【実施例】
【0154】
以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。なお、実施例1−1〜1−41をまとめて実施例1と表すなど、枝番を持つ各実施例をまとめて表記する場合がある。実施例2以降と各比較例、電解液No.についても同様に記載する場合がある。
【0155】
以下にジフルオロイオン性錯体(シス体/トランス体)、テトラフルオロイオン性錯体の合成法を示す。ここでは特許文献12に開示された方法を使用して、または非特許文献1、特許文献11に開示された方法を応用してイオン性錯体を合成したが、これ以外の方法でも合成することは可能である。
いずれも原料や、生成物の取り扱いは露点が−50℃以下の窒素雰囲気下にて行った。また、使用する硝子製反応器は150℃で12時間以上乾燥させた後に、露点が−50℃以下の窒素気流下で室温まで冷却させたものを用いた。
【0156】
[合成例1] (1a−Cis)、(1a−Trans)の合成
特許文献11に開示された方法に従って、シュウ酸の三配位であるトリスオキサラトリン酸リチウムを得た。トリスオキサラトリン酸リチウム(30g、99.4mmol)をジメチルカーボネート(以下DMC)(120mL)に溶解させ、フッ化水素(以下HF)(11.9g、596.4mmol)を添加した。25℃にて48時間攪拌させた後、減圧にて残留するHFとDMCの除去を行った。そしてDMC(60mL)を加えて濃縮残渣を可能な限り溶解させた後に、Li塩濃度が約45質量%となるまで濃縮を行った。シュウ酸を始めとする不溶解成分をろ過にて除去した後、(1a−Cis)と(1a−Trans)とが含まれた混合物のDMC溶液49gを得た。
混合物のDMC溶液に対してジクロロメタン(以下、「CH
2Cl
2」という。)を室温にて添加して12時間攪拌する事で固体が析出した。ろ過にて固体と母液に分離し、母液は減圧にて固形物が得られるまでDMCを留去した。ろ別した固体と、母液から得た固形物を別々にDMCに溶解させ、濃度約45質量%のDMC溶液を別々に調製した後にCH
2Cl
2を加えて固体を析出させた。ろ過にてそれぞれ固体を回収し、更に同様の手順にて数回の濃度約45質量%DMC溶液調製と固体析出を繰り返すことで、F、P純度99.9モル%(NMRより)の(1a−Cis)と(1a−Trans)が得られた。
【0157】
(1a−Cis)と(1a−Trans)を別々にアセトニトリルに溶解させ、LC/MS(ESI法、negative極性、フラグメント電圧50V)にて分子量を測定したところ、どちらもm/z244.9に親イオンが観測され、これは計算による質量数244.93(アニオン部分)と一致している。また単結晶X線構造解析により立体配座の確認を行った。
図1に(1a−Cis)の解析結果を示す。(1a−Cis)は、二分子のフッ素が中心元素から見て同一方向に結合したシス体の立体配座であることを確認した。
【0158】
(1a−Cis)と(1a−Trans)は、質量が同じで、且つF−NMR、P−NMRでそれぞれ異なる位置にピークが見られることから原子組成は同じで異なる構造の化合物である事は明らかである。さらに、(1a−Trans)は、単結晶X線構造解析により、二分子のフッ素が中心元素から見て逆方向に結合したトランス体の立体配座であることを確認した。
【0159】
[合成例2] (5a−Tetra)の合成
特許文献12に記載された方法を参考に反応を実施した。20.0g(132mモル)のLiPF
6とジメチルカーボネート(DMC)110mL、そしてシュウ酸11.9g(132mモル)を容積500mLの硝子製フラスコに加えた。このとき、LiPF
6は完全に溶解したが、シュウ酸の大部分は溶け残っていた。25℃撹拌下、13.4g(79mモル)のSiCl
4をフラスコ内へ滴下した後、撹拌を4時間継続した。続いて、減圧にてテトラフルオロシラン及び塩酸を除去し、イオン性錯体(5a−Tetra)を主成分とする粗体(純度91モル%)のDMC溶液を得た。
この溶液を、Li塩濃度が約50質量%となるまで濃縮し、濃縮液51gを得た。濾過にて不溶解成分を除去した後にCH
2Cl
2を攪拌しながら室温にて添加した。12時間攪拌後、ろ過にて析出した固体を回収した。再度、DMCへ溶解させてLi塩濃度約50質量%のDMC溶液を
調製した後、同様の手順にてCH
2Cl
2添加と、固体の析出、固体の回収を行うことでF、P純度99.9%である(5a−Tetra)を得た。
【0160】
[合成例3] (1b−Cis)、(1b−Trans)の合成
原料のシュウ酸をヘキサフルオロ−2−ヒドロキシイソ酪酸に変更した以外は合成例1と同様の手法にて、(1b−Cis)、(1b−Trans)をそれぞれ得た。
【0161】
[合成例4] (1a−Cis)、(1a−Trans)のNa体である(6a−Cis)、(6a−Trans)の合成
ダウケミカル製強酸性陽イオン交換樹脂252(以後、イオン交換樹脂)を500g量り取り、0.1規定の水酸化ナトリウム水溶液(2.5kg)に浸漬させ、25℃で6時間攪拌を行った。ろ過でイオン交換樹脂を回収し、洗液のpHが8以下になるまで純水で充分に洗浄した。その後、12時間の減圧乾燥(120℃、1.3kPa)にて水分を除去した。
濃度10質量%の(1a−Cis)/EMC溶液を調製し、そこに液重量の半分の重量の乾燥済み前記イオン交換樹脂を加え、25℃にて6時間攪拌を行った。その後、ろ過にてイオン交換樹脂を取り除く事で、カチオンがLi
+からNa
+へ交換された(6a−Cis)/EMC溶液(濃度約10質量%)が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、Na
+/Li
+の比率は99.5であった。
また、上述の方法にて(1a−Cis)/EMC溶液の代わりに同濃度の(1a−Trans)/EMC溶液を用いる事で同様に濃度約10質量%の(6a−Trans)/EMC溶液が得られた。
【0162】
[合成例5] (5a−Tetra)のNa体である(5b−Tetra)の合成
合成例4で使用される(1a−cis)/EMC溶液の代わりに(5a−Tetra)/EMC溶液を用いる事で、カチオンがLi
+からNa
+へ交換された濃度約10質量%の(5b−Tetra)/EMC溶液が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、Na
+/Li
+の比率は99.4であった。
【0163】
[合成例6] (1a−Cis)、(1a−Trans)のK体である(6b−Cis)、(6b−Trans)の合成
合成例4で使用される0.1規定の水酸化ナトリウム水溶液(2.5kg)を0.1規定の水酸化カリウム水溶液(2.5kg)に変更する事で、カチオンがLi
+からK
+へ交換された濃度約10質量%の(6b−Cis)/EMC、(6b−Trans)/EMC溶液が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、どちらの溶液もK
+/Li
+の比率は99.6であった。
【0164】
[合成例7] (1a−Cis)、(1a−Trans)のTMPA体である(6c−Cis)、(6c−Trans)の合成
EMC 90gにトリメチルプロピルアンモニウムクロリド 5.7g(41.7mmol)と(1a−Cis) 10.0g(39.7mmol)を加え、45℃にて6時間攪拌を行った。5℃まで冷却した後に不溶解物をろ過で取り除く事でカチオンがLi
+からトリメチルプロピルアンモニウムカチオン(以下、TMPA)へ交換された(6c−Cis)/EMC溶液(濃度約13質量%)が得られた。
また、上述の方法にて(1a−Cis)の代わりに同重量の(1a−Trans)を用いる事で同様に濃度約13質量%の(6c−Trans)/EMC溶液が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、どちらの溶液もTMPA/Li
+の比率は98.5であった。
【0165】
[合成例8] (1a−Cis)、(1a−Trans)のPP13体である(6d−Cis)、(6d−Trans)の合成
EMC 90gに1−ブチル−1−メチルピロリジニウムクロリド 7.4g(41.7mmol)と(1a−Cis) 10.0g(39.7mmol)を加え、45℃にて6時間攪拌を行った。5℃まで冷却した後に不溶解物をろ過で取り除く事でカチオンがLi
+から1−ブチル−1−メチルピロリジニウムカチオン(以下、PP13)へ交換された(6d−Cis)/EMC溶液(濃度約15質量%)が得られた。
また、上述の方法にて(1a−Cis)の代わりに同重量の(1a−Trans)を用いる事で同様に濃度約15質量%の(6d−Trans)/EMC溶液が得られた。イオンクロマトグラフィーにてカチオンの定量を行うと、どちらの溶液もPP13/Li
+の比率は98.3であった。
【0166】
[合成例9] (1c−Cis)、(1c−Trans)の合成
非特許文献1に記載の方法を応用して前記(1−Cis)のアニオン部分が(Cis−c)でA=Liである(1c−Cis)、前記(1−Trans)のアニオン部分が(Trans−c)でA=Liである(1c−Trans)をそれぞれ得た。
【0167】
[非水系電解液No.1−1〜1−41、比較電解液No.1−1〜1−6の調製]
露点が−50℃以下の窒素雰囲気ドライボックス中に、予め加熱、溶解させたエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の非水溶媒(体積比1:2)に、電解質としてLiPF
6を濃度が1mol/リットルになるように溶解、調製した後、本発明に係る種々のイオン性錯体/EMC溶液や前述(II)群の化合物とを所定量添加することで、下記表1に示す本発明の非水系電解液No.1−1〜1−41、比較電解液No.1−1〜1−6を調製した。
【0168】
【表1】
【0169】
<NMC正極の作製>
正極活物質として、LiNi
1/3Mn
1/3Co
1/3O
2(NMC)粉末およびアセチレンブラック(導電剤)を乾式混合し、結着剤であるポリフッ化ビニリデン(PVDF)を予め溶解させたN−メチル−2−ピロリドン(NMP)中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、NMC合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用NMC正極を得た。正極中の固形分比率は、NMC:導電剤:PVDF=85:5:10(質量比)とした。
【0170】
<黒鉛負極の作製>
負極活物質として、黒鉛粉末を、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、黒鉛合剤ペーストを調製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用黒鉛負極を得た。負極中の固形分比率は、黒鉛粉末:PVDF=90:10(質量比)とした。
【0171】
<非水系電解液電池の作製>
上記の試験用NMC正極と、試験用黒鉛負極と、セルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表1に記載の非水系電解液No.1−1〜1−41および比較電解液No.1−1〜1−6をそれぞれ含浸させ、実施例1−1〜1−41及び比較例1−1〜1−6に係る非水系電解液電池を得た。
【0172】
(実施例1、比較例1 − 試作セルの評価)
<評価1> 60℃500サイクル後の低温特性(0℃)
実施例1−1〜1−41、及び比較例1−1〜1−6に係る非水系電解液電池のそれぞれについて、以下の評価を実施した。
まず、作製したセルを用いて、25℃の環境温度で、以下の条件でコンディショニングを実施した。すなわち、初回充放電として、充電上限電圧4.3V、0.1Cレート(3mA)で定電流定電圧充電し、放電終止電圧3.0Vまで0.2Cレート(6mA)定電流で放電を行い、その後、充電上限電圧4.3V、0.2Cレート(6mA)で定電流定電圧充電し、放電終止電圧3.0Vまで0.2Cレート(6mA)定電流で放電を行う充放電サイクルを3回繰り返した。
このコンディショニング後、60℃の環境温度での充放電試験を実施した。充電は、充電上限電圧4.3Vまで3Cレート(90mA)で定電流定電圧充電を実施し、放電は、放電終止電圧3.0Vまで3Cレート(90mA)定電流で放電を行う充放電サイクルを500回繰り返した。
続いて25℃まで非水系電解液電池を冷却し、再度3.0Vまで放電させた後に、0℃、0.2Cレートにて4.3Vまで定電流定電圧充電を実施した。更に0℃のまま、放電は、放電終止電圧3.0Vまで5Cレート(150mA)での定電流で放電を行い、この時に得られる容量を、60℃長期サイクル後の低温特性(0℃)とした。
【0173】
<評価2> 60℃500サイクル後の5Cレート特性
上述評価1にて60℃の環境温度で500サイクルを実施後、続いて25℃まで非水系電解液電池を冷却し、再度3.0Vまで放電させた後に、25℃、5Cレートにて4.3Vまで定電流定電圧充電を実施した。更に25℃のまま、放電は、放電終止電圧3.0Vまで5Cレート(150mA)での定電流で放電を行い、この時に得られる容量を、60℃長期サイクル後の5Cレート特性(25℃)とした。
【0174】
<評価3> 60℃貯蔵後の低温特性(0℃)
実施例1−1〜1−41、及び比較例1−1〜1−6に係る非水系電解液電池のそれぞれについて、60℃の環境温度での貯蔵試験(4.3V充電後、10日間保存)を実施した。
続いて25℃まで非水系電解液電池を冷却し、3.0Vまで放電させた後に、0℃、0.2Cレートにて4.3Vまで定電流定電圧充電を実施した。更に0℃のまま、放電は、放電終止電圧3.0Vまで5Cレート(150mA)での定電流で放電を行い、この時に得られる容量を、60℃貯蔵後の低温特性(0℃)とした。
【0175】
実施例1−1〜1−41、比較例1−2〜1−6に係る各評価結果は、比較例1−1に係る評価結果を100としたときの相対値として表2に示す。
【0176】
【表2】
【0177】
(実施例1−1〜実施例1−11について)
表1、表2の結果から、実施例に係る合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−1−1)とを含む非水系電解液電池は、(1a−Cis)と(II−1−1)の両方を含まない非水系電解液電池(比較例1−1)と比較して高い60℃長期サイクル後放電容量(0℃)、60℃長期サイクル後の5Cレート特性が得られた。
実施例1−4と比較例1−2とを比較すると、(1a−Cis)と(II−1−1)とを含む非水系電解液電池の方が、(1a−Cis)のみを含む非水系電解液電池よりも効果が高い事が確認された。
【0178】
これは、本発明の非水系電解液のジフルオロイオン性錯体(1a−Cis)と(II−1−1)などのイミドアニオンを有する塩を含有することで、これら添加剤が1サイクル目の充電時にジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−1−1)の順に負極上で還元分解することにより、負極表面に安定な被膜(SEI)を形成するためと思われる。この反応被膜層が高イオン伝導性を有し、長期的に安定なSEIが負極表面を覆うことにより、負極表面で起こっていた溶媒の分解等の副反応が抑制されるため、非水系電解液電池の初期不可逆容量が抑えられるだけでなく、長期耐久性や出力特性を向上させるものと推察される。
従って、表2に示されるように、60℃長期サイクル後の放電容量(0℃)や5Cレート特性(25℃)などで格段の特性改善が確認されたものと思われ、このジフルオロイオン性錯体(1a−Cis)と(II−1−1)などのイミドアニオンを有する塩とを組み合わせるという新規な構成により、他に類を見ない特性改善効果が得られたものと思われる。
【0179】
実施例1−1〜実施例1−6を比較すると、ジフルオロイオン性錯体(1a−Cis)の効果は、含有量が0.05質量%である場合においても、僅かながら確認でき、イオン性錯体の含有量が0.05質量%から0.1、0.8、1.0質量%へと増えるにつれて高まることが確認された。一方、ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%の場合(実施例1−5)、1.0質量%の場合(実施例1−4)に比べて効果が僅かに減少し、5.0質量%の場合(実施例1−6)、1.0質量%の場合に比べて大きく効果が減少した。これは、ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%以上に達すると、非水系電解液の粘度が高まり、非水系電解液電池内でのカチオンの移動が妨げられ、電池性能が低下し得るためと予想される。
【0180】
実施例1−4、実施例1−7〜実施例1−11を比較すると、イミドアニオンを有する塩(II−1−1)の効果は、含有量が0.05質量%である場合においても、僅かながら確認でき、(II−1−1)の含有量が0.05質量%から0.1、0.5、1.0質量%へと増えるにつれて高まることが確認された。一方、(II−1−1)の含有量が2.0質量%の場合(実施例1−10)、1.0質量%の場合(実施例1−4)に比べて効果が僅かに減少し、5.0質量%の場合(実施例1−11)、1.0質量%の場合に比べて大きく効果が減少した。
【0181】
また、実施例1−4と比較例1−5を比較すると、実施例1−4のシス配座のジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−1−1)とを含む非水系電解液電池の方が、比較例1−5のトランス配座のジフルオロイオン性錯体(1a−Trans)とイミドアニオンを有する塩(II−1−1)とを含む非水系電解液電池よりも、60℃長期サイクル後放電容量(0℃)だけでなく、さらに60℃貯蔵後放電容量(0℃)を向上させることが確認された。これは、シス配座の(1a−Cis)とトランス配座の(1a−Trans)の還元分解反応の速度が異なるために、還元分解反応の選択性(溶媒の分解の有無)に変化が生じ、それによって形成されたSEIの主成分が変わり、最終的にSEIからもたらされる電池性能の向上効果に差が現れた結果と推察される。
【0182】
(実施例1−12〜実施例1−14について)
合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)とトランス配座のジフルオロイオン性錯体(1a−Trans)、そしてイミドアニオンを有する塩(II−1−1)の3種類の化合物を含む非水系電解液を用いた実施例1−12〜1−14の場合は、(1a−Cis)と(II−1−1)とを含む非水系電解液電池(実施例1−4)に比べて、60℃長期サイクル後放電容量(0℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、シス配座のジフルオロイオン性錯体(1a−Cis)に対するトランス配座のジフルオロイオン性錯体(1a−Trans)の割合、すなわち、ジフルオロイオン性錯体(1−Trans)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.002から0.004、0.01へと大きくなるに従って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が幾分向上する傾向が確認できた。
【0183】
(実施例1−15〜実施例1−17について)
さらに、ジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−1−1)、そしてテトラフルオロイオン性錯体(5a−Tetra)の3種類の化合物を含む非水系電解液を用いた実施例1−15〜1−17の場合は、(1a−Cis)とイミドアニオンを有する塩(II−1−1)とを含む非水系電解液電池(実施例1−4)に比べて、60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、実施例1−16と比較例1−6とを比較すると、(1a−Cis)と(II−1−1)、(5a−Tetra)の3種類の化合物を含む非水系電解液電池の方が、トランス配座のジフルオロイオン性錯体(1a−Trans)と(II−1−1)、(5a−Tetra)とを含む非水系電解液電池よりも効果が高い事が確認された。
また、シス配座のジフルオロイオン性錯体(1a−Cis)に対するテトラフルオロイオン性錯体(5a−Tetra)の割合、すなわち、テトラフルオロイオン性錯体(5a−Tetra)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.07から、0.14、0.20へと大きくなるのに伴って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が向上する傾向が確認できた。
【0184】
(実施例1−18〜実施例1−24について)
また、実施例1−18〜実施例1−24に示されるように、合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−1−1)、合成例1のトランス配座のジフルオロイオン性錯体(1a−Trans)、合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物を含む非水系電解液については、テトラフルオロイオン性錯体(5a−Tetra)を含まない非水系電解液(実施例1−12〜1−14)や、トランス配座のジフルオロイオン性錯体(1a−Trans)を含まない非水系電解液(実施例1−15〜1−17)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された(例えば、上記(I)群の化合物と上記(II)群の化合物の含有量がそれぞれの実施例において同程度である、実施例1−13、16と実施例1−21との比較)。
【0185】
(実施例1−25〜実施例1−31について)
(I)群化合物として合成例3のシス配座のジフルオロイオン性錯体(1b−Cis)を用いたり、(II)群化合物としてイミドアニオンを有する塩(II−2−1)を併用したり、(III)群化合物として合成例3のトランス配座のジフルオロイオン性錯体(1b−Trans)を用いたり、(IV)群化合物として合成例5のテトラフルオロイオン性錯体(5b−Tetra)を用いたりした、実施例1−25〜1−31においても、上述と同様に、優れた、60℃長期サイクル後の低温特性(0℃)、60℃長期サイクル後の5Cレート特性(25℃)、60℃貯蔵後の低温特性(0℃)を示した。
【0186】
(実施例1−32〜実施例1−41について)
一方、実施例1−21、32、33に示されるように、Li
+、Na
+、K
+をカチオンとして有するイオン性錯体(1a−Cis)、(6a−Cis)、(6b−Cis)を比較すると、その効果に差はなく、いずれも高いサイクル後放電容量(0℃)を得られた。同様に、Li
+、TMPA、PP13をカチオンとして有するイオン性錯体(1a−Cis)、(6c−Cis)、(6d−Cis)を比較すると、TMPA、PP13の場合でも効果はあるものの、Li
+が一番優れている結果となった(実施例1−21と、実施例1−34、1−35との比較)。これは、TMPA、PP13はカチオンの分子量が大きいため、有効部位であるアニオン側の含有量が減少した事と、TMPA、PP13の一部が還元または酸化分解され、その分解残渣が高抵抗成分として電極表面上に堆積したためだと推測される。
【0187】
実施例1−36に示されるように、中心元素をPからSiに変更した(1c−Cis)は溶解度が低く、1.0質量%は充分に溶解しなかったものの、0.8質量%添加にて比較的良好な効果が見られた。また、実施例1−37〜実施例1−41に示されるように、異なるカチオン種のトランス配座のジフルオロイオン性錯体(6a−Trans、6b−Trans、6c−Trans、6d−Trans)や、中心元素をPからSiに変更したトランス配座のジフルオロイオン性錯体(1c−Trans)を添加した場合も同様に、比較例1−1に比べて高い60℃長期サイクル後放電容量(0℃)、60℃長期サイクル後の5Cレート特性が得られた。
【0188】
[本発明の非水系電解液No.2〜No.11の調製]
本発明の非水系電解液No.2〜No.11については、前述の非水系電解液No.1−1と同様の手順にて調製した。
すなわち、露点が−50℃以下の窒素雰囲気ドライボックス中に、予め加熱、溶解させたエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の非水溶媒(体積比1:2)に、電解質としてLiPF
6を濃度が1mol/リットルになるように溶解、調製した後、本発明に係る種々のイオン性錯体/EMC溶液や前述(II)群の化合物とを所定量添加するか、添加しないことで、表3、5、6、9、10、13、14、17、19、21に記載の各種非水系電解液、比較電解液を調製した。
【0189】
(実施例2〜11、比較例1〜11 −非水系電解液電池の作製と評価)
前述の実施例1−1〜1−41に係る非水系電解液電池と同様の手順にて、試験用NMC正極と、試験用黒鉛負極と、セルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表3、5、6、9、10、13、14、17、19、21に記載の各種非水系電解液、比較電解液をそれぞれ含浸させ、表4、7、8、11、12、15、16、18、20、22に記載の実施例、比較例に係る非水系電解液電池を作製した。これら非水系電解液電池については、前述の実施例1−1と同様の方法で以下の評価を実施した。
<評価1> 60℃500サイクル後の低温特性(0℃)
<評価2> 60℃500サイクル後の5Cレート特性
<評価3> 60℃貯蔵後の低温特性(0℃)
【0190】
これら非水系電解液電池の各種評価については、比較例1−1に係る非水系電解液電池の各種評価での結果を100としたときの相対値として表4、7、8、11、12、15、16、18に示す。
【0191】
【表3】
【0192】
【表4】
【0193】
(実施例2−1〜実施例2−11について)
表3〜表4の結果から、実施例に係る合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)と、イミドアニオンを有する塩(II−2−1)とを含む非水系電解液電池は、該イオン性錯体と、イミドアニオンを有する塩(II−2−1)の両方を含まない非水系電解液電池(比較例1−1)と比較して高い60℃長期サイクル後放電容量(0℃)、60℃長期サイクル後の5Cレート特性が得られた。
【0194】
実施例2−4と比較例1−2、比較例2−1とを比較すると、(1a−Cis)とイミドアニオンを有する塩(II−2−1)とを含む非水系電解液電池の方が、(1a−Cis)のみ又は(II−2−1)のみを含む非水系電解液電池よりも効果が高い事が確認された。
これは、前述の実施例1−1〜実施例1−11や実施例1−16等と同様に、本発明の非水系電解液のジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−2−1)を含有することで、これら添加剤が1サイクル目充電時に(1a−Cis)、(II−2−1)の順に負極上で還元分解することにより、負極表面に安定な被膜(SEI)を形成するためと思われる。
【0195】
また、実施例2−4と比較例2−2、実施例2−16と比較例2−3とを比較すると、シス配座のジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−2−1)とを含む非水系電解液電池の方が、トランス配座のジフルオロイオン性錯体(1a−Trans)とイミドアニオンを有する塩(II−2−1)とを含む非水系電解液電池よりも良好な結果を示すことが確認された。
【0196】
また、実施例2−1〜実施例2−11を比較すると、ジフルオロイオン性錯体(1a−Cis)やイミドアニオンを有する塩(II−2−1)の効果は、それぞれの含有量が0.05質量%である場合においても、僅かながら確認でき、イオン性錯体の含有量が0.05質量%から0.1、0.5、1.0質量%へと増えるにつれて高まることが確認された。
【0197】
ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%の場合(実施例2−5)は、1.0質量%の場合(実施例2−4)に比べて効果が僅かに減少し、5.0質量%の場合(実施例2−6)、1.0質量%の場合に比べて大きく効果が減少した。これは、前述の実施例1−1〜実施例1−11と同様、ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%以上に達すると、非水系電解液の粘度が高まり、非水系電解液電池内でのカチオンの移動が妨げられ、電池性能が低下し得るためと予想される。
【0198】
(実施例2−12〜実施例2−14について)
合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)とトランス配座のジフルオロイオン性錯体(1a−Trans)、そしてイミドアニオンを有する塩(II−2−1)の3種類の化合物を含む非水系電解液を用いた実施例2−12〜2−14の場合は、(1a−Cis)と(II−2−1)とを含む非水系電解液電池(実施例2−4)に比べて、60℃長期サイクル後放電容量(0℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記において、シス配座のジフルオロイオン性錯体(1a−Cis)に対するトランス配座のジフルオロイオン性錯体(1a−Trans)の割合、すなわち、ジフルオロイオン性錯体(1−Trans)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.002から0.004、0.01へと大きくなるに従って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が幾分向上する傾向が確認できた。
【0199】
(実施例2−15〜実施例2−17について)
さらに、シス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−2−1)、そしてテトラフルオロイオン性錯体(5a−Tetra)の3種類の化合物を含む非水系電解液を用いた実施例2−15〜2−17の場合は、同ジフルオロイオン性錯体(1a−Cis)と(II−2−1)とを含む非水系電解液電池(実施例2−4)に比べて、60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記のにおいて、シス配座のジフルオロイオン性錯体(1a−Cis)に対するテトラフルオロイオン性錯体(5a−Tetra)の割合、すなわち、テトラフルオロイオン性錯体(5a−Tetra)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.07から、0.14、0.20へと大きくなるのに伴って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が向上する傾向が確認できた。
【0200】
(実施例2−18〜実施例2−24について)
また、実施例2−18〜実施例2−24に示されるように、合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−2−1)、合成例1のトランス配座のジフルオロイオン性錯体(1a−Trans)、合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物を含む非水系電解液については、テトラフルオロイオン性錯体(5a−Tetra)を含まない非水系電解液(実施例2−12〜2−14)や、トランス配座のジフルオロイオン性錯体(1a−Trans)を含まない非水系電解液(実施例2−15〜2−17)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された(例えば、上記(I)群の化合物と上記(II)群の化合物の含有量がそれぞれの実施例において同程度である、実施例2−13、16と実施例2−21との比較)。
【0201】
(実施例2−25〜実施例2−31について)
(I)群化合物として合成例3のシス配座のジフルオロイオン性錯体(1b−Cis)を用いたり、(II)群化合物としてイミドアニオンを有する塩(II−3−1)を併用したり、(III)群化合物として合成例3のトランス配座のジフルオロイオン性錯体(1b−Trans)を用いたり、(IV)群化合物として合成例5のテトラフルオロイオン性錯体(5b−Tetra)を用いたりした、実施例2−25〜2−31においても、上述と同様に、優れた、60℃長期サイクル後の低温特性(0℃)、60℃長期サイクル後の5Cレート特性(25℃)、60℃貯蔵後の低温特性(0℃)を示した。
【0202】
【表5】
【0203】
【表6】
【0204】
【表7】
【0205】
【表8】
【0206】
(実施例3−1〜実施例3−11、実施例4−1〜実施例4−11について)
表7、表8の結果から、実施例に係る合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)と、イミドアニオンを有する塩(II−3−1)又は(II−4−1)とを含む非水系電解液電池は、該イオン性錯体と、イミドアニオンを有する塩(II−3−1)又は(II−4−1)の両方を含まない非水系電解液電池(比較例1−1)と比較して高い60℃長期サイクル後放電容量(0℃)、60℃長期サイクル後の5Cレート特性が得られた。
実施例3−4と比較例1−2、比較例3−1とを比較すると、(1a−Cis)とイミドアニオンを有する塩(II−3−1)とを含む非水系電解液電池の方が、(1a−Cis)のみ又は(II−3−1)のみを含む非水系電解液電池よりも効果が高い事が確認されており、実施例4−4と比較例1−2とを比較した場合も同様に、(1a−Cis)と(II−4−1)とを含む非水系電解液電池の方が良好な結果を示すことが確認された。
これは、前述の実施例1−1〜実施例1−11や実施例1−16等と同様に、本発明の非水系電解液のジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−3−1)又は(II−4−1)を含有することで、これら添加剤が1サイクル目充電時に(1a−Cis)、(II−3−1)(もしくは(II−4−1))の順に負極上で還元分解することにより、負極表面に安定な被膜(SEI)を形成するためと思われる。
【0207】
また、実施例3−4と比較例3−2、実施例3−16と比較例3−3とを比較すると、シス配座のジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−3−1)とを含む非水系電解液電池の方が、トランス配座のジフルオロイオン性錯体(1a−Trans)とイミドアニオンを有する塩(II−3−1)とを含む非水系電解液電池よりも効果が高い事が確認されており、実施例4−4と比較例4−2、実施例4−16と比較例4−3とを比較した場合も同様に、(1a−Cis)とイミドアニオンを有する塩(II−4−1)とを含む非水系電解液電池の方が、(1a−Trans)と(II−4−1)とを含む非水系電解液電池よりも良好な結果を示すことが確認された。
【0208】
また、実施例3−1〜実施例3−11を比較すると、ジフルオロイオン性錯体(1a−Cis)やイミドアニオンを有する塩(II−3−1)の効果は、それぞれの含有量が0.05質量%である場合においても、僅かながら確認でき、イオン性錯体の含有量が0.05質量%から0.1、0.5、1.0質量%へと増えるにつれて高まることが確認された。
【0209】
ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%の場合(実施例3−5)は、1.0質量%の場合(実施例3−4)に比べて効果が僅かに減少し、5.0質量%の場合(実施例3−6)、1.0質量%の場合に比べて大きく効果が減少した。これは、前述の実施例1−1〜実施例1−11と同様、ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%以上に達すると、非水系電解液の粘度が高まり、非水系電解液電池内でのカチオンの移動が妨げられ、電池性能が低下し得るためと予想される。
【0210】
実施例4−1〜実施例4−11を比較した場合も上述と同様にジフルオロイオン性錯体(1a−Cis)やイミドアニオンを有する塩(II−4−1)のそれぞれの含有量の効果が現れていることが確認された。
【0211】
(実施例3−12〜実施例3−14、実施例4−12〜実施例4−14について)
合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)とトランス配座のジフルオロイオン性錯体(1a−Trans)、そしてイミドアニオンを有する塩(II−3−1)の3種類の化合物を含む非水系電解液を用いた実施例3−12〜3−14の場合は、(1a−Cis)と(II−3−1)とを含む非水系電解液電池(実施例3−4)に比べて、60℃長期サイクル後放電容量(0℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
シス配座のジフルオロイオン性錯体(1a−Cis)とトランス配座のジフルオロイオン性錯体(1a−Trans)、そしてイミドアニオンを有する塩(II−4−1)の3種類の化合物を含む非水系電解液を用いた実施例4−12〜4−14の場合も、実施例4−4と比較して上述と同様、60℃長期サイクル後放電容量(0℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記のいずれにおいても、シス配座のジフルオロイオン性錯体(1a−Cis)に対するトランス配座のジフルオロイオン性錯体(1a−Trans)の割合、すなわち、ジフルオロイオン性錯体(1−Trans)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.002から0.004、0.01へと大きくなるに従って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が幾分向上する傾向が確認できた。
【0212】
(実施例3−15〜実施例3−17、実施例4−15〜実施例4−17について)
さらに、シス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−3−1)、そしてテトラフルオロイオン性錯体(5a−Tetra)の3種類の化合物を含む非水系電解液を用いた実施例3−15〜3−17の場合は、同ジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−3−1)とを含む非水系電解液電池(実施例3−4)に比べて、60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
シス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−4−1)、そしてテトラフルオロイオン性錯体(5a−Tetra)の3種類の化合物を含む非水系電解液を用いた実施例4−15〜4−17の場合も、実施例4−4と比較して上述と同様、60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記のいずれにおいても、シス配座のジフルオロイオン性錯体(1a−Cis)に対するテトラフルオロイオン性錯体(5a−Tetra)の割合、すなわち、テトラフルオロイオン性錯体(5a−Tetra)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.07から、0.14、0.20へと大きくなるのに伴って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が向上する傾向が確認できた。
【0213】
(実施例3−18〜実施例3−24、実施例4−18〜実施例4−24について)
また、実施例3−18〜実施例3−24に示されるように、合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−3−1)、合成例1のトランス配座のジフルオロイオン性錯体(1a−Trans)、合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物を含む非水系電解液については、テトラフルオロイオン性錯体(5a−Tetra)を含まない非水系電解液(実施例3−12〜3−14)や、トランス配座のジフルオロイオン性錯体(1a−Trans)を含まない非水系電解液(実施例3−15〜3−17)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された(例えば、上記(I)群の化合物と上記(II)群の化合物の含有量がそれぞれの実施例において同程度である、実施例3−13、16と実施例3−21との比較)。
同様に、シス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−4−1)、合成例1のトランス配座のジフルオロイオン性錯体(1a−Trans)、合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物を含む非水系電解液を用いた実施例4−18〜4−24の場合も、テトラフルオロイオン性錯体(5a−Tetra)を含まない非水系電解液(実施例4−12〜4−14)や、トランス配座のジフルオロイオン性錯体(1a−Trans)を含まない非水系電解液(実施例4−15〜4−17)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された。
【0214】
(実施例3−25〜実施例3−31、実施例4−25〜実施例4−31について)
(I)群化合物として合成例3のシス配座のジフルオロイオン性錯体(1b−Cis)を用いたり、(II)群化合物としてイミドアニオンを有する塩(II−1−1)又は(II−2−1)を併用したり、(III)群化合物として合成例3のトランス配座のジフルオロイオン性錯体(1b−Trans)を用いたり、(IV)群化合物として合成例5のテトラフルオロイオン性錯体(5b−Tetra)を用いたりした、実施例3−25〜3−31、実施例4−25〜実施例4−31においても、上述と同様に、優れた、60℃長期サイクル後の低温特性(0℃)、60℃長期サイクル後の5Cレート特性(25℃)、60℃貯蔵後の低温特性(0℃)を示した。
【0215】
【表9】
【0216】
【表10】
【0217】
【表11】
【0218】
【表12】
【0219】
(実施例5−1〜実施例5−11、実施例6−1〜実施例6−11について)
表11、表12の結果から、実施例に係る合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)と、イミドアニオンを有する塩(II−5−1)又は(II−6−1)とを含む非水系電解液電池は、該イオン性錯体と、イミドアニオンを有する塩(II−5−1)又は(II−6−1)の両方を含まない非水系電解液電池(比較例1−1)と比較して高い60℃長期サイクル後放電容量(0℃)、60℃長期サイクル後の5Cレート特性が得られた。
【0220】
実施例5−4と比較例1−2、比較例5−1とを比較すると、(1a−Cis)とイミドアニオンを有する塩(II−5−1)とを含む非水系電解液電池の方が、(1a−Cis)のみ又は(II−5−1)のみを含む非水系電解液電池よりも効果が高い事が確認されており、実施例6−4と比較例1−2とを比較した場合も同様に、(1a−Cis)と(II−6−1)とを含む非水系電解液電池の方が良好な結果を示すことが確認された。
これは、前述の実施例1−1〜実施例1−11や実施例1−16等と同様に、本発明の非水系電解液のジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−5−1)又は(II−6−1)を含有することで、これら添加剤が1サイクル目充電時に(1a−Cis)、(II−5−1)(もしくは(II−6−1))の順に負極上で還元分解することにより、負極表面に安定な被膜(SEI)を形成するためと思われる。
【0221】
また、実施例5−4と比較例5−2、実施例5−16と比較例5−3とを比較すると、シス配座のジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−3−1)とを含む非水系電解液電池の方が、トランス配座のジフルオロイオン性錯体(1a−Trans)とイミドアニオンを有する塩(II−5−1)とを含む非水系電解液電池よりも効果が高い事が確認されており、実施例6−4と比較例6−2、実施例6−16と比較例6−3とを比較した場合も同様に、(1a−Cis)とイミドアニオンを有する塩(II−6−1)とを含む非水系電解液電池の方が、(1a−Trans)と(II−6−1)とを含む非水系電解液電池よりも良好な結果を示すことが確認された。
【0222】
また、実施例5−1〜実施例5−11を比較すると、ジフルオロイオン性錯体(1a−Cis)やイミドアニオンを有する塩(II−5−1)の効果は、それぞれの含有量が0.05質量%である場合においても、僅かながら確認でき、イオン性錯体の含有量が0.05質量%から0.1、0.5、1.0質量%へと増えるにつれて高まることが確認された。
【0223】
ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%の場合(実施例5−5)は、1.0質量%の場合(実施例5−4)に比べて効果が僅かに減少し、5.0質量%の場合(実施例5−6)、1.0質量%の場合に比べて大きく効果が減少した。これは、前述の実施例1−1〜実施例1−11と同様、ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%以上に達すると、非水系電解液の粘度が高まり、非水系電解液電池内でのカチオンの移動が妨げられ、電池性能が低下し得るためと予想される。
【0224】
実施例6−1〜実施例6−11を比較した場合も上述と同様にジフルオロイオン性錯体(1a−Cis)やイミドアニオンを有する塩(II−6−1)のそれぞれの含有量の効果が現れていることが確認された。
【0225】
(実施例5−12〜実施例5−14、実施例6−12〜実施例6−14について)
合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)とトランス配座のジフルオロイオン性錯体(1a−Trans)、そしてイミドアニオンを有する塩(II−5−1)の3種類の化合物を含む非水系電解液を用いた実施例5−12〜5−14の場合は、(1a−Cis)と(II−5−1)とを含む非水系電解液電池(実施例5−4)に比べて、60℃長期サイクル後放電容量(0℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
シス配座のジフルオロイオン性錯体(1a−Cis)とトランス配座のジフルオロイオン性錯体(1a−Trans)、そしてイミドアニオンを有する塩(II−6−1)の3種類の化合物を含む非水系電解液を用いた実施例6−12〜6−14の場合も、実施例6−4と比較して上述と同様、60℃長期サイクル後放電容量(0℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記のいずれにおいても、シス配座のジフルオロイオン性錯体(1a−Cis)に対するトランス配座のジフルオロイオン性錯体(1a−Trans)の割合、すなわち、ジフルオロイオン性錯体(1−Trans)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.002から0.004、0.01へと大きくなるに従って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が幾分向上する傾向が確認できた。
【0226】
(実施例5−15〜実施例5−17、実施例6−15〜実施例6−17について)
さらに、シス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−5−1)、そしてテトラフルオロイオン性錯体(5a−Tetra)の3種類の化合物を含む非水系電解液を用いた実施例5−15〜5−17の場合は、同ジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−5−1)とを含む非水系電解液電池(実施例5−4)に比べて、60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
シス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−6−1)、そしてテトラフルオロイオン性錯体(5a−Tetra)の3種類の化合物を含む非水系電解液を用いた実施例6−15〜6−17の場合も、実施例6−4と比較して上述と同様、60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記のいずれにおいても、シス配座のジフルオロイオン性錯体(1a−Cis)に対するテトラフルオロイオン性錯体(5a−Tetra)の割合、すなわち、テトラフルオロイオン性錯体(5a−Tetra)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.07から、0.14、0.20へと大きくなるのに伴って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が向上する傾向が確認できた。
【0227】
(実施例5−18〜実施例5−24、実施例6−18〜実施例6−24について)
また、実施例5−18〜実施例5−24に示されるように、合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−5−1)、合成例1のトランス配座のジフルオロイオン性錯体(1a−Trans)、合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物を含む非水系電解液については、テトラフルオロイオン性錯体(5a−Tetra)を含まない非水系電解液(実施例5−12〜5−14)や、トランス配座のジフルオロイオン性錯体(1a−Trans)を含まない非水系電解液(実施例5−15〜5−17)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された(例えば、上記(I)群の化合物と上記(II)群の化合物の含有量がそれぞれの実施例において同程度である、実施例5−13、16と実施例5−21との比較)。
同様に、シス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−6−1)、合成例1のトランス配座のジフルオロイオン性錯体(1a−Trans)、合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物を含む非水系電解液を用いた実施例6−18〜6−24の場合も、テトラフルオロイオン性錯体(5a−Tetra)を含まない非水系電解液(実施例6−12〜6−14)や、トランス配座のジフルオロイオン性錯体(1a−Trans)を含まない非水系電解液(実施例6−15〜6−17)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された。
【0228】
(実施例5−25〜実施例5−31、実施例6−25〜実施例6−31について)
(I)群化合物として合成例3のシス配座のジフルオロイオン性錯体(1b−Cis)を用いたり、(II)群化合物としてイミドアニオンを有する塩(II−2−1)を併用したり、(III)群化合物として合成例3のトランス配座のジフルオロイオン性錯体(1b−Trans)を用いたり、(IV)群化合物として合成例5のテトラフルオロイオン性錯体(5b−Tetra)を用いたりした、実施例5−25〜5−31、実施例6−25〜実施例6−31においても、上述と同様に、優れた、60℃長期サイクル後の低温特性(0℃)、60℃長期サイクル後の5Cレート特性(25℃)、60℃貯蔵後の低温特性(0℃)を示した。
【0229】
【表13】
【0230】
【表14】
【0231】
【表15】
【0232】
【表16】
【0233】
(実施例7−1〜実施例7−11、実施例8−1〜実施例8−11について)
表15、表16の結果から、実施例に係る合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)と、イミドアニオンを有する塩(II−7−1)又は(II−8−1)とを含む非水系電解液電池は、該イオン性錯体と、イミドアニオンを有する塩(II−7−1)又は(II−8−1)の両方を含まない非水系電解液電池(比較例1−1)と比較して高い60℃長期サイクル後放電容量(0℃)、60℃長期サイクル後の5Cレート特性が得られた。
【0234】
実施例7−4と比較例1−2、比較例7−1とを比較すると、(1a−Cis)とイミドアニオンを有する塩(II−7−1)とを含む非水系電解液電池の方が、(1a−Cis)のみ、又は(II−7−1)のみを含む非水系電解液電池よりも効果が高い事が確認されており、実施例8−4と比較例1−2とを比較した場合も同様に、(1a−Cis)と(II−8−1)とを含む非水系電解液電池の方が良好な結果を示すことが確認された。
これは、前述の実施例1−1〜実施例1−11や実施例1−16等と同様に、本発明の非水系電解液のジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−7−1)又は(II−8−1)を含有することで、これら添加剤が1サイクル目充電時に(1a−Cis)、(II−7−1)(もしくは(II−8−1))の順に負極上で還元分解することにより、負極表面に安定な被膜(SEI)を形成するためと思われる。
【0235】
また、実施例7−4と比較例7−2、実施例7−16と比較例7−3とを比較すると、シス配座のジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−7−1)とを含む非水系電解液電池の方が、トランス配座のジフルオロイオン性錯体(1a−Trans)とイミドアニオンを有する塩(II−7−1)とを含む非水系電解液電池よりも効果が高い事が確認されており、実施例8−4と比較例8−2、実施例8−16と比較例8−3とを比較した場合も同様に、(1a−Cis)とイミドアニオンを有する塩(II−8−1)とを含む非水系電解液電池の方が、(1a−Trans)と(II−8−1)とを含む非水系電解液電池よりも良好な結果を示すことが確認された。
【0236】
また、実施例7−1〜実施例7−11を比較すると、ジフルオロイオン性錯体(1a−Cis)やイミドアニオンを有する塩(II−7−1)の効果は、それぞれの含有量が0.05質量%である場合においても、僅かながら確認でき、イオン性錯体の含有量が0.05質量%から0.1、0.5、1.0質量%へと増えるにつれて高まることが確認された。
【0237】
ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%の場合(実施例7−5)は、1.0質量%の場合(実施例7−4)に比べて効果が僅かに減少し、5.0質量%の場合(実施例7−6)、1.0質量%の場合に比べて大きく効果が減少した。これは、前述の実施例1−1〜実施例1−11と同様、ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%以上に達すると、非水系電解液の粘度が高まり、非水系電解液電池内でのカチオンの移動が妨げられ、電池性能が低下し得るためと予想される。
【0238】
実施例8−1〜実施例8−11を比較した場合も上述と同様にジフルオロイオン性錯体(1a−Cis)やイミドアニオンを有する塩(II−8−1)のそれぞれの含有量の効果が現れていることが確認された。
【0239】
(実施例7−12〜実施例7−14、実施例8−12〜実施例8−14について)
合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)とトランス配座のジフルオロイオン性錯体(1a−Trans)、そしてイミドアニオンを有する塩(II−7−1)の3種類の化合物を含む非水系電解液を用いた実施例7−12〜7−14の場合は、(1a−Cis)と(II−7−1)とを含む非水系電解液電池(実施例7−4)に比べて、60℃長期サイクル後放電容量(0℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
同様に、シス配座のジフルオロイオン性錯体(1a−Cis)とトランス配座のジフルオロイオン性錯体(1a−Trans)、そしてイミドアニオンを有する塩(II−8−1)の3種類の化合物を含む非水系電解液を用いた実施例8−12〜8−14の場合も、実施例8−4と比較して上述と同様、60℃長期サイクル後放電容量(0℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記のいずれにおいても、シス配座のジフルオロイオン性錯体(1a−Cis)に対するトランス配座のジフルオロイオン性錯体(1a−Trans)の割合、すなわち、ジフルオロイオン性錯体(1−Trans)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.002から0.004、0.01へと大きくなるに従って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が幾分向上する傾向が確認できた。
【0240】
(実施例7−15〜実施例7−17、実施例8−15〜実施例8−17について)
さらに、シス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−7−1)、そしてテトラフルオロイオン性錯体(5a−Tetra)の3種類の化合物を含む非水系電解液を用いた実施例7−15〜7−17の場合は、同ジフルオロイオン性錯体(1a−Cis)とイミドアニオンを有する塩(II−7−1)とを含む非水系電解液電池(実施例7−4)に比べて、60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
シス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−8−1)、そしてテトラフルオロイオン性錯体(5a−Tetra)の3種類の化合物を含む非水系電解液を用いた実施例8−15〜8−17の場合も、実施例8−4と比較して上述と同様、60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記のいずれにおいても、シス配座のジフルオロイオン性錯体(1a−Cis)に対するテトラフルオロイオン性錯体(5a−Tetra)の割合、すなわち、テトラフルオロイオン性錯体(5a−Tetra)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.07から、0.14、0.20へと大きくなるのに伴って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が向上する傾向が確認できた。
【0241】
(実施例7−18〜実施例7−24、実施例8−18〜実施例8−24について)
また、実施例7−18〜実施例7−24に示されるように、合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−7−1)、合成例1のトランス配座のジフルオロイオン性錯体(1a−Trans)、合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物を含む非水系電解液については、テトラフルオロイオン性錯体(5a−Tetra)を含まない非水系電解液(実施例7−12〜7−14)や、トランス配座のジフルオロイオン性錯体(1a−Trans)を含まない非水系電解液(実施例7−15〜7−17)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された(例えば、上記(I)群の化合物と上記(II)群の化合物の含有量がそれぞれの実施例において同程度である、実施例7−13、16と実施例7−21との比較)。
同様に、シス配座のジフルオロイオン性錯体(1a−Cis)、イミドアニオンを有する塩(II−8−1)、合成例1のトランス配座のジフルオロイオン性錯体(1a−Trans)、合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物を含む非水系電解液を用いた実施例8−18〜8−24の場合も、テトラフルオロイオン性錯体(5a−Tetra)を含まない非水系電解液(実施例8−12〜8−14)や、トランス配座のジフルオロイオン性錯体(1a−Trans)を含まない非水系電解液(実施例8−15〜8−17)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された。
【0242】
(実施例7−25〜実施例7−31、実施例8−25〜実施例8−31について)
(I)群化合物として合成例3のシス配座のジフルオロイオン性錯体(1b−Cis)を用いたり、(II)群化合物としてイミドアニオンを有する塩(II−2−1)を併用したり、(III)群化合物として合成例3のトランス配座のジフルオロイオン性錯体(1b−Trans)を用いたり、(IV)群化合物として合成例5のテトラフルオロイオン性錯体(5b−Tetra)を用いたりした、実施例7−25〜7−31、実施例8−25〜実施例8−31においても、上述と同様に、優れた、60℃長期サイクル後の低温特性(0℃)、60℃長期サイクル後の5Cレート特性(25℃)、60℃貯蔵後の低温特性(0℃)を示した。
【0243】
【表17】
【0244】
【表18】
【0245】
(実施例9−1〜実施例9−11について)
表18の結果から、実施例に係る合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)と、ジフルオロリン酸リチウムとを含む非水系電解液電池は、該イオン性錯体と、ジフルオロリン酸リチウムの両方を含まない非水系電解液電池(比較例1−1)と比較して高い60℃長期サイクル後放電容量(0℃)、60℃長期サイクル後の5Cレート特性が得られた。
【0246】
実施例9−4と比較例9−1とを比較すると、(1a−Cis)とジフルオロリン酸リチウムとを含む非水系電解液電池の方が、ジフルオロリン酸リチウムのみを含む非水系電解液電池よりも効果が高い事が確認された。
これは、前述の実施例1−1〜実施例1−11や実施例1−16等と同様に、本発明の非水系電解液のジフルオロイオン性錯体(1a−Cis)とジフルオロリン酸リチウムを含有することで、これら添加剤が1サイクル目充電時に(1a−Cis)、ジフルオロリン酸リチウムの順に負極上で還元分解することにより、負極表面に安定な被膜(SEI)を形成するためと思われる。
【0247】
また、実施例9−4と比較例9−2、実施例9−16と比較例9−3とを比較すると、シス配座のジフルオロイオン性錯体(1a−Cis)とジフルオロリン酸リチウムとを含む非水系電解液電池の方が、トランス配座のジフルオロイオン性錯体(1a−Trans)とジフルオロリン酸リチウムとを含む非水系電解液電池よりも良好な結果を示すことが確認された。
【0248】
また、実施例9−1〜実施例9−11を比較すると、ジフルオロイオン性錯体(1a−Cis)やジフルオロリン酸リチウムの効果は、それぞれの含有量が0.05質量%である場合においても、僅かながら確認でき、イオン性錯体の含有量が0.05質量%から0.1、0.5、1.0質量%へと増えるにつれて高まることが確認された。
【0249】
ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%の場合(実施例9−5)は、1.0質量%の場合(実施例9−4)に比べて効果が僅かに減少し、5.0質量%の場合(実施例9−6)、1.0質量%の場合に比べて大きく効果が減少した。これは、前述の実施例1−1〜実施例1−11と同様、ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%以上に達すると、非水系電解液の粘度が高まり、非水系電解液電池内でのカチオンの移動が妨げられ、電池性能が低下し得るためと予想される。
【0250】
(実施例9−12〜実施例9−14について)
合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)とトランス配座のジフルオロイオン性錯体(1a−Trans)、そしてジフルオロリン酸リチウムの3種類の化合物を含む非水系電解液を用いた実施例9−12〜9−14の場合は、(1a−Cis)とジフルオロリン酸リチウムとを含む非水系電解液電池(実施例9−4)に比べて、60℃長期サイクル後放電容量(0℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記において、シス配座のジフルオロイオン性錯体(1a−Cis)に対するトランス配座のジフルオロイオン性錯体(1a−Trans)の割合、すなわち、ジフルオロイオン性錯体(1−Trans)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.002から0.004、0.01へと大きくなるに従って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が幾分向上する傾向が確認できた。
【0251】
(実施例9−15〜実施例9−17について)
さらに、シス配座のジフルオロイオン性錯体(1a−Cis)、ジフルオロリン酸リチウム、そしてテトラフルオロイオン性錯体(5a−Tetra)の3種類の化合物を含む非水系電解液を用いた実施例9−15〜9−17の場合は、同ジフルオロイオン性錯体(1a−Cis)とジフルオロリン酸リチウムとを含む非水系電解液電池(実施例9−4)に比べて、60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記において、シス配座のジフルオロイオン性錯体(1a−Cis)に対するテトラフルオロイオン性錯体(5a−Tetra)の割合、すなわち、テトラフルオロイオン性錯体(5a−Tetra)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.07から、0.14、0.20へと大きくなるのに伴って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が向上する傾向が確認できた。
【0252】
(実施例9−18〜実施例9−24について)
また、実施例9−18〜実施例9−24に示されるように、合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)、ジフルオロリン酸リチウム、合成例1のトランス配座のジフルオロイオン性錯体(1a−Trans)、合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物を含む非水系電解液については、テトラフルオロイオン性錯体(5a−Tetra)を含まない非水系電解液(実施例9−12〜9−14)や、トランス配座のジフルオロイオン性錯体(1a−Trans)を含まない非水系電解液(実施例9−15〜9−17)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された(例えば、上記(I)群の化合物と上記(II)群の化合物の含有量がそれぞれの実施例において同程度である、実施例9−13、16と実施例9−21との比較)。
【0253】
(実施例9−25〜実施例9−31について)
(I)群化合物として合成例3のシス配座のジフルオロイオン性錯体(1b−Cis)を用いたり、(II)群化合物としてジフルオロリン酸塩とイミドアニオンを有する塩(II−2−1)を併用したり、(III)群化合物として合成例3のトランス配座のジフルオロイオン性錯体(1b−Trans)を用いたり、(IV)群化合物として合成例5のテトラフルオロイオン性錯体(5b−Tetra)を用いたりした、実施例9−25〜9−31においても、上述と同様に、優れた、60℃長期サイクル後の低温特性(0℃)、60℃長期サイクル後の5Cレート特性(25℃)、60℃貯蔵後の低温特性(0℃)を示した。
【0254】
【表19】
【0255】
【表20】
【0256】
(実施例10−1〜実施例10−11について)
表20の結果から、実施例に係る合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)と、シラン化合物(II−9−2)とを含む非水系電解液電池は、該イオン性錯体と、(II−9−2)の両方を含まない非水系電解液電池(比較例1−1)と比較して高い60℃長期サイクル後放電容量(0℃)、60℃長期サイクル後の5Cレート特性が得られた。
【0257】
実施例10−4と比較例1−2、比較例10−1とを比較すると、(1a−Cis)と(II−9−2)とを含む非水系電解液電池の方が、(1a−Cis)のみ又は(II−9−2)のみを含む非水系電解液電池よりも効果が高い事が確認された。
これは、前述の実施例1−1〜実施例1−11や実施例1−16等と同様に、本発明の非水系電解液のジフルオロイオン性錯体(1a−Cis)と(II−9−2)を含有することで、これら添加剤が1サイクル目充電時に(1a−Cis)、ジフルオロリン酸リチウムの順に負極上で還元分解することにより、負極表面に安定な被膜(SEI)を形成するためと思われる。
【0258】
また、実施例10−4と比較例10−2、実施例10−16と比較例10−3とを比較すると、シス配座のジフルオロイオン性錯体(1a−Cis)と(II−9−2)とを含む非水系電解液電池の方が、トランス配座のジフルオロイオン性錯体(1a−Trans)と(II−9−2)とを含む非水系電解液電池よりも良好な結果を示すことが確認された。
【0259】
また、実施例10−1〜実施例10−11を比較すると、ジフルオロイオン性錯体(1a−Cis)や(II−9−2)の効果は、それぞれの含有量が0.05質量%である場合においても、僅かながら確認でき、イオン性錯体の含有量が0.05質量%から0.1、0.2、1.0質量%へと増えるにつれて高まることが確認された。
【0260】
ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%の場合(実施例10−5)は、1.0質量%の場合(実施例10−4)に比べて効果が僅かに減少し、5.0質量%の場合(実施例10−6)、1.0質量%の場合に比べて大きく効果が減少した。これは、前述の実施例1−1〜実施例1−5と同様、ジフルオロイオン性錯体(1a−Cis)の含有量が3.0質量%以上に達すると、非水系電解液の粘度が高まり、非水系電解液電池内でのカチオンの移動が妨げられ、電池性能が低下し得るためと予想される。
【0261】
(実施例10−12〜実施例10−14について)
合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)とトランス配座のジフルオロイオン性錯体(1a−Trans)、そして(II−9−2)の3種類の化合物を含む非水系電解液を用いた実施例10−12〜10−14の場合は、(1a−Cis)とジフルオロリン酸リチウムとを含む非水系電解液電池(実施例10−4)に比べて、60℃長期サイクル後放電容量(0℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記において、シス配座のジフルオロイオン性錯体(1a−Cis)に対するトランス配座のジフルオロイオン性錯体(1a−Trans)の割合、すなわち、ジフルオロイオン性錯体(1−Trans)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.002から0.004、0.01へと大きくなるに従って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が幾分向上する傾向が確認できた。
【0262】
(実施例10−15〜実施例10−17について)
さらに、シス配座のジフルオロイオン性錯体(1a−Cis)、(II−9−2)、そしてテトラフルオロイオン性錯体(5a−Tetra)の3種類の化合物を含む非水系電解液を用いた実施例10−15〜10−17の場合は、同ジフルオロイオン性錯体(1a−Cis)とジフルオロリン酸リチウムとを含む非水系電解液電池(実施例10−4)に比べて、60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)を低下させる事なく、さらに60℃貯蔵後放電容量(0℃)を向上させる傾向があることが確認された。
また、上記において、シス配座のジフルオロイオン性錯体(1a−Cis)に対するテトラフルオロイオン性錯体(5a−Tetra)の割合、すなわち、テトラフルオロイオン性錯体(5a−Tetra)/ジフルオロイオン性錯体(1−Cis)(質量比)が0.07から、0.14、0.20へと大きくなるのに伴って、60℃長期サイクル後放電容量(0℃)に悪影響を与えることなく60℃貯蔵後放電容量(0℃)が向上する傾向が確認できた。
【0263】
(実施例10−18〜実施例10−24について)
また、実施例10−18〜実施例10−24に示されるように、合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)、(II−9−2)、合成例1のトランス配座のジフルオロイオン性錯体(1a−Trans)、合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物を含む非水系電解液については、テトラフルオロイオン性錯体(5a−Tetra)を含まない非水系電解液(実施例10−12〜10−14)や、トランス配座のジフルオロイオン性錯体(1a−Trans)を含まない非水系電解液(実施10−15〜10−17)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された(例えば、上記(I)群の化合物と上記(II)群の化合物の含有量がそれぞれの実施例において同程度である、実施例10−13、16と実施例10−21との比較)。
【0264】
(実施例10−25〜実施例10−31について)
(I)群化合物として合成例3のシス配座のジフルオロイオン性錯体(1b−Cis)を用いたり、(II)群化合物としてイミドアニオンを有する塩(II−2−1)を併用したり、(III)群化合物として合成例3のトランス配座のジフルオロイオン性錯体(1b−Trans)を用いたり、(IV)群化合物として合成例5のテトラフルオロイオン性錯体(5b−Tetra)を用いたりした、実施例10−25〜10−31においても、上述と同様に、優れた、60℃長期サイクル後の低温特性(0℃)、60℃長期サイクル後の5Cレート特性(25℃)、60℃貯蔵後の低温特性(0℃)を示した。
【0265】
【表21】
【0266】
【表22】
【0267】
(実施例11−1〜実施例11−16について)
実施例11−1と、比較例11−1を比較すると、シス配座のジフルオロイオン性錯体(1a−Cis)とシラン化合物(II−9−1)とを含む非水系電解液電池の方が、トランス配座のジフルオロイオン性錯体(1a−Trans)と、(II−9−1)を含む非水系電解液電池よりも良好な結果を示すことが確認された。さらに、実施例11−2では、(1aーCis)と(II−9−1)と(1a−Trans)と(5a−Tetra)を含む非水系電解液電池は、より良好な結果を示すことが確認された。(II−9)に属する各種シラン化合物を使用した実施例11−3〜11−16においても、それぞれ同じ各種シラン化合物を使用した比較例11−2〜11−8に比較すると、シス配座のジフルオロイオン性錯体(1a−Cis)と(II−9)に属する各種シラン化合物とを含む非水系電解液電池の方が、トランス配座のジフルオロイオン性錯体(1a−Trans)と、対応する各種シラン化合物とを含む非水系電解液電池よりも良好な結果を示すことが確認された。
【0268】
(実施例12 − 正極:NCA正極)
実施例12および比較例12については、実施例1にて用いた正極活物質(NMC)の代わりに、正極活物質(LiNi
0.85Co
0.10Al
0.05O
2(NCA))を用いた。
【0269】
<NCA正極の作製>
LiNi
0.85Co
0.10Al
0.05O
2(NCA)粉末(戸田工業製)およびアセチレンブラック(導電剤)を乾式混合し、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、NCA合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用NCA正極を得た。正極中の固形分比率は、NCA:導電剤:PVDF=85:5:10(質量比)とした。
【0270】
<非水系電解液電池の作製>
上記の試験用NCA正極と、試験用黒鉛負極と、セルロース製セパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表23に記載の種々の非水系電解液および種々の比較電解液をそれぞれ含浸させ、実施例12および比較例12に係る非水系電解液電池を得た。なお、表23は既出の電解液の組成をまとめたものである。
【0271】
【表23】
【0272】
(実施例12および比較例12 − 試作セルの評価)
<評価1> 60℃500サイクル後の低温特性(0℃)
実施例12および比較例12に係る非水系電解液電池のそれぞれについて、実施例1−1に係る非水系電解液電池での評価1と同様の評価を行った。但し、25℃の環境温度でのコンディショニングの初回充放電と充放電サイクルでの充電上限電圧4.3Vを4.2Vに変更した。さらに、このコンディショニング後、60℃の環境温度で500サイクルを実施する際にて、充電上限電圧4.3Vを4.2Vに変更した。また、0℃、0.2Cレートにて4.3Vまで定電流定電圧充電することを4.2Vまで定電流定電圧充電に変更した。この時に得られる容量を、60℃長期サイクル後の低温特性(0℃)とした。
【0273】
<評価2> 60℃500サイクル後の5Cレート特性
実施例12、比較例12に係る非水系電解液電池のそれぞれについては、実施例1−1に係る非水系電解液電池での評価2と同様の評価を行った。但し、25℃、5Cレートにて4.3Vまで定電流定電圧充電することを、4.2Vまで定電流定電圧充電に変更した。この時に得られる容量を、60℃長期サイクル後の5Cレート特性(25℃)とした。
【0274】
<評価3> 60℃貯蔵後の低温特性(0℃)
実施例12、比較例12に係る非水系電解液電池のそれぞれについては、実施例1−1に係る非水系電解液電池での評価3である60℃の環境温度での貯蔵試験(4.3V定電流定電圧充電後を4.2V定電流定電圧充電後に変更して10日間保存)を実施した。但し、0℃、0.2Cレートにて4.3Vまで定電流定電圧充電することを、4.2Vまで定電流定電圧充電に変更した。この時に得られる容量を、60℃貯蔵後の低温特性(0℃)とした。
【0275】
実施例12、比較例12に係る非水系電解液電池の各種評価については、比較例12−1に係る非水系電解液電池の各種評価を100としたときの相対値として表24に示す。
【0276】
【表24】
【0277】
(実施例12−1〜12−24について)
表24の結果から、正極活物質としてNMCの代わりに、NCAを用いた場合においても、実施例に係る(I)群の化合物として、合成例1のシス配座のジフルオロイオン性錯体(1a−Cis)と(II)群の化合物としてイミドアニオンを有する塩(II−1−1)、(II−2−1)、(II−3−1)、(II−5−1)、ジフルオロリン酸リチウムや(II−9−2)とをそれぞれ含む非水系電解液電池は、該イオン性錯体と該イミドアニオンを有する塩の両方を含まない非水系電解液電池(比較例12−1)と比較して、高い60℃長期サイクル後放電容量(0℃)、60℃長期サイクル後の5Cレート特性が得られた。
【0278】
また、実施例12−1、実施例12−5、実施例12−9、実施例12−13、実施例12−17、実施例12−21と、比較例12−2とを比較すると、(1a−Cis)と(II)群の化合物とをそれぞれ含む非水系電解液電池の方が、(1a−Cis)のみを含む非水系電解液電池よりも効果が高い事が確認された。
【0279】
さらに、実施例12−3と比較例12−4とを比較すると、(1a−Cis)と(II)群の化合物としてイミドアニオンを有する塩(II−1−1)、(IV)群の化合物として(5a−Tetra)の3種類の化合物を含む非水系電解液電池の方が、トランス配座のジフルオロイオン性錯体(1a−Trans)と(II)群の化合物としてイミドアニオンを有する塩(II−1−1)、(IV)群の化合物として(5a−Tetra)の3種類の化合物を含む非水系電解液電池よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)のいずれも向上することが確認された。
これは、実施例12−7((II)群の化合物;イミドアニオンを有する塩(II−2−1))と比較例12−6、実施例12−11((II)群の化合物;(II−3−1))と比較例12−8、実施例12−15((II)群の化合物;(II−5−1))と比較例12−10、実施例12−19((II)群の化合物;ジフルオロリン酸塩リチウム)と比較例12−12、実施例12−23((II)群の化合物;ジフルオロリン酸塩リチウム)と比較例12−14でも同様に効果があることが確認された。
【0280】
また、実施例12−4、実施例12−8、実施例12−12、実施例12−16、実施例12−20、実施例12−24に示されるように、(1a−Cis)と(II)群の各化合物と(III)群の化合物(トランス配座のジフルオロイオン性錯体(1a−Trans))、(IV)群の化合物(テトラフルオロイオン性錯体(5a−Tetra))の4つの群から選ばれる化合物を所定量含む非水系電解液については、(5a−Tetra)を含まない非水系電解液(実施例12−2、実施例12−6、実施例12−10、実施例12−14、実施例12−18、実施例12−22)や、(1a−Trans)を含まない非水系電解液(実施例12−3、実施例12−7、実施例12−11、実施例12−15、実施例12−19、実施例12−23)よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)が向上する傾向があることが確認された。
【0281】
(実施例13 − 正極:LMO正極)
実施例13については、実施例12にて用いた正極活物質(LiNi
0.85Co
0.10Al
0.05O
2(NCA))の代わりに、スピネル構造を有するリチウムマンガン複合酸化物としてLiMn
1.95Al
0.05O
4(LMO)粉末を正極活物質として用いた。
【0282】
<LMO正極の作製>
LiMn
1.95Al
0.05O
4(LMO)粉末およびアセチレンブラック(導電剤)を乾式混合し、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、LMO合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用LMO正極を得た。正極中の固形分比率は、LMO:導電剤:PVDF=85:5:10(質量比)とした。
【0283】
<非水系電解液電池の作製>
上記の試験用LMO正極と、試験用黒鉛負極と、セルロース製セパレータの代わりに微多孔性ポリプロピレン−ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表23に記載の種々の非水系電解液および種々の比較電解液をそれぞれ含浸させ、実施例13−1〜12−24、および比較例13−1〜13−14に係る非水系電解液電池を得た。なお、微多孔性ポリプロピレン−ポリエチレン2層フィルムからなるセパレータのポリプロピレン側を正極側に配置するように介して、正極、負極を対向させて電極群としたこと以外は、実施例12−1と同様の作製方法とした。
【0284】
これら非水系電解液電池については、前述の実施例12および比較例12と同様、以下の評価を実施した。
<評価1> 60℃500サイクル後の低温特性(0℃)
<評価2> 60℃500サイクル後の5Cレート特性
<評価3> 60℃貯蔵後の低温特性(0℃)
【0285】
実施例13、および比較例13に係る非水系電解液電池の各種評価については、比較例13−1に係る非水系電解液電池の各種評価での結果を100としたときの相対値として表25に示す。
【0286】
【表25】
【0287】
(実施例13−1〜13−24について)
表25の結果から、実施例13−1〜実施例13−25については、実施例12−1〜実施例12−24と同様の傾向を示した。
すなわち、正極活物質としてNCAの代わりに、LMOを用いた場合においても、実施例に係る(I)群の化合物として、合成例1の(1a−Cis)と、(II)群の化合物としてイミドアニオンを有する塩(II−1−1)、(II−2−1)、(II−3−1)、(II−5−1)、ジフルオロリン酸リチウムや(II−9−2)とを併用し、(III)群の化合物として合成例1の(1a−Trans)、そして(IV)群の化合物として合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)から選ばれる化合物を含みうる非水系電解液を用いることで、比較例13−1〜比較例13−14よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)のいずれも向上することが確認された。
【0288】
(実施例14 − 正極:LFP正極)
実施例14については、実施例13にて用いた正極活物質(LiMn
1.95Al
0.05O
4(LMO))の代わりに、リチウム含有オリビン型リン酸塩としてLiFePO
4(LFP)粉末を正極活物質として用いた。
【0289】
<LFP正極の作製>
LiFePO
4(LFP)粉末およびアセチレンブラック(導電剤1)と、気相法炭素繊維(昭和電工製VGCF(登録商標)−H)(導電剤2)とを乾式混合し、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、LFP合剤ペーストを調製した。このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用LFP正極を得た。正極中の固形分比率は、LFP:導電剤1:導電剤2:PVDF=85:4:1:10(質量比)とした。
【0290】
<非水系電解液電池の作製>
上記の試験用LFP正極と、試験用黒鉛負極と、微多孔性ポリプロピレン−ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表23に記載の種々の非水系電解液および種々の比較電解液をそれぞれ含浸させ、実施例13−1と同様の手順にて、実施例14−1〜14−24、および比較例14−1〜14−14に係る非水系電解液電池を得た。
【0291】
(実施例14および比較例14 − 試作セルの評価)
<評価1> 60℃500サイクル後の低温特性(0℃)
実施例14および比較例14に係る非水系電解液電池のそれぞれについて、以下の評価を実施した。
まず、前述の通り作製したセルを用いて、25℃の環境温度で、以下の条件でコンディショニングを実施した。すなわち、初回充放電として、充電上限電圧3.6V、0.1Cレート(3mA)で定電流定電圧充電し、放電終止電圧2.0Vまで0.2Cレート(6mA)定電流で放電を行い、その後、充電上限電圧3.6V、0.2Cレート(6mA)で定電流定電圧充電し、放電終止電圧2.0Vまで0.2Cレート(6mA)定電流で放電を行う充放電サイクルを3回繰り返した。
このコンディショニング後、60℃の環境温度での充放電試験を実施した。充電は、充電上限電圧3.6Vまで3Cレート(90mA)で定電流定電圧充電を実施し、放電は、放電終止電圧2.0Vまで3Cレート(90mA)定電流で放電を行う充放電サイクルを500回繰り返した。
続いて25℃まで非水系電解液電池を冷却し、再度2.0Vまで放電させた後に、0℃、0.2Cレートにて3.6Vまで定電流定電圧充電を実施した。更に0℃のまま、放電は、放電終止電圧2.0Vまで5Cレート(150mA)での定電流で放電を行い、この時に得られる容量を、60℃長期サイクル後の低温特性(0℃)とした。
【0292】
<評価2> 60℃500サイクル後の5Cレート特性
上述評価1にて60℃の環境温度で500サイクルを実施後、続いて25℃まで非水系電解液電池を冷却し、再度2.0Vまで放電させた後に、25℃、5Cレートにて3.6Vまで定電流定電圧充電を実施した。更に25℃のまま、放電は、放電終止電圧2.0Vまで5Cレート(150mA)での定電流で放電を行い、この時に得られる容量を、60℃長期サイクル後の5Cレート特性(25℃)とした。
【0293】
<評価3> 60℃貯蔵後の低温特性(0℃)
実施例14および比較例14に係る非水系電解液電池のそれぞれについて、60℃の環境温度での貯蔵試験(3.6V充電後、10日間保存)を実施した。続いて25℃まで非水系電解液電池を冷却し、2.0Vまで放電させた後に、0℃、0.2Cレートにて3.6Vまで定電流定電圧充電を実施した。更に0℃のまま、放電は、放電終止電圧2.0Vまで5Cレート(150mA)での定電流で放電を行い、この時に得られる容量を、60℃貯蔵後の低温特性(0℃)とした。
【0294】
実施例14、比較例14に係る非水系電解液電池の各種評価については、比較例12−1に係る非水系電解液電池の各種評価を100としたときの相対値として表26に示す。
【0295】
【表26】
【0296】
(実施例14−1〜14−24について)
表26の結果から、実施例14−1〜実施例14−24については、実施例13−1〜実施例13−24と同様の傾向を示した。
すなわち、正極活物質としてLMOの代わりに、LFPを用いた場合においても、実施例に係る(I)群の化合物として、合成例1の(1a−Cis)と、(II)群の化合物としてイミドアニオンを有する塩(II−1−1)、(II−2−1)、(II−3−1)、(II−5−1)、ジフルオロリン酸リチウムや(II−9−2)とを併用し、(III)群の化合物として合成例1の(1a−Trans)、そして(IV)群の化合物として合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)から選ばれる化合物を含みうる非水系電解液を用いることで、比較例14−1〜比較例14−14よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)のいずれも向上することが確認された。
【0297】
以上の結果から、正極にニッケル、マンガン、コバルトの少なくとも1種以上の金属を含有し、かつ層状構造を有するリチウム遷移金属複合酸化物、スピネル構造を有するリチウムマンガン複合酸化物、リチウム含有オリビン型リン酸鉄塩、を用いた場合のいずれにおいても、本発明の非水系電解液は、良好な効果を示すことが確認された。
【0298】
つまり、本発明の非水系電解液及びこれを用いた電池には、特定の正極に依存せず、ある程度電池が使用された状態においても低温にて高い出力特性を発揮でき、さらに高温にて貯蔵された後においても同様に低温にて十分な性能を発揮できることは明らかである。
【0299】
(実施例15 − 負極:非晶質炭素負極)
実施例15については、実施例1にて用いた負極活物質(黒鉛粉末)の代わりに、X線回折における格子面(002面)のd値が0.340nmを超える炭素材料として、非晶質炭素粉末を負極活物質として用いた。
【0300】
<非晶質炭素負極の作製>
非晶質炭素粉末としては、株式会社クレハ製のカーボトロン(登録商標)Pを用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、非晶質炭素合剤ペーストを調製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用非晶質炭素負極を得た。負極中の固形分比率は、非晶質炭素粉末:PVDF=90:10(質量比)とした。
【0301】
(非水系電解液の調製)
本発明の非水系電解液No.12−1〜12−12については、非水溶媒としてFECを加えること以外は前述の非水系電解液No.1−1と同様の手順にて調製した。
すなわち、非水溶媒としてEC、EMC、FEC(体積比25:70:5 / 質量比29.7:63.6:6.7、または、同体積比20:70:10 / 質量比23.6:63.1:13.3)やFECを加えないECとEMCの非水溶媒(体積比30:70 / 質量比35.9:64.1)に、電解質としてLiPF
6を濃度が1.2mol/リットルになるように溶解、調製した後で、本発明に係る種々のイオン性錯体/EMC溶液や上述(II)群の化合物とを加えることで、以下の表27に示す非水系電解液No.12−1〜12−12、比較電解液12−1〜12−17をそれぞれ調製した。
【0302】
<非水系電解液電池の作製>
上記の試験用NMC正極と、試験用非晶質炭素負極と、微多孔性ポリプロピレン−ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表27に記載の種々の非水系電解液および種々の比較電解液をそれぞれ含浸させ、実施例15および比較例15に係る非水系電解液電池を得た。
【0303】
【表27】
【0304】
(実施例15および比較例15 − 試作セルの評価)
<評価1> 60℃500サイクル後の低温特性(0℃)
実施例15および比較例15に係る非水系電解液電池のそれぞれについては、実施例12に係る非水系電解液電池での評価1と同様に、以下の条件でコンディショニングと評価を実施した。
すなわち、作製したセルを用いて、25℃の環境温度で、初回充放電として、充電上限電圧4.2V 0.1Cレート(3mA)で定電流定電圧充電し、放電終止電圧2.7Vまで0.2Cレート(6mA)定電流で放電を行い、その後、充電上限電圧4.2V、0.2Cレート(6mA)で定電流定電圧充電し、放電終止電圧2.7Vまで0.2Cレート(6mA)定電流で放電を行う充放電サイクルを3回繰り返した。
このコンディショニング後、60℃の環境温度で500サイクルを実施する際にて、放電終止電圧3.0Vを2.7Vに変更したこと、0℃、0.2Cレートにて4.2Vまで定電流定電圧充電し、更に0℃のまま放電の際、放電終止電圧3.0Vを2.7Vに変更し、5Cレート(150mA)での定電流で放電に変更したこと以外は、同様の評価とした。この時に得られる容量を、60℃長期サイクル後の低温特性(0℃)とした。
【0305】
<評価2> 60℃500サイクル後の5Cレート特性
実施例15および比較例15に係る非水系電解液電池のそれぞれについては、実施例12に係る非水系電解液電池での評価2と同様の評価を行った。但し、25℃5Cレートでの放電の際、放電終止電圧3.0Vを2.7Vに変更した。この時に得られる容量を、60℃長期サイクル後の5Cレート特性(25℃)とした。
【0306】
<評価3> 60℃貯蔵後の低温特性(0℃)
実施例15および比較例15に係る非水系電解液電池のそれぞれについては、実施例12に係る非水系電解液電池での評価3である60℃の環境温度での貯蔵試験(4.2V定電流定電圧充電後、10日間保存)を実施した。但し、0℃5Cレートでの放電の際、放電終止電圧3.0Vを2.7Vに変更した。この時に得られる容量を、60℃貯蔵後の低温特性(0℃)とした。
【0307】
実施例15および比較例15に係る非水系電解液電池の各種評価については、比較例15−1に係る非水系電解液電池の各種評価を100としたときの相対値として表28に示す。
【0308】
【表28】
【0309】
(実施例15−1〜15−12について)
表28の結果から、実施例15−1〜15−12については、負極活物質として黒鉛粉末の代わりに、非晶質炭素粉末(カーボトロン(登録商標)P)を用いた場合においても、実施例に係る(I)群の化合物として合成例1の(1a−Cis)と、(II)群の化合物としてイミドアニオンを有する塩(II−1−1)、(II−2−1)、(II−3−1)、(II−5−1)、ジフルオロリン酸リチウムや(II−9−2)とを併用し、(III)群の化合物として合成例1の(1a−Trans)、そして、(IV)群の化合物として合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)から選ばれる化合物を含みうる非水系電解液を用いることで、比較例15−1〜比較例15−17よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)のいずれも向上することが確認された。
【0310】
(実施例16 − 負極:(人造黒鉛+天然黒鉛混合)負極)
実施例16については、実施例15にて用いた負極活物質(非晶質炭素粉末)の代わりに、人造黒鉛負極と天然黒鉛とを混合した負極活物質を用いた。
【0311】
<試験用(人造黒鉛+天然黒鉛混合)負極の作製>
人造黒鉛としては、昭和電工(株)製SCMG(登録商標)−AR粉末、天然黒鉛として関西熱化学(株)製天然黒鉛粒子(平均粒子径25μm)を用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、混合し、さらに粘度調整用NMPを加え、(人造黒鉛+天然黒鉛)混合の合剤ペーストを調製した。このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用(人造黒鉛+天然黒鉛混合)負極を得た。負極中の固形分比率は、人造黒鉛粉末:天然黒鉛粉末:PVDF=72:18:10(質量比)とした。
【0312】
<非水系電解液電池の作製>
上記の試験用NMC正極と、試験用(人造黒鉛+天然黒鉛混合)負極と、微多孔性ポリプロピレン−ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表27に記載の種々の非水系電解液、および種々の比較電解液をそれぞれ含浸させ、前述の実施例15と同様の手順にて、実施例16−1〜16−12、および比較例16−1〜16−17に係る非水系電解液電池を得た。
【0313】
<非水系電解液電池の評価>
これら非水系電解液電池については、前述の実施例1と同様、それぞれ前述の以下の評価を実施した。
<評価1> 60℃500サイクル後の低温特性(0℃)
<評価2> 60℃500サイクル後の5Cレート特性
<評価3> 60℃貯蔵後の低温特性(0℃)
【0314】
実施例16および比較例16に係る非水系電解液電池の各種評価については、比較例16−1に係る非水系電解液電池の各種評価での結果を100としたときの相対値として表29に示す。
【0315】
【表29】
【0316】
(実施例16−1〜16−12について)
表29の結果から、実施例16−1〜実施例16−12については、実施例15−1〜実施例15−12と同様の傾向を示した。
すなわち、負極活物質として人造黒鉛と天然黒鉛とを混合した粉末を用いた場合においても、実施例に係る(I)群の化合物として合成例1の(1a−Cis)と、(II)群の化合物としてイミドアニオンを有する塩(II−1−1)、(II−2−1)、(II−3−1)、(II−5−1)、ジフルオロリン酸リチウムや(II−9−2)とを併用し、さらに、(III)群の化合物として合成例1の(1a−Trans)、そして(IV)群の化合物として合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)から選ばれる化合物を含みうる非水系電解液を用いることで、比較例16−1〜比較例16−17よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)のいずれも向上することが確認された。
【0317】
(実施例17 − 負極:SiO
x負極)
実施例17については、実施例16に係る非水系電解液電池にて用いた負極活物質(人造黒鉛と天然黒鉛とを混合した粉末)の代わりに、ケイ素酸化物粉末と塊状人造黒鉛粉末の混合粉末を負極活物質として用いた。
【0318】
<SiO
x負極の作製>
ケイ素酸化物粉末としては、熱処理により不均化されたケイ素酸化物粉末(シグマアルドリッチジャパン株式会社製SiO
x(xは0.3〜1.6)、平均粒径5μm)、塊状人造黒鉛粉末として日立化成工業製MAG−D(粒径20μm以下)の混合粉末を用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、さらにケッチェンブラック(導電剤)を加えて混合し、さらに粘度調整用NMPを加え、SiO
x合剤ペーストを調製した。
このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用SiO
x負極を得た。負極中の固形分比率は、SiO
x:MAG―D:導電剤:PVDF=35:47:8:10(質量比)とした。
なお、SiO
x負極の充電容量がNMC正極の充電容量よりも大きくなるように、NMC正極活物質とSiO
x粉末との量を調節し、充電の途中でSiO
x負極にリチウム金属が析出しないように塗布量も調節した。
【0319】
(非水系電解液の調製)
本発明の非水系電解液No.13−1〜13−5、比較電解液No.13−1〜13−8については、非水溶媒としてFECを加えること以外は前述の非水系電解液No.1−1、比較電解液No.1−1と同様の手順にて調製した。
すなわち、非水溶媒としてEC、EMC、FEC(体積比15:70:15 / 質量比17.5:62.6:19.9)に、電解質としてLiPF
6を濃度が1.2mol/リットルになるように溶解、調製した後で、本発明に係る種々のイオン性錯体/EMC溶液や上述(II)群の化合物とを加えることで、以下の表30に示す非水系電解液No.13−1〜13−5、比較電解液No.13−1〜13−8をそれぞれ調製した。
【0320】
【表30】
【0321】
<非水系電解液電池の作製>
上記の試験用NMC正極と、試験用SiO
x負極と、微多孔性ポリプロピレン−ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表27、および30に記載の種々の非水系電解液、および種々の比較電解液をそれぞれ含浸させ、前述の実施例16および比較例16と同様の手順にて、実施例17−1〜17−12、および比較例17−1〜17−16に係る非水系電解液電池を得た。
【0322】
<非水系電解液電池の評価>
<評価1> 60℃200サイクル後の低温特性(0℃)
実施例17および比較例17に係る非水系電解液電池のそれぞれについて、以下の評価を実施した。
まず、作製したセルを用いて、25℃の環境温度で、初回充放電として、充電上限電圧4.2V、0.05Cレート(1.5mA)で定電流定電圧充電し、放電終止電圧2.5Vまで0.1Cレート(3mA)定電流で放電を行い、その後、充電上限電圧4.2V、0.1Cレート(3mA)で定電流定電圧充電し、放電終止電圧2.5Vまで0.1Cレート(3mA)定電流で放電を行う充放電サイクルを5回繰り返し、コンディショニングを実施した。
このコンディショニング後、25℃の環境温度で、充電上限電圧4.2V、0.2Cレート(6mA)で定電流定電圧充電し、放電終止電圧2.5Vまで0.2Cレート(6mA)定電流で放電を行う充放電サイクルを3回繰り返した。
その後、60℃の環境温度での充放電試験を実施した。充電は、充電上限電圧4.2Vまで1Cレート(30mA)で定電流定電圧充電を実施し、放電は、放電終止電圧2.5Vまで2Cレート(60mA)定電流で放電を行う充放電サイクルを200回繰り返した。
続いて25℃まで非水系電解液電池を冷却し、再度2.5Vまで放電させた後に、0℃、0.2Cレートにて4.2Vまで定電流定電圧充電を実施した。更に0℃のまま、放電終止電圧2.5Vまで3Cレート(90mA)での定電流で放電を行い、この時に得られる容量を、60℃長期サイクル後の低温特性(0℃)とした。
【0323】
<評価2> 60℃200サイクル後の3Cレート特性
上述評価1にて60℃の環境温度で200サイクルを実施後、続いて25℃まで非水系電解液電池を冷却し、再度2.5Vまで放電させた後に、25℃、0.1Cレートにて4.2Vまで定電流定電圧充電を実施した。更に25℃のまま、放電は、放電終止電圧2.5Vまで3Cレート(90mA)での定電流で放電を行い、この時に得られる容量を、60℃長期サイクル後の3Cレート特性(25℃)とした。
【0324】
<評価3> 60℃貯蔵後の低温特性(0℃)
実施例17および比較例17に係る非水系電解液電池のそれぞれについて、60℃の環境温度での貯蔵試験(4.2V充電後、10日間保存)を実施した。続いて、25℃まで非水系電解液電池を冷却し、2.5Vまで放電させた後に、0℃、0.2Cレートにて4.2Vまで定電流定電圧充電を実施した。更に0℃のまま、放電は、放電終止電圧2.5Vまで3Cレート(90mA)での定電流で放電を行い、この時に得られる容量を、60℃貯蔵後の低温特性(0℃)とした。
【0325】
実施例17および比較例17に係る非水系電解液電池の各種評価については、比較例17−1に係る非水系電解液電池の各種評価を100としたときの相対値として表31に示す。
【0326】
【表31】
【0327】
(実施例17−1〜17−12について)
負極活物質として人造黒鉛と天然黒鉛とを混合した粉末の代わりに、ケイ素酸化物粉末と塊状人造黒鉛粉末の混合粉末を用いた実施例17−1〜実施例17−12については、表31の結果から、以下のことが確認された。
すなわち、実施例に係る(I)群の化合物として合成例1の(1a−Cis)、(II)群の化合物としてイミドアニオンを有する塩(II−1−1)、(II−2−1)、(II−3−1)、(II−5−1)、ジフルオロリン酸リチウムや(II−9−2)、(III)群の化合物として合成例1の(1a−Trans)、そして、(IV)群の化合物として合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物をそれぞれ含む非水系電解液を用いることで、比較例17−1〜比較例17−16よりも60℃長期サイクル後放電容量(0℃)や3Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)のいずれも向上することが確認された。
【0328】
(実施例18 − 負極:Si負極)
実施例18について、実施例17に係る非水系電解液電池にて用いた負極活物質(ケイ素酸化物粉末と塊状人造黒鉛粉末の混合粉末)の代わりに、Si粉末を負極活物質として用いた。
【0329】
<試験用Si負極の作製>
Si粉末としては、Si粉末(平均粒子径:10μm/6μm=質量比9/1の混合粉末)を用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、さらにケッチェンブラック(導電剤1)と気相法炭素繊維(昭和電工製VGCF(登録商標)−H)(導電剤2)とを加えて混合し、さらに粘度調整用NMPを加え、Si合剤ペーストを調製した。
このペーストを銅箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用Si負極を得た。負極中の固形分比率は、Si粉末:導電剤1:導電剤2:PVDF=78:7:3:12(質量比)とした。なお、Si負極の充電容量がNMC正極の充電容量よりも大きくなるように、NMC正極活物質とSi粉末との量を調節し、充電の途中でSi負極にリチウム金属が析出しないように塗布量を調節した。
【0330】
<非水系電解液電池の作製>
上記の試験用NMC正極と、試験用Si負極と、微多孔性ポリプロピレン−ポリエチレン2層フィルムからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表27、および30に記載の種々の非水系電解液、および種々の比較電解液をそれぞれ含浸させ、前述の実施例17と同様の手順にて、実施例18および比較例18に係る非水系電解液電池を得た。
【0331】
(実施例18および比較例18 −非水系電解液電池の評価)
前述の実施例17に係る非水系電解液電池と同様、それぞれ前述の以下の評価を実施した。
<評価1> 60℃200サイクル後の低温特性(0℃)
<評価2> 60℃200サイクル後の3Cレート特性
<評価3> 60℃貯蔵後の低温特性(0℃)
【0332】
実施例18および比較例18に係る非水系電解液電池の各種評価については、比較例18−1に係る非水系電解液電池の各種評価での結果を100としたときの相対値として表32に示す。
【0333】
【表32】
【0334】
(実施例18−1〜18−12について)
表32の結果から、負極活物質として、Si粉末を用いた場合においても、実施例に係る(I)群の化合物として合成例1の(1a−Cis)、(II)群の化合物としてイミドアニオンを有する塩(II−1−1)、(II−2−1)、(II−3−1)、(II−5−1)、ジフルオロリン酸リチウムや(II−9−2)、(III)群の化合物として合成例1の(1a−Trans)、そして、(IV)群の化合物として合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)の4つの群から選ばれる化合物をそれぞれ含む非水系電解液を用いることで、比較例18−1〜比較例18−16よりも60℃長期サイクル後放電容量(0℃)や3Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)のいずれも向上することが確認された。
【0335】
(実施例19および比較例19 − 負極:LTO負極)
実施例19においては、実施例18にて用いた負極活物質(Si粉末)の代わりに、Li
4Ti
5O
12(LTO)粉末を負極活物質として用いた。
【0336】
<試験用LTO負極の作製>
Li
4Ti
5O
12(LTO)粉末としては、LTO粉末(平均粒子径:0.90μm/3.40μm=質量比9/1の混合粉末)を用い、結着剤であるPVDFを予め溶解させたNMP中に均一に分散させ、さらにケッチェンブラック(導電剤1)と気相法炭素繊維(昭和電工製VGCF(登録商標)−H)(導電剤2)を加えて混合し、さらに粘度調整用NMPを加え、LTO合剤ペーストを調製した。
このペーストをアルミニウム箔(集電体)上に塗布して、乾燥、加圧を行った後に、所定のサイズに加工した試験用LTO負極を得た。
負極中の固形分比率は、LTO粉末:導電剤1:導電剤2:PVDF=83:5:2:10(質量比)とした。
【0337】
(非水系電解液の調製)
[非水系電解液No.12−1〜12−20、比較電解液No.12−1〜12−12の調製]
露点が−50℃以下の窒素雰囲気ドライボックス中に、PCとEMCの非水溶媒(体積比30:70 / 質量比33.8:66.2)に、電解質としてLiPF
6と、LiBF
4の濃度がそれぞれ1.1mol/リットル、0.4mol/リットルになるように溶解、調製した後、本発明に係る種々のイオン性錯体/EMC溶液や前述(II)群の化合物とを加えることで、表33に示される非水系電解液No.14−1〜14−24、および比較電解液No.14−1〜14−14を調製した。
【0338】
なお、これら調製の際には、液温が40℃を超えないように冷却しながら、先ず、所定量のEMC中に全LiPF
6の30質量%を加えて溶解した後、次いで全LiPF
6の30質量%を加えて、溶解する操作を2回繰り返し、残りの10質量%のLiPF
6を加えて溶解するという操作を実施した後、最後にLiBF
4を加えて溶解し、PCとEMCとを所定量加えて、混合した後、下記表33に記載の種々のイオン性錯体/EMC溶液や前述(II)群の化合物とを加え、PCとEMCの体積比が前述の所定の比率となるように最終調整し、1時間撹拌するという手順にて行った。
【0339】
【表33】
【0340】
<非水系電解液電池の作製>
上記の試験用NMC正極と、試験用LTO負極と、セルロースからなるセパレータとを備えるアルミラミネート外装セル(容量30mAh)に、表33に記載の種々の非水系電解液、および種々の比較電解液をそれぞれ含浸させ、前述の実施例18と同様の手順にて、実施例19−1〜19−24および比較例19−1〜19−14に係る非水系電解液電池を得た。
【0341】
<非水系電解液電池の評価>
<評価1> 60℃500サイクル後の低温特性(0℃)
実施例19および比較例19に係る非水系電解液電池のそれぞれについて、以下の評価を実施した。
まず、25℃の環境温度で、以下の条件でコンディショニングを実施した。
すなわち、作製したセルを用いて、25℃の環境温度で、初回充放電として、充電上限電圧2.8V、0.1Cレート(3mA)で定電流定電圧充電し、放電終止電圧1.5Vまで0.1Cレート(3mA)定電流で放電を行い、その後、充電上限電圧2.8V、0.1Cレート(3mA)で定電流定電圧充電し、放電終止電圧1.5Vまで0.1Cレート(3mA)定電流で放電を行う充放電サイクルを3回繰り返した。
このコンディショニング後、25℃の環境温度で、充電上限電圧2.8V、0.2Cレート(6mA)で定電流定電圧充電し、放電終止電圧1.5Vまで0.2Cレート(6mA)定電流で放電を行う充放電サイクルを3回繰り返した。
その後、60℃の環境温度での充放電試験を実施した。充電は、充電上限電圧2.8Vまで2Cレート(30mA)で定電流定電圧充電を実施し、放電終止電圧1.5Vまで2Cレート(60mA)定電流で放電を行う充放電サイクルを500回繰り返した。
続いて25℃まで非水系電解液電池を冷却し、再度1.5Vまで放電させた後に、0℃、0.2Cレートにて2.8Vまで定電流定電圧充電を実施した。更に0℃のまま、放電終止電圧1.5Vまで5Cレート(150mA)での定電流で放電を行い、この時に得られる容量を、60℃長期サイクル後の低温特性(0℃)とした。
【0342】
<評価2> 60℃500サイクル後の5Cレート特性
上述評価1にて60℃の環境温度で500サイクルを実施後、続いて25℃まで非水系電解液電池を冷却し、再度1.5Vまで放電させた後に、25℃、0.1Cレートにて2.8Vまで定電流定電圧充電を実施した。更に25℃のまま、放電終止電圧1.5Vまで5Cレート(150mA)での定電流で放電を行い、この時に得られる容量を、60℃長期サイクル後の5Cレート特性(25℃)とした。
【0343】
<評価3> 60℃貯蔵後の低温特性(0℃)
実施例19および比較例19に係る非水系電解液電池のそれぞれについて、60℃の環境温度での貯蔵試験(2.8V充電後、10日間保存)を実施した。
続いて25℃まで非水系電解液電池を冷却し、1.5Vまで放電させた後に、0℃、0.2Cレートにて2.8Vまで定電流定電圧充電を実施した。更に0℃のまま、放電終止電圧1.5Vまで5Cレート(150mA)での定電流で放電を行い、この時に得られる容量を60℃貯蔵後の低温特性(0℃)とした。
【0344】
実施例19比較例19に係る非水系電解液電池の各種評価は、比較例19−1に係る非水系電解液電池の各種評価を100としたときの相対値として表34に示す。
【0345】
【表34】
【0346】
(実施例19−1〜19−24について)
表34の結果から、負極活物質としてLTOを用いた場合においても、実施例に係る(I)群の化合物として合成例1の(1a−Cis)と、(II)群の化合物としてイミドアニオンを有する塩(II−1−1)、(II−2−1)、(II−3−1)、(II−5−1)、ジフルオロリン酸リチウム、(II−9−2)とを併用し、さらに、(III)群の化合物として合成例1の(1a−Trans)、そして(IV)群の化合物として合成例2に示されるテトラフルオロイオン性錯体(5a−Tetra)から選ばれる化合物を含みうる非水系電解液を用いることで、比較例19−1〜比較例19−14よりも60℃長期サイクル後放電容量(0℃)や5Cレート特性(25℃)や60℃貯蔵後放電容量(0℃)のいずれも向上することが確認された。
【0347】
以上の通り、負極に、X線回折における格子面(002面)のd値が0.340nmを超える炭素材料、X線回折における格子面(002面)のd値が0.340nm以下の炭素材料、Si、Sn、Alから選ばれる1種以上の金属の酸化物、Si、Sn、Alから選ばれる1種以上の金属やこれら金属を含む合金又はこれら金属や合金とリチウムとの合金、リチウムチタン酸化物を用いた場合のいずれにおいても、本発明の非水系電解液は、実施例1−1〜1−41と同様な効果を示すことが分かる。
つまり、本発明の非水系電解液およびこれを用いた電池には、前述の正極と同様、特定の負極に依存せずにサイクル特性の改善効果が生じることは明らかである。