
上側本体部11の上方には、機械室4が設けられている。機械室4には、ブーム3Bを起伏させるための駆動機構が設けられている。機械室4は、本体部10により支持されている。なお、以下では、ガーダ部3が延びる方向をy軸方向、レールRが延在して本体部10が走行する方向(y軸方向に対して垂直な水平方向)をx軸方向、鉛直方向をz軸方向、として説明する。
【0019】
上側本体部11は4本の脚部11Aを備えており、下側本体部12も4本の脚部12Aを備えている。平面視における上側本体部11の各脚部11Aの位置は、平面視における下側本体部12の各脚部12Aの位置と一致している。上側本体部11の脚部11Aの下部には2本の脚部11Aの下部を連結する梁11Bが固定されており、この梁11Bはy軸方向に延在している。
【0020】
また、下側本体部12の脚部12Aの上部には、2本の脚部12Aの上部を連結する梁12Cが固定されており、この梁12Cはy軸方向に延在している。上側本体部11の各脚部11Aと下側本体部12の各脚部12Aとの間には、免震部30が設けられている。また、下側本体部12は、2本の脚部12Aの下端に連結されてx軸方向に延在する梁12Bを有する。走行部20は、本体部10の下部に設けられており本体部10をレールRに沿って走行させる。走行部20は、下側本体部12の各梁12Bの下方で固定されており、本体部10をレールRに沿って走行させるための車輪21を備える。
【0021】
下側本体部12の梁12Bと走行部20との間には、免震部40が設けられている。免震部40としては、公知のものを採用することができ、例えば、下側本体部12に接続される上側ブラケットと、走行部20に取り付けられる下側ブラケットと、上側ブラケット及び下側ブラケットの間に設けられた積層ゴム及びダンパと、を備えている。免震部40は、地震が発生した際に、地面(又は岸壁)から走行部20へ伝った振動が下側本体部12へ伝わることを抑制する。なお、下側本体部12と走行部20との間には、所定の力を受けると破断するシャーピンが設けられており、所定の大きさよりも小さな地震では免震部40は機能せず、所定の大きさ以上の地震が発生した場合にシャーピンが破断して免震部40が機能するようになっている。
【0022】
図1及び
図2に示されるように、免震部30は、上側本体部11と下側本体部12との間に設けられている。免震部30は、上側本体部11の脚部11Aの下端に固定された上側ブラケット31と、下側本体部12の脚部12Aの上端に固定された下側ブラケット32と、を備えている。
【0023】
上側ブラケット31は、後述するシャーピン61が破断した状態又はシャーピン61が取り付けられていない状態では下側ブラケット32に対するy軸方向(所定方向)への移動が拘束されておらず、下側ブラケット32に対してy軸方向に相対的に移動可能となっている。なお、地震が発生し、その振動が下側本体部12まで伝わった際には、下側ブラケット32が上側ブラケット31に対してy軸方向に移動する。このような場合、下側ブラケット32から見ると、上側ブラケット31がy軸方向に移動しているため、上述のように、上側ブラケット31は下側ブラケット32に対してy軸方向に「相対的に」移動可能となっている、と表現することができる。
【0024】
図3に示されるように、上側ブラケット31は、その下面31aに取り付けられた滑り板33A(第1滑り部)と、x軸方向の両側面31bに取り付けられた滑り板33B(第1滑り部)と、を有する。下側ブラケット32は、上側ブラケット31と向かい合う上面32cに取り付けられた滑り板33C(第2滑り部)と、上側ブラケット31と向かい合う両側面32dに取り付けられた滑り板33D(第2滑り部)と、を有する。滑り板33Aと滑り板33Cとが接触するそれぞれの表面、及び、滑り板33Bと滑り板33Dとが接触するそれぞれの表面が滑り面となり、上側ブラケット31は下側ブラケット32に対してy軸方向に相対的に滑り移動することが可能となっている。
【0025】
滑り板33A,33B,33C,及び33Dは、y軸方向に所定距離延伸している。この延伸する距離の分だけ、上側ブラケット31が下側ブラケット32に対して相対的に移動する際のストロークを確保することができる。滑り板33A,33B,33C,及び33Dが延伸する距離は、走行式荷役装置1の大きさ等により適宜設計されるが、例えば数十cm〜数mとすることができる。
【0026】
滑り板33Cにおける滑り板33Aと接触する面、及び滑り板33Dにおける滑り板33Bと接触する面には、摩擦係数を小さくする低摩擦処理が施されている。低摩擦処理の例として、PTFE(ポリテトラフルオロエチレン)製のシートや板の貼り付けが挙げられる。滑り板33A,33B,33C,及び33Dの表面に低摩擦処理が施されている場合、この低摩擦処理が施された面が滑り面となる。なお、走行式荷役装置1には、上側ブラケット31の下側ブラケット32に対する相対的な滑り移動の最大ストロークを規定するストッパ(不図示)が設けられており、上側ブラケット31の下側ブラケット32に対する相対的な移動量が大きくなりすぎて、上側本体部11が下側本体部12から脱落してしまうことを防いでいる。このストッパとしては種々の構成を採用することが可能である。例えば、下側ブラケット32に対する上側ブラケット31の移動時に上側ブラケット31に当接させるピン又はブラケットをストッパとして用いることができる。
【0027】
図4に示されるように、下側本体部12の梁12Cの上面には、シャーピン61を設置するためのシャーピン固定部62が固定されている。シャーピン固定部62には、シャーピン61を貫通させるための孔部62a(第1のシャーピン挿入部)が形成されている。同様に、上側ブラケット31の端部31Bには、シャーピン61を貫通させるための孔部31c(第2のシャーピン挿入部)が形成されている。シャーピン61は、シャーピン固定部62の孔部62aと、上側ブラケット31の端部31Bの孔部31cと、に挿通される。シャーピン61には、周囲よりも径が小さい(細い)溝部61Aが設けられている。このようにシャーピン61が挿通されることにより、通常時は、上側ブラケット31の下側ブラケット32に対するy軸方向への相対的な滑り移動が拘束される。従って、走行式荷役装置1を駆動した際に多少の振動が装置中に発生しても、上側本体部11及び下側本体部12は一体となっているため免震部30は機能せず、装置の駆動や荷役作業への影響が出ない。そして、所定の大きさ以上の地震が発生した場合には、シャーピン61が溝部61Aで破断し、上側ブラケット31の相対的な滑り移動の拘束が解除され、上側ブラケット31の下側ブラケット32に対するy軸方向への相対的な滑り移動が可能となる。
【0028】
このように、本実施形態の走行式荷役装置1は、所定の大きさ以上の地震が発生し下側本体部12で所定値以上の振動が発生した場合には、上側本体部11の下側本体部12に対するy軸方向への相対的な滑り移動の拘束が解除され、上側本体部11の下側本体部12に対する相対的な滑り移動が可能となる。従って、所定の大きさ以上の地震が発生し、下側本体部12が大きく振動した際、上側本体部11は下側本体部12に対して滑り移動するため、下側本体部12の振動が上側本体部11へ伝わることを抑制することができる。その結果、大地震が発生しても本体部10よりも上側に設けられた機器(荷役部2や機械室4内の駆動機構)の破損を抑制することができる。
【0029】
なお、本出願における「滑り移動の拘束が解除」された状態とは、上側本体部11と下側本体部12とが滑り機構によって接続されており、バネ等の弾性機構やダンパ等の減衰機構が滑り機構とは並列に設けられていない状態を意味する。滑り機構と並列に弾性機構や減衰機構が設けられている場合には、下側本体部12の振動が弾性機構や減衰機構を介して上側本体部11へ伝わってしまうため、「滑り移動の拘束が解除」された状態には該当しない。
【0030】
図1及び
図2に示されるように、上側本体部11の梁11Bと下側本体部12の梁12Cとの間には、シャーピン61が破断した状態又はシャーピン61が孔部31c及び孔部62aに挿入されていない状態において、上側本体部11を移動させて上側本体部11の下側本体部12に対するy軸方向の位置を調整可能な原点復帰部50(位置調整部)が設けられている。大地震が発生してシャーピン61が破断し、上側本体部11が下側本体部12に対しy軸方向へ僅かでも移動した後には、上側本体部11を元の位置に戻して再度シャーピン61を挿入する復旧作業を行う必要がある。シャーピン61を上側ブラケット31の孔部31c及びシャーピン固定部62の孔部62aへ挿入するには、上側ブラケット31をシャーピン固定部62に対して正確に位置決めしなければならない。上側本体部11及び上側本体部11が支持している機器を合わせた重量は数百トンにもなることがあり、このような大重量の物を作業者が手で押して移動させることは困難である。原点復帰部50を設けることで、大重量の上側本体部11を正確に原点復帰させることができる。以下では、シャーピン61を上側ブラケット31の孔部31c及びシャーピン固定部62の孔部62aへ挿入することが可能な下側本体部12に対する上側本体部11の位置を原点と称し、また、上側本体部11を原点へ戻す作業を原点復帰と称する。
【0031】
原点復帰部50は、2本の梁12Cにそれぞれ1つずつ設けられている。2台の原点復帰部50は、梁12Cの上部における免震部30それぞれの内側位置に配置されている。原点復帰部50は、駆動力を発生させて出力するモータ51(駆動部)と、モータ51によって出力された駆動力を直進運動に変換しロッド52Aをy軸方向に出没させるシリンダ52(変換部)と、を備えている。なお、シリンダ52は、例えば電動式シリンダであるが、油圧式シリンダであってもよい。
【0032】
原点復帰部50を使用しないときは、ロッド52Aを縮めた状態とし、原点復帰部50のロッド52Aの先端と、上側ブラケット31の端部31Bとを離間させる。ロッド52Aの先端と上側ブラケット31の端部31Bとの距離は、上側ブラケット31の下側ブラケット32に対する相対的な滑り移動の最大ストロークと対応しており、例えば数十cm〜数mである。
【0033】
原点復帰を行う場合、モータ51が駆動力を発生させ、モータ51の駆動力によってシリンダ52のロッド52Aが伸長する。そして、ロッド52Aを端部31Bに連結させて上側ブラケット31の位置を原点に戻すことにより、原点復帰を行うことができる。このように、原点復帰部50は、下側ブラケット32に対する上側ブラケット31の位置を調整可能となっている。
【0034】
また、原点復帰部50で原点復帰を行う場合には、例えば
図2に示される端部31Bの孔部31cとロッド52Aの孔部52aとにピンを通すことにより、端部31Bとロッド52Aとを接続可能である。なお、端部31Bとロッド52Aとは、直接接続させてもよいし、中間部材を介して接続させてもよい。このように端部31Bとロッド52Aとを接続させた状態でロッド52Aを直線運動させることにより、端部31Bを動かして原点復帰を行い、この状態で上述したようにシャーピン61を挿通させる。こうして、原点復帰が行われた状態で、シャーピン61により上側本体部11と下側本体部12との接続がなされる。
【0035】
ところで、
図2に示すように、梁11Bは脚部11Aと接続される根元部11Dと、根元部11D間を接続する中央部11Eと、を有している。上側本体部11の梁11Bの下面には、根元部11Dから中央部11Eに向かうに従って斜め上方に延在する傾斜面11dが形成されている。この傾斜面11dによって根元部11Dよりも中央部11Eが細くなっているので、上側本体部11の下方で原点復帰部50を配置するためのスペースSを十分に確保することができる。
【0036】
なお、梁11Bに代えて太さが均一の梁を用いることも可能である。しかし、根元部11Dが太くなっている本実施形態の梁11Bを用いた場合には、脚部11Aに対する梁11Bの面積を大きくすることができると共に、中央部11Eが細くなっていることによって重量を抑えることも可能となる。また、梁11Bの上下を逆にして傾斜面11dを梁11Bの上面に形成することも可能である。しかし、本実施形態のように傾斜面11dを梁11Bの下面に形成した場合には、スペースSをより広く確保することができるという点で有利である。
【0037】
以上のように、走行式荷役装置1では、所定の大きさ以上の地震が発生し下側本体部12で所定値以上の振動が発生した場合には、上側本体部11の下側本体部12に対するy軸方向への相対的な滑り移動の拘束が解除され、上側本体部11の下側本体部12に対する相対的な滑り移動が可能とされる。所定の大きさ以上の地震が発生し、下側本体部12が大きく振動した際、上側本体部11は下側本体部12に対して滑り移動するため、下側本体部12の振動が上側本体部11へ伝わることを抑制することができる。その結果、大地震が発生しても本体部10よりも上側に設けられた機器(荷役部2や機械室4内の駆動機構)の破損を抑制することができる。また、本実施形態では、上側本体部11と下側本体部12とが滑り機構によって接続されており、バネ等の弾性機構やダンパ等の減衰機構が滑り機構とは並列に設けられていないので、下側本体部12の振動が弾性機構や減衰機構を介して上側本体部11へ伝わることを防ぐことができる。
【0038】
また、走行式荷役装置1は、所定の力を受けると破断するシャーピン61と、下側本体部12に設けられ、シャーピン61が挿入される孔部62aと、上側ブラケット31に設けられ、シャーピン61が挿入される孔部31cと、シャーピン61が破断した状態又はシャーピン61が孔部62a及び孔部31cに挿入されていない状態において、上側本体部11の下側本体部12に対するy軸方向の位置を調整可能な原点復帰部50と、を備えている。従って、通常時は、上側ブラケット31の下側ブラケット32に対するy軸方向への相対的な滑り移動が拘束されるので、走行式荷役装置1を駆動した際に多少の振動が装置中に発生しても、上側本体部11及び下側本体部12は一体となっているため免震部30は機能せず、装置の駆動や荷役作業への影響が出ない。また、地震が発生してシャーピン61が破断し、上側本体部11が下側本体部12に対しy軸方向へ僅かでも移動した後には、原点復帰部50により上側本体部11を元の位置(原点)に戻して再度シャーピン61を挿入する復旧作業を容易に行うことができる。
【0039】
また、
図3に示されるように、免震部30は、上側本体部11に取り付けられた上側ブラケット31と、下側本体部12に取り付けられた下側ブラケット32と、を有しており、上側ブラケット31は、滑り面が形成されると共にy軸方向へ延伸する滑り板33A,33Bを有し、下側ブラケット32は、滑り板33A,33Bの滑り面と接触する滑り面が形成されると共にy軸方向へ延伸する滑り板33C,33Dを有する。このように、滑り板33A,33B,33C,及び33Dはy軸方向へ延伸している。この延伸する距離の分だけ、上側ブラケット31が下側ブラケット32に対して相対的に移動する際のストロークを確保することができる。
【0040】
また、
図2に示されるように、原点復帰部50は、駆動力を出力するモータ51と、モータ51による駆動力を直進運動に変換するシリンダ52と、を備えている。原点復帰部50では、モータ51から出力された駆動力をシリンダ52が直進運動に変換し、この直進運動で上側ブラケット31を下側ブラケット32に対して移動させることで、大重量の上側本体部11を正確に原点復帰させることができる。
【0041】
なお、第1実施形態では、シリンダ52が電動式シリンダ又は油圧式シリンダである例について説明したが、原点復帰部の態様は上記実施形態に限定されない。例えば手回しハンドル又は電動工具で回転運動を生じさせてこの回転運動を直進運動に変換する等、手動で直進運動を発生させて原点復帰を行ってもよい。
【0042】
また、第1実施形態では、原点復帰部50を予め上側本体部11と下側本体部12との間に配置する(走行式荷役装置1の製造時に予め原点復帰部50を取り付けておく)例について説明したが、原点復帰部50を配置するタイミング及び位置は上記実施形態に限定されない。例えば地震が発生してシャーピン61が破断し、上側本体部11の下側本体部12に対する移動が生じた後に原点復帰部50を走行式荷役装置1に取り付けてもよい。また、原点復帰部50は脚部11Aや脚部12A等に取り付けられてもよい。
【0043】
(第2実施形態)
図5に示されるように、第2実施形態に係る走行式荷役装置は、下側本体部12と走行部20との間に、第1実施形態における免震部30と同様の滑り機構を有する免震部70が配置されている。免震部70は、下側本体部12の梁12Bに固定された上側ブラケット71と、走行部20の上端に固定された下側ブラケット72と、を備えている。
【0044】
上側ブラケット71は、第1実施形態と同様、シャーピンが破断した状態又はシャーピンが取り付けられていない状態では下側ブラケット72に対するy軸方向への移動が拘束されておらず、下側ブラケット72に対してy軸方向に相対的に移動可能となっている。上側ブラケット71は、その下面71aに取り付けられた滑り板73A(第1滑り部)と、x軸方向の両側面71bに取り付けられた滑り板73B(第1滑り部)と、を有する。下側ブラケット72は、上側ブラケット71と向かい合う上面72cに取り付けられた滑り板73C(第2滑り部)と、上側ブラケット71と向かい合う両側面に取り付けられた滑り板73D(第2滑り部)と、を有する。滑り板73A,73B,73C,及び73Dの機能は、それぞれ滑り板33A,33B,33C,及び33Dの機能と同様であるため説明を省略する。
【0045】
第2実施形態に係る走行式荷役装置では、所定の大きさ以上の地震が発生し走行部20で所定値以上の振動が発生した場合には、下側本体部12の走行部20に対するy軸方向への相対的な滑り移動の拘束が解除され、下側本体部12の走行部20に対する相対的な滑り移動が可能とされる。所定の大きさ以上の地震が発生し、走行部20が大きく振動した際、下側本体部12は走行部20に対して滑り移動するため、走行部20の振動が下側本体部12へ伝わることを抑制することができる。その結果、大地震が発生しても下側本体部12よりも上側に設けられた機器の破損を抑制することができる。また、本実施形態では、下側本体部12と走行部20とが滑り機構によって接続されており、バネ等の弾性機構やダンパ等の減衰機構が滑り機構とは並列に設けられていないので、走行部20の振動が弾性機構や減衰機構を介して下側本体部12へ伝わることを防ぐことができる。
【0046】
(第3実施形態)
図6に示されるように、第3実施形態に係る走行式荷役装置では、第1実施形態に係る滑り板33Cに代えて、積層ゴム83aと滑り部材83bとが一体となった弾性滑り板83Bを用いている。弾性滑り板83Bの積層ゴム83aは、滑り部材83bと下側ブラケット32との間に設けられている。積層ゴム83aは、その上端部が滑り部材83bに固定され、その下端部が下側ブラケット32に固定されている。積層ゴム83aは、弾性板(ゴム板)が複数枚積層されたものであり、ゴム84と鋼板85とが交互に積層された積層構造を有している。滑り部材83bは、上側ブラケット31の滑り板33Aに接触している。滑り部材83bにおける滑り板33Aと接触する面には、摩擦係数を小さくする低摩擦処理が施されている。低摩擦処理の例として、PTFE(ポリテトラフルオロエチレン)製のシートや板の貼り付けが挙げられる。滑り部材83bの表面に低摩擦処理が施されている場合、この低摩擦処理が施された面が滑り面となる。この滑り部材83bに対して滑り板33Aが滑ることによって、下側ブラケット32に対して上側ブラケット31が相対的に移動可能となっている。
【0047】
以上のように構成される弾性滑り板83Bでは、
図6(b)に示されるように、例えば通常の運転(荷役作業や走行)時や小規模地震等、振動の加速度が許容値よりも小さい場合には、積層ゴム83aにおけるゴム84の変形により、下側ブラケット32(下側本体部12)の振動の上側ブラケット31(上側本体部11)への伝達を抑えることができる。また、
図6(c)に示されるように、例えば大規模地震等、振動の加速度が許容値よりも大きい場合には、積層ゴム83aの変形だけでは下側ブラケット32側の振動(移動)を吸収しきれなくなるが、滑り板33Aに対して滑り部材83bが滑ることによって、下側本体部12が上側本体部11に対して滑り移動する。すなわち、上側本体部11が下側本体部12に対して相対的に滑り移動する。これにより、所定の大きさ以上の地震が発生し、下側本体部12が大きく振動した際、下側本体部12の振動が上側本体部11へ伝わることを抑制することができる。その結果、大地震が発生しても本体部10よりも上側に設けられた機器(荷役部2や機械室4内の駆動機構)の破損を抑制することができる。
【0048】
なお、第3実施形態では、免震部30に積層ゴム83aを用いているが、この積層ゴム83aは滑り機構とは直列に接続されているため、「滑り移動の拘束」状態には該当しない。
【0049】
なお、第3実施形態では、第1実施形態の滑り板33Cに代えて弾性滑り板83Bを用いたが、滑り板33Dに代えて弾性滑り板83Bを用いることも可能である。また、第2実施形態に係る滑り板73C又は滑り板73Dに代えて、弾性滑り板83Bを用いてもよい。
【0050】
(第4実施形態)
図7に示されるように、第4実施形態に係る走行式荷役装置では、第1実施形態の原点復帰部50に代えて、ラックアンドピニオン式を採用した原点復帰部90を用いている。原点復帰部90は、上側本体部11の梁11Bと下側本体部12の梁12Cとの間に介在している。原点復帰部90は、梁11Bに固定されたモータ91と、モータ91の駆動力で回転する歯車92(回転部)と、梁12Cに固定されて歯車92と噛み合う歯がy軸方向に延伸するように設けられた噛み合い部93と、を備えている。
【0051】
ここで、原点復帰を行う場合には、モータ91が駆動力を発生させ、この駆動力で歯車92が回転する。そして、回転する歯車92は噛み合い部93の歯に噛み合うことで、歯車92はy軸方向へ移動する。その結果、歯車92が取り付けられた梁11Bを介して、上側本体部11が下側本体部12に対してy軸方向へ移動する。これにより、上側本体部11の原点復帰を行うことができる。なお、原点復帰を行うとき以外は、歯車92と噛み合い部93とが噛み合わないようにしておくことが望ましい。常に歯車92と噛み合い部93とが噛み合っていると、地震が発生してシャーピン61が破断しても、歯車92と噛み合い部93とが噛み合っているため上側本体部11の下側本体部12に対するy軸方向の相対的な滑り移動が拘束されてしまうためである。歯車92と噛み合い部93とが噛み合わないようにするには様々な手法が考えられる。例えば、歯車92が取り付けられた部材をz軸方向へスライドさせるスライド機構を設けておくことや、通常時は噛み合い部93は走行式荷役装置1には取り付けずに原点復帰を行うときのみ噛み合い部93を取り付ける、等の手法が挙げられる。
【0052】
なお、第4実施形態では、上側本体部11の梁11Bと下側本体部12の梁12Cとの間に原点復帰部90が設けられたが、原点復帰部90の配置位置は適宜変更可能である。例えば、脚部11A及び脚部12Aに原点復帰部90を取り付けることも可能である。この場合も、歯車を回転させて直進運動させることにより原点復帰が行われる。
【0053】
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形したものであってもよい。例えば、第1実施形態では、下側本体部12と走行部20との間に免震部40が設けられていたが、津波等の影響を回避するため、この免震部40を省略することも可能である。
【0054】
また、上側ブラケット31は滑り板33A,33Bを備え、下側ブラケット32は滑り板33C,33Dを備えていたが、滑り板33B及び滑り板33Dを省略することも可能である。また、滑り板33A及び滑り板33Cを省略することも可能である。