【文献】
大迫政浩,災害・放射能汚染廃棄物の処理における現状と課題,日本,日本エネルギー学会リサイクル部会講習会,2012年 9月14日,p.28-35,URL,http://www.jie.or.jp/recycle/katudou/seminar%2012-9-14/kouen%209-14-3.pdf
(58)【調査した分野】(Int.Cl.,DB名)
放射性セシウムで汚染された廃棄物、及び、CaO源及び/又はMgO源を1200〜1350℃で加熱して、上記廃棄物中の放射性セシウムを揮発させる加熱工程を含む放射性セシウムの除去方法であって、
上記加熱工程において、CaO、MgO、及びSiO2の各々の質量が、下記式(1)を満たし、かつ、塩素と、セシウム及びカリウムとのモル比(Cl/(Cs+K))が1.00以下となるように、上記廃棄物、CaO源及びMgO源の各々の種類及び配合割合を定めることを特徴とする放射性セシウムの除去方法。
((CaO+1.39×MgO)/SiO2)=1.0〜2.5 ・・・(1)
(式中、CaO、MgO、SiO2は、各々、カルシウムの酸化物換算の質量、マグネシウムの酸化物換算の質量、珪素の酸化物換算の質量を表す。)
放射性セシウムで汚染された廃棄物、及び、CaO源及び/又はMgO源を1200〜1350℃で加熱して、上記廃棄物中の放射性セシウムを揮発させ、焼成物を得る加熱工程を含む焼成物の製造方法であって、
上記加熱工程において、CaO、MgO、及びSiO2の各々の質量が、下記式(1)を満たし、かつ、塩素と、セシウム及びカリウムとのモル比(Cl/(Cs+K))が1.00以下となるように、上記廃棄物、CaO源及びMgO源の各々の種類及び配合割合を定めることを特徴とする焼成物の製造方法。
((CaO+1.39×MgO)/SiO2)=1.0〜2.5 ・・・(1)
(式中、CaO、MgO、SiO2は、各々、カルシウムの酸化物換算の質量、マグネシウムの酸化物換算の質量、珪素の酸化物換算の質量を表す。)
上記加熱工程によって得られた焼成物と、還元剤及び吸着剤からなる群より選ばれる少なくとも1種を混合する混合工程を含む請求項5〜7のいずれか1項に記載の焼成物の製造方法。
【発明を実施するための形態】
【0007】
以下、本発明について詳細に説明する。
本発明の放射性セシウムの除去方法は、放射性セシウムで汚染された廃棄物、及び、CaO源及び/又はMgO源を1200〜1350℃で加熱して、上記廃棄物中の放射性セシウムを揮発させる加熱工程を含む放射性セシウムの除去方法であって、上記加熱工程において、CaO、MgO、及びSiO
2の各々の質量が、下記式(1)を満たし、かつ、塩素と、セシウム及びカリウムとのモル比(Cl/(Cs+K))が1.00以下となるように、上記廃棄物、CaO源及びMgO源の各々の種類及び配合割合を定めることを特徴とする。
((CaO+1.39×MgO)/SiO
2)=1.0〜2.5 ・・・(1)
(式中、CaO、MgO、SiO
2は、各々、カルシウムの酸化物換算の質量、マグネシウムの酸化物換算の質量、珪素の酸化物換算の質量を表す。)
【0008】
本発明の処理対象物は、放射性セシウムで汚染された廃棄物である。
ここで、放射性セシウムで汚染された廃棄物とは、例えば、土壌や、下水汚泥乾粉、都市ごみ焼却灰、ごみ由来の溶融スラグ、貝殻、草木等の一般廃棄物や、下水汚泥、下水スラグ、浄水汚泥、建設汚泥等の産業廃棄物や、がれき等の災害廃棄物であって、放射性セシウムを含むものである。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、放射性セシウムをほとんど含まない部分(例えば、土壌の場合、砂、石)を予め取り除いて得られる、放射性セシウムが濃縮されたもの(中間処理物)も、本発明における「放射性セシウムで汚染された廃棄物」の概念に含まれるものとする。
また、CaO源としては、例えば炭酸カルシウム、石灰石、生石灰、消石灰、石灰石、ドロマイト、高炉スラグ等が挙げられる。MgO源としては、例えば炭酸マグネシウム、水酸化マグネシウム、ドロマイト、蛇紋岩、フェロニッケル合金スラグ等が挙げられる。これらの例示物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明において、CaO源及びMgO源は、これら両方を用いてもよいし、いずれか一方のみを用いてもよいが、放射性セシウムの揮発性の観点からCaO源のみを混合することが好ましい。
また、CaO源及びMgO源は、粉砕された粉状物を使用することが好ましい。
【0009】
本発明において、放射性セシウムとは、セシウムの放射性同位体であるセシウム134及びセシウム137を意味する。これらの放射性セシウムは、原子力発電所の事故によって外部の環境中に放出される放射性物質であり、半減期がそれぞれ約2年と約30年のものである。
本発明において、除去対象物である放射性セシウムは、事故を起こした原子力発電所から、ヨウ化セシウム等の形態で放射性ヨウ素と共に外部の環境中に放出され、上空から地表面に降下したものである。ヨウ化セシウムは、沸点が1200℃以上であり、沸点が700℃程度であるセシウム単体に比べて、揮発し難い性質を有する。そのうえ、地表面に降下した放射性セシウムは、土壌に含まれる粘土鉱物中に閉じ込められて、土壌から離れにくい状態となり、また、形態が変化する場合もある。また、がれき等の災害廃棄物に付着したり、地表面に降下した放射性セシウムが雨によって流され、下水処理の過程で濃縮されることで高濃度に放射性セシウムを含む下水汚泥等が生じる。さらに、土壌に含まれる放射性セシウムを吸収することで草木が放射能汚染され、これら放射能に汚染された草木を含むものを焼却して生じた焼却灰においては、ガラスなどに放射性セシウムが閉じ込められていることもある。本発明では、これらの処理し難い状態になっている放射性セシウム化合物を分離し回収しようとするものである。
【0010】
上記放射性セシウムで汚染された廃棄物とCaO源及び/又はMgO源は、得られる混合物中の酸化カルシウム(CaO)、酸化マグネシウム(MgO)、及び二酸化珪素(SiO
2)の各々の質量が、下記式(1)を満たすように、前記廃棄物とCaO源及び/又はMgO源の種類及び配合割合を定めたうえで混合される。
((CaO+1.39×MgO)/SiO
2)=1.0〜2.5 ・・・(1)
(式中、CaO、MgO、SiO
2は、各々、カルシウムの酸化物換算の質量、マグネシウムの酸化物換算の質量、珪素の酸化物換算の質量を表す。)
上記CaO、MgO、及びSiO
2の各々の質量と上記式(1)から導き出される数値の下限値は、放射性セシウムの揮発量を多くする観点から、好ましくは1.2以上、より好ましくは1.4以上、さらに好ましくは1.7以上、さらに好ましくは1.8以上、特に好ましくは1.9より大きい値である。
また、上記式(1)から導き出される数値の上限値は、混合物中の放射性セシウムを揮発させて、かつ、混合物中のカリウムやナトリウムの揮発量を少なくする観点から、好ましくは2.4以下、より好ましくは2.3以下、さらに好ましくは2.2以下、さらに好ましくは1.9以下、特に好ましくは1.8以下である。
なお、CaOの1モルの質量は、MgOの1.39モルの質量に相当することから、上記式(1)において、MgOの質量に1.39を乗じている。
該質量比が1.0未満であると、焼成温度が高温になるにつれて液相が生じやすくなり、放射性セシウムの揮発量が少なくなる。該質量比が2.5を超えると、放射性セシウムで汚染された廃棄物とCaO源及び/又はMgO源との混合物中のカリウムやナトリウムの合計の揮発量が多くなり、排ガスが冷却されて得られる固体分である放射性物質含有廃棄物の量が多くなる。
【0011】
放射性セシウムの塩化揮発を促進し、かつ揮発回収物を減容化する目的で上記混合物の材料として、さらに、塩化カルシウム(CaCl
2)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)等の塩化物を用いてもよい。中でも塩化揮発の促進の観点から塩化カルシウムが好ましい。
塩化物の量は、塩素と、セシウム及びカリウムとのモル比(Cl/(Cs+K))が1.00以下、好ましくは0.010〜0.60、より好ましくは0.015〜0.40、特に好ましくは0.03〜0.30になる量である。該モル比が1.0以下であると、カリウムやナトリウムが揮発せずに放射性セシウムが多く揮発するため、放射性物質含有廃棄物の減容化を図ることができる。
また、上記混合物中の塩素量は1500mg/kg以下であることが好ましい。塩素量が1500mg/kg以下であると、高温でも液相が生じにくくなり、放射性セシウムが多く揮発する。
好ましくは、上記モル比(Cl/(Cs+K))が1.0以下であり、かつ、上記混合物中の塩素量が1500mg/kg以下、さらに好ましくは、上記モル比が0.5以下であり、かつ、上記混合物中の塩素量が1250mg/kg以下であれば、揮発するセシウムは塩化セシウムの形態として、揮発しやすくなることに加えて、後述する回収物の減容化を図ることができる。
上記の廃棄物とCaO源及び/又はMgO源との混合に際し、必要に応じて、混合を兼ねて解砕、粉砕等を行ったり、あるいは、解砕機もしくは粉砕機と、混合機を組み合わせて、2段階の処理を行ってもよい。後述するロータリーキルンを用いて焼成する場合は、ロータリーキルン内で各材料が回転混合されるので、上述のCaO源、MgO源、及び廃棄物等の一部をそのままキルン窯尻に投入してもよい。また、上記混合物は5mm程度の粒状物より小さいことが好ましい。また、予めセシウムが多くは含まれない5mm以上の石などを、水洗を行いながら取り除いてもよい。
【0012】
放射性セシウムで汚染された廃棄物とCaO源及び/又はMgO源との混合物の加熱温度は1200〜1350℃、好ましくは1200〜1300℃である。
上記温度範囲内で加熱することで、廃棄物に含まれる放射性セシウムを効率的に揮発させることができる。加熱温度が1200℃未満では放射性セシウムの揮発量が少なくなる。1350℃を超えると、液相が形成されることで放射性セシウムが取り込まれて揮発しにくくなるので好ましくない。
混合物の加熱時間は、放射性セシウムの十分な揮発量を得る観点から、好ましくは15分間以上、より好ましくは30分間以上である。加熱時間の上限は特に限定されないが、好ましくは180分間以下、より好ましくは120分間以下である。加熱時間が180分間を超えると混合物中の放射性セシウムと共に、カリウムやナトリウムの揮発量が多くなる。
ロータリーキルン等、原料が転動する場合には、ガスと放射性セシウムとの接触率が大きくなり、熱伝導率も良くなるため、静置した条件よりも短い焼成時間で、高い揮発率を得ることができる。
加熱手段としては、連続式とバッチ式のいずれも用いることができる。
連続式の加熱手段の例としては、ロータリーキルン等が挙げられる。
バッチ式の加熱手段の例としては、焼却炉、電気炉、マイクロ波加熱装置等が挙げられる。
中でも、連続式の加熱手段は、処理の効率を高める観点から、本発明で好ましく用いられる。特に、ロータリーキルンは、放射性セシウムの揮発に適する加熱温度及び廃棄物の滞留時間を容易に与えることができるので、好ましい。
【0013】
加熱時の雰囲気としては、水蒸気を含む空気下で加熱すれば、アルカリ金属(カリウム及びナトリウム)の揮発量を少なくし、かつ、放射性セシウムの揮発量を多くすることができるため好ましい。
一方、水蒸気を含まない空気(純空気)下で加熱した場合、アルカリ金属(カリウム及びナトリウム)の揮発量も多くなるが、より多くの放射性セシウムを揮発させることができる。
上述した塩化物の量、加熱温度、時間、及び加熱時の水蒸気量を調整することで、アルカリ金属(カリウム及びナトリウム)の揮発量を少なくすると共に、放射性セシウムの揮発量を多くすることができる。
【0014】
また、放射性セシウムで汚染された廃棄物にクロムが含まれていた場合、得られる焼成物に6価クロム(Cr
6+)が含まれる可能性がある。
このような焼成物を、セメント混合材、骨材、土工資材等として使用した場合(特に土工資材として用いる場合)、焼成物中に含まれる6価クロムが溶出して、水質汚染、土壌汚染等を引き起こす可能性がある。
そこで、上記加熱工程において、加熱を還元雰囲気下で行ってもよい。還元雰囲気下で加熱することで、上記廃棄物中にクロムが含まれていても、酸化雰囲気下で生じ易い6価クロムの生成を防止することができ、かつ、廃棄物を加熱する工程において、廃棄物が一時的に酸化雰囲気下で加熱されることで6価クロムが生成しても、3価クロム(Cr
3+)に還元されることから、得られた焼成物を土工資材等として安全に使用することができる。なお、上述した水蒸気を含む空気下で加熱する方法と、還元雰囲気下で加熱する方法は組み合わせて行ってもよい。以下、還元雰囲気下で加熱を行う方法について、内部燃焼型の装置(内燃式ロータリーキルン等)であって、向流タイプ(原料出口側で燃焼するもの)の装置を用いた場合を例に解説するが、本発明はこれらの形態に限定されるものではない。
【0015】
還元雰囲気下で、放射性セシウムで汚染された廃棄物を加熱する方法の一例として、上記廃棄物を加熱する際に、可燃性物質を燃焼する方法が挙げられる。可燃性物質を燃焼することで、廃棄物の周辺を還元雰囲気に保つことができる。また、上記廃棄物中にクロムが含まれていても、6価クロムの生成を防止することができ、かつ、廃棄物を加熱する工程において、6価クロムが生成していても、6価クロムが3価クロムに還元される。
ここで、可燃性物質とは、例えば、石炭、コークス、活性炭、廃木材、廃プラスチック、重油スラッジ、都市ゴミ等の廃棄物を圧縮及び/または固形化した廃棄物固形塊等が挙げられる。
可燃性物質を供給する方法としては、放射性セシウムで汚染された廃棄物にあらかじめ混合してもよく、加熱に使用する装置として、ロータリーキルンを使用する場合、可燃性物質を、廃棄物の入口側、出口側、または、ロータリーキルンの途中から供給してもよい。
可燃性物質を原料にあらかじめ混合する場合、加熱によって得られる焼成物中に可燃性物質が未燃焼状態で残存しない範囲であれば、可燃性物質の混合量は多い方が好ましく、可燃性物質の粒径も大きい方が好ましい。
【0016】
ここで、可燃性物質を、ロータリーキルンの廃棄物の入口側、またはロータリーキルンの途中で供給する場合について説明する。
この場合、可燃性物質は還元雰囲気を長時間維持することができるものが好ましい。具体的には、例えば、ロータリーキルンの主燃料に比べて、燃焼速度の遅いもの、または、主燃料と同様の燃焼速度を有し、主燃料よりも粗い粒である可燃性物質が挙げられる。具体的には、石油コークス、石炭コークス、無煙炭等が挙げられる。燃焼速度が遅いほど、可燃性物質を細かくできるので好ましい。
可燃性物質の平均粒径は、好ましくは0.5〜20mm、より好ましくは1〜5mmである。該平均粒径が0.5mm未満であると、燃焼中のごく初期で燃えきってしまうため、還元雰囲気を長時間維持できなくなる場合がある。該平均粒径が20mmを超えると、得られた焼成物に未燃焼状態の可燃性物質が多量に残存するため、供給した可燃性物質が無駄となり、また、該焼成物を、セメント混合材またはコンクリート骨材として用いる場合において、残存する未燃炭素がAE剤を吸着することで、モルタルコンクリートの空気連行性が悪化する、あるいは、締め固めした場合に未燃炭素が表面に現れ、モルタルコンクリートの外観が悪化する等の問題が生じる場合がある。
可燃性物質の量は、加熱によって得られる焼成物1000kgあたり、好ましくは5〜40kg、より好ましくは10〜40kg、特に好ましくは12〜40kgである。該量が5kg未満であると、還元雰囲気とすることによる効果が小さい場合がある。該量が40kgを超えると、得られる焼成物に未燃焼状態の可燃性物質が多量に残存し、該焼成物をセメント混合材またはコンクリート骨材として用いる場合において、モルタルコンクリートの空気連行性や外観が悪化する場合がある。
なお、可燃性物質は、ロータリーキルンの途中で供給する場合には、ロータリーキルン内で最も高温となる位置から、廃棄物の入口側までの途中で供給することが好ましい。
可燃性物質を燃焼する際の、炉内の酸素(O
2)濃度は、可燃性物質をすぐに消失させないという観点から、好ましくは5質量%以下、より好ましくは3質量%以下である。
上述した条件と、滞留時間等を調整することで、6価クロムの生成を防止し、かつ、可燃性物質が残存しないようにすることができる。また、得られた焼成物をセメント混合材またはコンクリート骨材として使用する場合には、モルタルコンクリートの空気連行性や外観に悪影響を与えないように、上述した条件と、滞留時間等を調整する。
【0017】
次に、可燃性物質を、廃棄物の出口側から供給する場合について説明する。
可燃性物質は空気を用いて廃棄物の出口側から炉内に向かって容易に圧送することができる。また、ロータリーキルンの出口側に専用の投入口を設けても良い。さらに、粗い可燃性物質(平均粒径が1〜10mm程度のもの)を主バーナーの燃料の一部として落下させても良い。
可燃性物質は、廃棄物の入口側、またはロータリーキルンの途中で供給する場合よりも強い還元状態にできるものが好ましい。具体的には、例えば、ロータリーキルンの主燃料に比べて、燃焼速度が速い可燃性物質が挙げられる。燃焼速度が速い可燃性物質としては、例えば、廃木材、廃プラスチック、重油スラッジ、及び都市ゴミ等の廃棄物を圧縮及び/または固形化した廃棄物固形塊等が挙げられる。
可燃性物質の平均粒径は、好ましくは0.1〜10mm、より好ましくは1〜5mmである。該平均粒径が0.1mm未満であると、焼成中のごく初期で燃えきってしまうため還元雰囲気を維持できなくなる場合がある。該平均粒径が10mmを超えると、得られた焼成物に未燃焼状態の可燃性物質が多量に残存して供給した可燃性物質が無駄となり、また、該焼成物をセメント混合材またはコンクリート骨材として用いる場合において、モルタルコンクリートの空気連行性や外観が悪化する場合がある。なお、還元雰囲気を維持できる時間は、可燃性物質の平均粒径により調整することができる。例えば、燃焼速度が速い可燃性物質は、平均粒径を大きく(粗く)することで還元雰囲気を維持できる時間を長くすることができる。
可燃性物質の熱量は、主バーナーに用いられる燃料全体の熱量に対して、通常、2〜40%となるように使用することができる。可燃性物質の熱量が2%未満であると、還元雰囲気とすることによる効果が小さい場合がある。可燃性物質の熱量が40%を超えると、得られた焼成物中に未燃焼状態の可燃性物質が多量に残存して供給した可燃性物質が無駄となり、該焼成物をセメント混合材またはコンクリート骨材として用いる場合において、モルタルコンクリートの空気連行性や外観が悪化する場合がある。
上述した可燃性物質を廃棄物の入口側またはロータリーキルンの途中で供給する場合と比べて、廃棄物の出口側から供給する場合は、ロータリーキルン内で還元雰囲気となるのは炉内の一部分であるため、還元雰囲気を長時間維持するとともに、還元速度が速い高温度帯で還元雰囲気となるように、可燃性物質の供給位置(落下位置)をロータリーキルン内で最高温度となる位置よりも廃棄物の入口側に調整することが好ましい。供給位置は好ましくは、通常、キルンの内径をDとして、キルンの出口から4Dの地点より、奥が好ましい。また、主バーナー等の設定条件により、キルン内の最高温度となる位置がより出口側になった場合には、キルンの出口から3Dの地点より、奥が好ましい。供給位置(落下位置)は、可燃性物質の投入口の角度、投入口の位置、可燃性物質を投入する速度、可燃性物質の粒度、及び、可燃性物質の密度で調整することが好ましい。
可燃性物質を添加する場合における、炉内の酸素(O
2)濃度は、可燃性物質をすぐに消失させないという観点から、好ましくは5質量%以下、より好ましくは3質量%以下である。
上述した条件を調整することで、6価クロムの生成を防止し、かつ、可燃性物質が残存しないようにすることが好ましい。
【0018】
還元雰囲気下で、放射性セシウムで汚染された廃棄物を加熱する他の方法としては、上記廃棄物に炎を直接接触させる方法が挙げられる。
具体的には、内部燃焼型の装置(内熱式ロータリーキルン等)において、加熱中(焼成中)の放射性セシウムで汚染された廃棄物等と、バーナーの炎が直接接するように焼成する(以下、「炎膜焼成」ともいう。)。内熱式ロータリーキルンを用いて炎膜焼成を行う方法としては、(a)加熱用主バーナーを下部に設置して、炎が廃棄物等をなめるように加熱(焼成)する、(b)燃料量や空気速度を調整することで炎を発散させて、炎が廃棄物等をなめるように加熱(焼成)する、(c)主バーナーの角度を下に向けることで炎を長くして、炎が廃棄物等をなめるように加熱(焼成)する、等の方法が挙げられる。また、加熱用主バーナー以外に炎膜焼成用の補助バーナーを設置してもよい。各条件の調整によって、廃棄物等と炎の接触時間が長くなるほど、還元効果が向上する。また、上記廃棄物中にクロムが含まれていても、6価クロムの生成を防止することができ、かつ、廃棄物を加熱する工程において、6価クロムが生成していても、6価クロムが3価クロムに還元される。
炎膜焼成を行う際の酸素濃度は、より多くの炎膜を発生させる観点から、好ましくは5質量%以下、より好ましくは3質量%以下である。
上述した条件を調整することで、6価クロム溶出防止効果をより大きくすることができる。なお、上述した可燃性物質の燃焼と、炎膜焼成を併用してもよい。
【0019】
また、加熱する際の雰囲気を調整することで、還元雰囲気下とすることもできる。
例えば、還元雰囲気下で、放射性セシウムで汚染された廃棄物を加熱する他の方法として、加熱に用いる燃料を理論空気量よりも少ない空気量で燃焼する方法が挙げられる。
具体的には、内部燃焼型の装置(内熱式ロータリーキルン等)において、炉内の空気比(理論空気量に対する供給空気量の割合)を0.8〜1.0、若しくは炉内の酸素濃度を1質量%以下にして上記燃料を燃焼する、又は、炉内の一酸化炭素濃度を0.1〜1.0質量%に保ちながら燃料を燃焼する方法等が挙げられる。
炉内の空気比が0.8未満、または一酸化炭素濃度が1.0質量%を超える場合、加熱に必要な燃焼が困難となる場合がある。炉内の空気比が1.0を超える場合、酸素濃度が1質量%を超える場合、又は、炉内の一酸化炭素濃度を0.1質量%未満に保ちながら燃料を燃焼する場合、還元効果が小さくなる。
加熱に用いる燃料とは、主燃料(バーナーの燃料)として、重油、微粉炭、再生油、LPG、NPG、及び可燃性廃棄物等が挙げられ、空間中で燃焼するように粒度を調整したものが用いられる。
さらに、上述した可燃性物質の燃焼及び/または炎膜焼成と併用することもできる。
また、加熱に使用する装置(外熱式ロータリーキルン、電気炉等)内を、窒素ガス等の不活性ガスで置換、または流通させる方法が挙げられる。さらに、前記不活性ガスに、一酸化炭素ガス等の還元性ガスを混合したものを置換、または流通させても良い。
【0020】
上述した加熱方法によって生じた排ガス中の揮発した放射性セシウムは、冷却されて固体になった後、集塵機またはスクラバー等で回収することができる。また、キルンにプレヒーターが取り付けられている場合は、揮発した放射性セシウムを高濃度で含む排ガスの一部を抽気して、冷却することによって、固体となった放射性セシウムを回収することもできる。回収した放射性セシウムは、必要に応じて水洗、吸着などにより、さらなる減容化処置をした後、コンクリート製の容器などに密閉して保管することができる。これにより、放射性物質を含む廃棄物を外部に漏洩することなく、減容化し、保管することができる。
廃棄物と、CaO源及び/又はMgO源との混合物に塩化物を加えた場合、放射性セシウムを放射性塩化セシウムの状態で回収することができる。該放射性塩化セシウムは、容易に水に溶かすことができ、水溶液としても回収することができる。
加熱後に得られる焼成物は、必要に応じて粉砕し、セメント混合材、骨材(コンクリート用骨材、アスファルト用骨材)、土工資材(埋め戻し材、盛り土材、路盤材等)等として利用することができる。
【0021】
加熱後に得られる焼成物は、絶乾密度が、好ましくは1.5〜3.0g/cm
3、より好ましくは2.0〜3.0g/cm
3の焼成物である。
また、該焼成物のフリーライム(遊離石灰)量は、好ましくは1.0質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.2質量%以下である。フリーライム量が1.0質量%を超えると、焼成物をコンクリート用骨材や土工資材として使用した場合、コンクリートが膨張破壊したり、焼成物自体が崩壊する可能性がある。
該焼成物の粒度は、必要とされる粒度、締め固め性等を考慮して、ふるい分け等により調整してセメント混合材等に使用すればよい。
また、廃棄物にクロムが含まれる場合、上述した加熱工程において加熱を還元雰囲気下で行う方法の他に、得られた焼成物に対して以下の処理を行うことで、焼成物から6価クロムが溶出することを防ぐことができる。特に焼成物を土工資材として用いる場合には、水質汚染及び土壌汚染を防ぐ観点から、6価クロムの溶出対策を行うことが好ましい。以下、6価クロムの溶出対策の具体的な方法について説明する。
【0022】
得られた焼成物に6価クロムが含まれる場合、6価クロムの溶出対策として、加熱工程によって得られた高温の焼成物と可燃性物質を混合する方法が挙げられる。加熱工程後の高温の焼成物と可燃性物質を混合して冷却することで、焼成物中の6価クロムが3価クロムに還元されて、焼成物中の6価クロムを低減することができる。
具体的には、加熱工程後の焼成物を、熱風炉において焼成物の温度を高温に保ちながら可燃性物質と混合する方法や、容器内に加熱工程後の高温の焼成物と可燃性物質を入れて充填させ、焼成物と可燃性物質との混合物の温度を高温に保ちながら静置する方法が挙げられる。
【0023】
また、加熱工程後に行われるエアークエンチングクーラー、ロータリークーラー等を用いた冷却工程において高温の焼成物と可燃性物質を混合してもよい。中でも、酸素に接することが少なく、かつ、可燃性物質の混合度合いが高いロータリークーラーを用いることが好ましい。
冷却工程において可燃性物質を混合する場合、可燃性物質の混合方法は特に限定されないが、高温条件および還元雰囲気を長時間維持する観点から、加熱工程直後に混合することが好ましい。例えば、ロータリーキルンを用いて加熱を行う場合、ロータリーキルンの落ち口に可燃性物質を落下させて混合する方法が好ましい。
可燃性物質を混合する際の焼成物の温度は、高温であるほど6価クロムの低減効果が大きく、好ましくは800℃以上、より好ましくは1000℃以上である。なお、ロータリーキルンを用いて加熱を行う場合、ロータリーキルン内の焼成温度が最大となる位置を落ち口側に近づけることで、ロータリークーラー内で混合する際の焼成物の温度を高くすることができる。
可燃性物質を混合後、焼成物が冷却するまでの時間は長いほど6価クロムの低減効果が大きいが、混合してから焼成物の温度が600℃以下になるまでの時間は、好ましくは1分間以上、より好ましくは3分間以上である。
可燃性物質は、焼成物と可燃性物質の混合物全体の熱量に対して、好ましくは2〜20%の熱量に相当する量を混合する。該量が2%未満の熱量に相当する場合、6価クロムの低減効果が小さくなる。該量が20%を超える熱量に相当する場合、冷却後の焼成物に未燃焼状態の可燃性物質が多量に残存してしまう。
可燃性物質としては、例えば、石炭、コークス、活性炭、廃木材、廃プラスチック、重油スラッジ、都市ゴミ等の廃棄物を圧縮及び/または固形化した廃棄物固形塊等が挙げられる。中でも、より強い還元状態にできるものが好ましい。具体的には、燃焼速度が速い可燃性物質が挙げられる。燃焼速度が速い可燃性物質としては、例えば、廃木材、廃プラスチック、重油スラッジ、及び都市ゴミ等の廃棄物を圧縮及び/または固形化した廃棄物固形塊等が挙げられる。
可燃性物質の平均粒径は、好ましくは0.1〜10mm、より好ましくは1〜5mmである。10mmを超えると冷却後の焼成物中に可燃性物質が大量に残存してしまう。0.1mm未満であると、6価クロムの低減効果が小さくなると共に、投入する際に冷却空気の風速等によって飛散してしまい、焼成物と混合する量が少なくなる。
上述した燃焼速度が速い可燃性物質は、平均粒径を大きく(粗く)することできる。平均粒径を大きくすることで、還元雰囲気を維持できる時間を長くすると共に、投入する際に冷却空気の風速等によって可燃性物質が飛散することを防ぐことができる。
可燃性物質を混合する際の酸素濃度は特に限定されない。また、可能であれば、酸素との接触を少なくする、または可燃性物質の添加量を少なくする観点から排ガスを利用してもよい。
上述した条件を、6価クロムの低減効果が大きく、かつ、可燃物が残存しないように調整することが好ましい。また、焼成物をセメント混合材として使用する場合には、還元雰囲気を強くしすぎることで、該焼成物を用いたセメントの色が変わらないように調整することが好ましい。
【0024】
また、6価クロムの溶出対策として、加熱工程によって得られた焼成物をさらに加熱して、溶融する方法が挙げられる。
焼成物を溶融することで、焼成物に含まれる6価クロムがガラス中に封じ込まれ、土工資材等に使用した場合に、6価クロムの溶出量が環境基準値以下となる。
焼成物をさらに加熱して溶融させた後、該溶融物は冷却されて粒状物となる。得られた粒状の溶融物は、吸水率が低く、高強度であることから、コンクリート用骨材として用いることができる。なお、溶融物の冷却は、急冷でも徐冷でもよい。
また、加熱工程によって得られた高温の状態の焼成物(例えば、キルンから出てきた直後の焼成物)を、直接溶融することがエネルギーコストの観点から好ましい。
【0025】
また、6価クロムの溶出対策として、加熱工程によって得られた焼成物と、還元剤及び吸着剤からなる群より選ばれる少なくとも1種以上を混合する混合工程を行ってもよい。
例えば、焼成物と還元剤を混合することで、焼成物に含まれる6価クロム、または焼成物から溶出した6価クロムを3価クロムに還元することができる。
還元剤としては、例えば、亜硫酸ナトリウム等の亜硫酸塩、硫酸鉄(II)、塩化鉄(II)等の鉄(II)塩、チオ硫酸ナトリウム、鉄粉等が挙げられる。
また、焼成物と吸着剤を混合することで、焼成物から溶出した6価クロムを吸着させ、6価クロムの不溶化、又は溶出の抑制をすることができる。
吸着剤としては、例えば、ゼオライト、粘土鉱物、Mg−Al系やMg−Fe系等のハイドロタルサイト化合物のような層状複水酸化物、Ca−Al系水酸化物やエトリンガイトやモノサルフェート等のCa−Al系化合物、酸化鉄(ヘマタイト)や酸化ビスマス等の含水酸化物、水酸化マグネシウムや軽焼マグネシウムや焼成ドロマイトや酸化マグネシウム等のマグネシウム化合物、硫化鉄や鉄粉やシュベルマナイトやFeOOH等の鉄化合物、酸化ケイ素や酸化アルミニウムや酸化鉄などの1種または2種以上の混合物または焼成物、セリウム、及び希土類元素を含む化合物等が挙げられる。
還元剤及び吸着剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
焼成物と薬剤(還元剤及び/または吸着剤)を混合する方法としては、焼成物と粉末状の薬剤を混合してもよく、薬剤を予め水と混合して、スラリー又は水溶液(以下、「スラリー等」ともいう。)にして、焼成物とスラリー等を混合する、焼成物にスラリー等を噴霧する、又は、焼成物をスラリー等に浸漬する等の方法が挙げられる。
上記薬剤の使用量は、焼成物100kgあたりの金属塩の量が、好ましくは0.01〜10kg、より好ましくは0.1〜7kg、特に好ましくは0.2〜5kgとなるように、粉末状の薬剤の量、スラリー等の濃度、スラリー等の噴霧量、及び、スラリー等への焼成物の投入量を調整する。焼成物100kgあたりの金属塩の量が0.01kg未満であると、6価クロムの溶出量を低減する効果が小さくなる。該量が10kgを超えると、6価クロムの溶出量を低減する効果が飽和するため経済的ではない。
混合する際の焼成物の温度は、好ましくは100〜800℃、より好ましくは125〜600℃、特に好ましくは150〜400℃である。焼成物の温度が800℃を超えると、焼成物にクラック等が生じる、又は、焼成物が微粒化することで、強度の低下が起こるため好ましくない。100℃未満であると薬剤が焼成物の表面に付着しにくくなるため好ましくない。
高温の焼成物に、薬剤を含むスラリー等を噴霧する方法は、薬剤が焼成物の表面に付着して、はがれにくくなり好適である。また、焼成物に気孔がある場合、焼成物をスラリー等に浸漬する方法は、薬剤が内部にまで良く浸透し、また、表面にも付着するので好適である。
【0026】
さらに、6価クロムの溶出対策として、加熱工程によって得られた焼成物を水洗する方法が挙げられる。
水洗方法としては、(i)容器内、又はベルトコンベア上の焼成物にスプリンクラー等により洗浄液を散布して洗浄する方法、(ii)容器に焼成物と洗浄液を入れて、一定時間焼成物を洗浄液に浸漬した後、浸漬後の洗浄液を排出して、新しい洗浄液を供給することを繰り返して洗浄する方法、(iii)トロンメル等を用いて、焼成物を洗浄液に浸漬しながら、焼成物を順次入れ替える洗浄方法等が挙げられる。
洗浄液は、通常の水道水でも良く、上述した薬剤(還元剤又は吸着剤)の水溶液を用いてもよい。水洗後の洗浄液は、洗浄液として再利用してもよいし、処理した上で廃棄してもよい。
水洗時間、水洗回数、水洗に用いる洗浄液の使用量は特に限定されず、6価クロムの溶出量が環境基準値(環境庁告示第46号)を満たすまで水洗を行えばよい。
これらの方法は、上述した加熱工程において還元雰囲気下で加熱を行う方法と組み合わせて行ってもよい。
【0027】
なお、本発明の加熱工程によって得られる焼成物は、6価クロム以外の重金属(鉛、砒素等)を内部に固定する能力に優れていることから、上述した6価クロムの溶出を防ぐ処理を行えば、土工資材(埋め戻し材、盛り土材、路盤材等)として好適に用いることができる。
【0028】
加熱工程によって得られた焼成物は、粉砕してセメント混合材として使用することができる。また、焼成物の粉砕物100質量部に対して、石膏をSO
3換算で1〜6質量部含有させることもできる。
粉砕方法は特に制限されず、例えばボールミル等を用い、通常の方法で粉砕すれば良い。
焼成物の粉砕物は、ブレーン比表面積が2500〜5000cm
2/gであることが、モルタルやコンクリートのブリーディングの低減や、流動性、強度発現性の観点から好ましい。
粉砕は、焼成物、セメントクリンカと石膏を同時に行ってもよい。同時に粉砕を行った場合のセメントのブレーン比表面積は、2500〜4500cm
2/gであることが、モルタルやコンクリートのブリーディングの低減や、流動性、強度発現性の観点から好ましい。
該セメント混合材はセメントと混合してセメント組成物を得たときに、セメント組成物の水和熱を低く、かつ流動性を良好にすることができる。
【0029】
加熱工程によって得られた焼成物は必要に応じて粉砕または分級して、骨材(コンクリート用骨材、アスファルト用の骨材)、土工資材として使用することができる。
6価クロムを含む焼成物を骨材として用いる場合、セメント硬化物に6価クロムが取り込まれるため、骨材の輸送時や保管時の雨水防止を行うことで、6価クロムの溶出を防ぐことができる。また、前述した6価クロムの溶出を防ぐ処理を行ってもよい。
得られた焼成物は、細骨材及び粗骨材のいずれにも利用することができる。粗骨材として使用する場合には、ふるい分け等により、粒度を5mm以上に調整して使用する。
また、土工資材として用いる場合は、締め固め性等を考慮して、0.1〜100mmに調整して使用する。
骨材として用いる場合、焼成物の絶乾密度は、好ましくは2.0〜3.0g/cm
3である。該絶乾密度が2.0g/cm
3未満の場合、コンクリートの強度低下のおそれがある。また、焼成物の吸水率は、好ましくは15%以下である。該吸水率が15%より大きい場合、コンクリートの強度低下のおそれがある。
特に、コンクリート用骨材として用いる場合、焼成物の絶乾密度が2.5〜3.0g/cm
3であり、かつ、吸水率が3%以下であることが好ましい。
フリーライム量は、好ましくは1.0質量%以下、より好ましくは0.5質量%以下である。該量が1.0質量%を超えると、コンクリートが膨張破壊する可能性がある。
【実施例】
【0030】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[合成例1;セシウム吸着粘土Aの作製]
ベントナイト500gを、セシウムを250mg/リットルの濃度で含む水溶液2リットルに1日間浸漬した後、遠心分離によって固形分を回収し、さらに該固形分を水洗して、再度遠心分離を行った。これによりセシウムを1060mg/kgの濃度で含むセシウム吸着粘土Aを得た。
[合成例2;セシウム吸着粘土Bの作製]
ベントナイト500gを、セシウムを500mg/リットルの濃度で含む水溶液2リットルに1日間浸漬した後、遠心分離によって固形分を回収し、さらに該固形分を水洗して、再度遠心分離を行った。これによりセシウムを2200mg/kgの濃度で含むセシウム吸着粘土Bを得た。
【0031】
[実施例1]
合成例1で得られたセシウム吸着粘土A6.6gと、石灰石粉末13.2gとを混合した。得られた混合物を、管状電気炉を用いて水蒸気を含まない空気(純空気)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、および塩素(Cl)の含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表1に示す。
[実施例2]
合成例1で得られたセシウム吸着粘土A6.6gと、石灰石粉末13.2gとを混合した。得られた混合物を、管状電気炉を用いて、60℃の水中に通過させてバブリングして得られた空気(水分量7%)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表1に示す。
なお、水分量7%の空気下で加熱を行ったのは、実際の内熱キルンでの加熱を模擬する目的からである。
[実施例3]
合成例1で得られたセシウム吸着粘土A8gと、石灰石粉末12gとを混合した。得られた混合物を、管状電気炉を用い60℃の水中に通過させてバブリングして得られた空気(水分量7%)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表1に示す。
[実施例4]
合成例1で得られたセシウム吸着粘土A9gと、石灰石粉末11gとを混合した。得られた混合物を、管状電気炉を用い60℃の水中に通過させてバブリングして得られた空気(水分量7%)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表1に示す。
[実施例5]
合成例1で得られたセシウム吸着粘土A10gと、石灰石粉末10gとを混合した。得られた混合物を、管状電気炉を用い60℃の水中に通過させてバブリングして得られた空気(水分量7%)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表1に示す。
[実施例6]
合成例1で得られたセシウム吸着粘土A6.6gと、石灰石粉末13.2gとを混合した。得られた混合物を、管状電気炉を用いて純空気下で、1200℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表1に示す。
[実施例7]
合成例1で得られたセシウム吸着粘土A11gと、石灰石粉末9gとを混合した。得られた混合物を、管状電気炉を用いて60℃の水でバブリングした空気(水分量7%)下で、1200℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表1に示す。
【0032】
[比較例1]
合成例1で得られたセシウム吸着粘土Aを、管状電気炉を用いて純空気下で、1000℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表1に示す。なお、セシウム吸着粘土を1200℃で焼成したところ、試料が溶融し、容器にはりついたため、回収できなかった。
[比較例2]
合成例1で得られたセシウム吸着粘土A6.6gと、石灰石粉末13.2gとを混合した。得られた混合物を、管状電気炉を用いて純空気下で、1000℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表1に示す。
【0033】
【表1】
【0034】
表1の実施例1〜7から、混合物中の酸化カルシウム(CaO)、酸化マグネシウム(MgO)、及び二酸化珪素(SiO
2)の各々の質量と、((CaO+1.39×MgO)/SiO
2)の式から導き出される数値が1.0〜1.8程度であり、かつ、1200〜1300℃程度で加熱することで、セシウムを揮発させることができることがわかる。
また、実施例1と、実施例2〜5を比較(特に実施例1と実施例2)すると、水蒸気を含む空気下で加熱する事でカリウムやナトリウムの揮発率を低くし、セシウムの揮発率を上げることができることがわかる。
【0035】
[実施例8]
合成例2で得られたセシウム吸着粘土B30gと、石灰石粉末60gと、塩化カルシウム0.0246gを粉砕混合した。得られた混合物20gを、管状電気炉を用いて60℃の水でバブリングした空気(水分量7%)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表2に示す。
[実施例9]
合成例2で得られたセシウム吸着粘土B30gと、石灰石粉末60gと、塩化カルシウム0.0492gを粉砕混合した。得られた混合物20gを、管状電気炉を用いて60℃の水でバブリングした空気(水分量7%)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表2に示す。
[実施例10]
合成例2で得られたセシウム吸着粘土B30gと、石灰石粉末60gと、塩化カルシウム0.0492gを粉砕混合した。得られた混合物20gを、管状電気炉を用いて60℃の水でバブリングした空気(水分量7%)下で、1300℃で120分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表2に示す。
[実施例11]
合成例2で得られたセシウム吸着粘土B30gと、石灰石粉末60gと、塩化カルシウム0.0984gを粉砕混合した。得られた混合物20gを、管状電気炉を用いて60℃の水でバブリングした空気(水分量7%)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表2に示す。
[実施例12]
合成例2で得られたセシウム吸着粘土B30gと、石灰石粉末60gと、塩化カルシウム0.246gを混合した。得られた混合物20gを、管状電気炉を用いて、60℃の水でバブリングした空気(水分量7%)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表2に示す。
[参考例1]
合成例2で得られたセシウム吸着粘土B10gと、石灰石粉末10gと、塩化カルシウム0.49gを混合した。得られた混合物を、管状電気炉を用いて、純空気下で、1200℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のCs、およびClの含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表2に示す。
【0036】
【表2】
【0037】
表2の実施例8〜12より、塩化物を添加してもセシウムが揮発する事がわかる。特に実施例8、9及び11より、塩素と、セシウム及びカリウムとのモル比(Cl/(Cs+K))が0.09〜0.26程度であり、塩素の量が410〜1210mg/kg程度であり、かつ、加熱時間が60分程度の場合、ナトリウムおよびカリウムの揮発率が低いままセシウムの揮発率が高いことがわかる。
【0038】
[実施例13]
水蒸気を含まない空気(純空気)下で、1300℃で120分間加熱する以外は、実施例1と同様にして焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、塩素(Cl)、Na
2O、及びK
2Oの各含有量を、実施例1と同様に測定して、Cs、Na、及びKの揮発率(質量%)を求めた。結果を表3に示す。
[実施例14]
水蒸気を含まない空気(純空気)下で、1300℃で30分間加熱する以外は、実施例1と同様にして焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、塩素(Cl)、Na
2O、及びK
2Oの各含有量を、実施例1と同様に測定して、Cs、Na、及びKの揮発率(質量%)を求めた。結果を表3に示す。
[実施例15]
水蒸気を含まない空気(純空気)下で、1250℃で60分間加熱する以外は、実施例1と同様にして焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、塩素(Cl)、Na
2O、及びK
2Oの各含有量を、実施例1と同様に測定して、Cs、Na、及びKの揮発率(質量%)を求めた。結果を表3に示す。
[実施例16]
水蒸気を含まない空気(純空気)下で、1250℃で120分間加熱する以外は、実施例1と同様にして焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、塩素(Cl)、Na
2O、及びK
2Oの各含有量を、実施例1と同様に測定して、Cs、Na、及びKの揮発率(質量%)を求めた。結果を表3に示す。
[実施例17]
水蒸気を含まない空気(純空気)下で、1350℃で30分間加熱する以外は、実施例1と同様にして焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、塩素(Cl)、Na
2O、及びK
2Oの各含有量を、実施例1と同様に測定して、Cs、Na、及びKの揮発率(質量%)を求めた。結果を表3に示す。
【0039】
【表3】
【0040】
[実施例18]
合成例1で得られたセシウム吸着粘土A30gと、石灰石粉末68gとを混合した。得られた混合物を、管状電気炉を用いて、水蒸気を含まない空気(純空気)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、および塩素(Cl)の含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表4に示す。
[実施例19]
合成例1で得られたセシウム吸着粘土A30gと、石灰石粉末77gとを混合した。得られた混合物を、管状電気炉を用いて、水蒸気を含まない空気(純空気)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、および塩素(Cl)の含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表4に示す。
[実施例20]
合成例1で得られたセシウム吸着粘土A30gと、石灰石粉末77gと、塩化カルシウム0.122gを混合した。得られた混合物を、管状電気炉を用いて、水蒸気を含まない空気(純空気)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、および塩素(Cl)の含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表4に示す。
[実施例21]
合成例1で得られたセシウム吸着粘土A30gと、石灰石粉末77gと、塩化カルシウム0.122gを混合した。得られた混合物を、管状電気炉を用いて、水蒸気を含まない空気(純空気)下で、1250℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、および塩素(Cl)の含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表4に示す。
[実施例22]
合成例1で得られたセシウム吸着粘土A30gと、石灰石粉末90gとを混合した。得られた混合物を、管状電気炉を用いて、水蒸気を含まない空気(純空気)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、および塩素(Cl)の含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表4に示す。
[実施例23]
合成例1で得られたセシウム吸着粘土A30gと、石灰石粉末90gとを混合した。得られた混合物を、管状電気炉を用いて、水蒸気を含まない空気(純空気)下で、1250℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、および塩素(Cl)の含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表4に示す。
[実施例24]
合成例1で得られたセシウム吸着粘土A30gと、石灰石粉末90gと、塩化カルシウム0.039gを混合した。得られた混合物を、管状電気炉を用いて、水蒸気を含まない空気(純空気)下で、1300℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、および塩素(Cl)の含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表4に示す。
[実施例25]
合成例1で得られたセシウム吸着粘土A30gと、石灰石粉末90gと、塩化カルシウム0.039gを混合した。得られた混合物を、管状電気炉を用いて、水蒸気を含まない空気(純空気)下で、1250℃で60分間加熱し、焼成物を得た。加熱前の混合物、及び加熱して得られた焼成物の各々のセシウム(Cs)、および塩素(Cl)の含有量を、湿式法を用いて測定し、Csの揮発率(質量%)を求めた。また、Na
2O及びK
2Oの各量を、蛍光X線分析法(XRF)で測定し、Na及びKの揮発率(質量%)を求めた。結果を表4に示す。
【0041】
【表4】