(58)【調査した分野】(Int.Cl.,DB名)
第1の基板の上に第1の伝導性層を有し、第1の基板−伝導性層アセンブリを形成する第1の基板であって、前記第1の基板−伝導性層アセンブリが第1の幅及び第1の長さを有する、第1の基板と、
第2の基板の上に第2の伝導性層を有し、第2の基板−伝導性層アセンブリを形成する第2の基板であって、前記第2の基板−伝導性層アセンブリが、前記第1の幅未満である第2の幅及び前記第1の長さと実質的に同じである第2の長さを有し、前記第1の伝導性層及び第2の伝導性層が対向する関係にある、第2の基板と、
第1の基板−伝導性層アセンブリと第2の基板−伝導性層アセンブリとの間に配設され、前記第1及び第2の基板−伝導性層アセンブリを離間した関係で維持する、第1のスペーサ及び第2のスペーサと、
第1の基板−伝導性層アセンブリと第2の基板−伝導性層アセンブリとの間に形成され、流体試料を受容するように構成されるチャンバであって、前記チャンバが、前記流体試料中の分析物と反応可能な試薬を含む、チャンバと、
前記第1のスペーサ又は第2のスペーサのうちの一方に隣接するとともに、非伝導性材料から構成された第3のスペーサであって、前記第3のスペーサの表面上に、前記第2の伝導性層と導電性で接触している第3の伝導性層が形成された第3のスペーサと、
を備える、電気化学モジュール。
前記第1の伝導性層及び第2の伝導性層が、金、パラジウム、白金、酸化スズ、イリジウム、インジウム、チタン−パラジウム合金、及びこれらの組み合わせからなる群から選択される金属を含む、請求項1に記載のモジュール。
前記第1の伝導性層及び第2の伝導性層が、炭素系材料、電極触媒材料を有する炭素系材料、グラフェン、及びこれらの組み合わせからなる群から選択される非金属を含む、請求項1に記載のモジュール。
【図面の簡単な説明】
【0006】
【
図1B】本発明のECMの別の実施形態の平面図である。
【
図3A】本発明のECMの別の実施形態の側面図である。
【
図4】
図3AのECM及び分析物測定デバイスのための電気接触ピンの立面断面図である。
【
図5A】本発明のECMの一実施形態の種々の生産段階を図示する。
【
図5B】本発明のECMの一実施形態の種々の生産段階を図示する。
【
図5C】本発明のECMの一実施形態の種々の生産段階を図示する。
【
図5D】本発明のECMの一実施形態の種々の生産段階を図示する。
【
図5E】本発明のECMの一実施形態の種々の生産段階を図示する。
【
図5F】本発明のECMの一実施形態の種々の生産段階を図示する。
【
図5G】本発明のECMの一実施形態の種々の生産段階を図示する。
【
図6A】本発明のECMの第2の実施形態の種々の生産段階を図示する。
【
図6B】本発明のECMの第2の実施形態の種々の生産段階を図示する。
【
図6C】本発明のECMの第2の実施形態の種々の生産段階を図示する。
【
図6D】本発明のECMの第2の実施形態の種々の生産段階を図示する。
【
図6E】本発明のECMの第2の実施形態の種々の生産段階を図示する。
【
図6F】本発明のECMの第2の実施形態の種々の生産段階を図示する。
【
図6G】本発明のECMの第2の実施形態の種々の生産段階を図示する。
【
図6H】本発明のECMの第2の実施形態の種々の生産段階を図示する。
【発明を実施するための形態】
【0007】
広くは、本発明は、体液試料中の分析物の判定に有用な電気化学モジュール(「ECM」)の形態の電気化学系センサを提供する。本発明のモジュールは、向かい合った電極を提供するが、電極と分析物測定デバイスとの間の電気接触を作り出すための接触面積は、同一平面上である。本発明のモジュールは、それらが小さいサイズのものであり、製造費用を低減し、ECMを分析物測定デバイスの中に給送する又はECMをその中で操作する目的でのスプール、カートリッジ等へのECMの組み込みを容易にし、それによりユーザの取扱いに対する必要性を排除するという点で、有利である。加えて、本発明のECMは、連続ウェブ系プロセスを使用して好都合に製造され得る。
【0008】
本発明は、次のものを備え、次のものから本質的になり、次のものからなる、ECMを提供する:上に第1の伝導性層を有し、第1の基板−伝導性層アセンブリを形成する第1の基板であって、このアセンブリが第1の幅及び長さを有する、第1の基板と、上に第2の伝導性層を有し、第2の基板−伝導性層アセンブリを形成する第2の基板であって、このアセンブリが、第1の幅未満である第2の幅及び第1の長さと実質的に同じである第2の長さを有し、この第1及び第2の伝導性層が対向する関係にある、第2の基板と、第1のアセンブリと第2のアセンブリとの間に配設され、アセンブリを離間した関係で維持する、第1及び第2のスペーサと、第1のアセンブリと第2のアセンブリとの間に形成され、流体試料を受容するように構成されるチャンバであって、流体試料中の分析物と反応可能な試薬を含む、チャンバと、第1又は第2のスペーサのうちの一方に隣接した第3のスペーサであって、この第3のスペーサの表面が、第2の伝導性層と導電性で接触している伝導性層を含む、第3のスペーサ。別の実施形態において、本発明は、次のものを備え、次のものから本質的になり、次のものからなる、ECMを提供する:上に第1の伝導性層を有する第1の基板であって、この第1の伝導性層が、間に間隙を有する第1及び第2の部分を含み、この第1の基板及び第1の伝導性層が、第1の基板−伝導性層アセンブリを形成し、このアセンブリが、第1の幅及び長さを有する、第1の基板と、上に第2の伝導性層を有し、第2の基板−伝導性層アセンブリを形成する第2の基板であって、このアセンブリが、第1の幅未満である第2の幅及び第1の長さと実質的に同じである第2の長さを有し、この第1及び第2の伝導性層が対向する関係にある、第2の基板と、第1のアセンブリと第2のアセンブリとの間に配設され、アセンブリを離間した関係で維持する、第1及び第2のスペーサと、第1のアセンブリと第2のアセンブリとの間に形成され、流体試料を受容するように構成されるチャンバであって、流体試料の分析物と反応可能な試薬を含む、チャンバと、第1又は第2のスペーサのうちの一方に隣接した導電性の第3のスペーサであって、この第3のスペーサが、間隙と接触し、かつ第1及び第2の伝導性層と導電性で接触している、第3のスペーサ。加えて、本発明のECMを製造する方法が提供される。
【0009】
本発明のECMは、多様な形状を有してもよいが、ECMが、
図1Aに示されるように、ECMの幅(「W」)が長さ(「L」)よりも大きい、矩形の形状であることが好ましい。しかしながら、ECMとECMと共に使用されるであろう分析物測定デバイスとの間の接触面積に関する下の考察から理解されるであろうが、例えば、
図1Bに示されるように、他の構成が可能であり、本発明の範囲内にある。
【0010】
図1A、2A及び2Bを参照すると、ECM 10が、非伝導性材料から構成されている、第1の基板11と共に示される。第1の伝導性層12が、基板11の一表面上に提供され、層12及び基板11は、第1の基板−伝導性層アセンブリ31を形成する。非伝導性材料から形成される第2の基板13もまた、第2の伝導性層14に提供される一表面上に提供される。第2の基板13及び第2の伝導性層14は、第2の基板−伝導性層アセンブリ32を形成する。第1及び第2の伝導性材料12及び14は、ECMの電極を形成し、好ましくは、それらが上に提供されるそれぞれの基板の幅及び長さ全体にわたって延在する。好ましくは、示されるように、第1及び第2の伝導性材料12及び14は、対向する関係にある。また、好ましくは、基板−伝導性層アセンブリのうちの一方は、基板11及び伝導性層12に示されるように、他の基板−伝導性層アセンブリのその幅(「W
2」)よりも大きい幅(「W
1」)を有する。示される実施形態において、好ましくは、第1の基板−伝導性層アセンブリの長さ(「L
1」)は、第2の基板−伝導性層アセンブリのその(「L
2」)と実質的に同じである。
【0011】
非伝導性材料から構成される、スペーサ15及び16は、伝導性層12及び14の対向する表面の間に挿入され、伝導性材料を離間配置された関係に維持する役目を果たす。注目すべきは、及び好ましくは、一方のスペーサ、すなわち示されるスペーサ15は、他のスペーサ16の(「W
4」)よりも大きい幅(「W
3」)を有する。スペーサの長さは、異なってもよいが、好ましくは同じである。スペーサはまた、チャンバ17の側壁を画定し、このチャンバの頂部及び底部は、基板−伝導性層アセンブリによって形成される。チャンバは、分析対象の流体を受容し、故に、スペーサの寸法は、所望のチャンバサイズが得られるように選択されなければならない。
【0012】
便宜上及び配向の目的で、第1の基板−伝導性層アセンブリ31は、ECMの底部であるように見なされ、第2の基板−伝導性層32は、頂部であるように見なされる。しかしながら、これらの用語は、これらの層を特定の配向に限定することを意図しない。
【0013】
示されるように、スペーサ15は、好ましくは、その第1の幅方向端部18が、頂部基板−伝導性層アセンブリ32の第1の幅方向端部19と実質的に揃って位置付けられるように、位置付けられる。しかしながら、第2のスペーサ16の幅方向端部21は、間隙がそれと、頂部基板−伝導性層アセンブリ32の幅方向端部22との間に形成されるように、位置付けられる。スペーサ16の幅方向端部21に直ぐ隣接して、第3のスペーサ23がある。好ましくは、第3のスペーサ23とスペーサ16との間には実質的に何の間隙も存在しない。スペーサ23は、非伝導性材料から構成され、一表面上に第3の伝導性層25を有するが、この層25は、第2の伝導性層14に面し、それと導電性で接触している。第3のスペーサ23は、第3のスペーサ23の幅方向端部26が、頂部基板−伝導性層アセンブリ32の幅方向端部21を越えて延在し、かつ好ましくは第1の基板−伝導性層アセンブリ31の幅方向端部27と実質的に揃っているような、幅(「W
5」)を有する。
【0014】
ECM 10とメーター等の分析物測定デバイスとの間の電気接触が、それぞれ第1の伝導性層12と第3の伝導性層18との面積28及び29に対して提供される。故に、面積28及び29は、分析物測定デバイスとの所望される信頼性の高い低抵抗接触が作り出され得るような、サイズ及び形状にされる。
【0015】
ECM 10及びその構成要素のサイズ及び形状は、任意の所望の構成を取るように多様であってもよい。例えば、
図1Bに示されるように、ECMは、「t」字形の構成を取ってもよい。かかる構成において、頂部及び底部基板の幅は、
図1AのECM 10について記載される通りであるが、その頂部は、細長い長さを有する。当業者であれば、
図1BのECMの他の構成要素の寸法が、所望の結果を達成するために調整されることを認識するであろう。
【0016】
好ましくは、しかしながら、ECMは、
図1Aと実質的に同様の形状にされ、より好ましくは、ECM 10の幅は、その最も幅広の部分で、約3mm〜約48mm、より好ましくは約6mm〜約10mmであり、長さは、約0.5mm〜約20mm、より好ましくは約1〜4mmである。頂部伝導性層と底部伝導性層との間の距離は、所望のチャンバサイズに応じて異なるであろう。好ましくは、チャンバは、チャンバが保持し得る流体体積が、約0.1マイクロリットル〜約5マイクロリットル、より好ましくは約0.2〜約3マイクロリットル、最も好ましくは約0.2〜約0.4マイクロリットルであるようなサイズのものである。好ましくは、スペーサ15及び16の厚さは、所望のチャンバ体積を達成するのに好適であり、より好ましくは、1マイクロメートル〜約500マイクロメートル、なおもより好ましくは10〜約400マイクロメートル、更により好ましくは約25〜約200マイクロメートル、最も好ましくは約50〜約150マイクロメートルであり得る。スペーサ15及び16によって作り出されるチャンバ開口部は、任意の所望の寸法のものであってもよいが、好ましくは、約1.00〜約1.75mmである。
【0017】
基板11及び13は、所望のECM構成を達成する、任意のサイズ及び形状のものである。基板の厚さは、好ましくは、厚さが約50マイクロメートル〜約200マイクロメートル、好ましくは約100〜約175マイクロメートルである。基板は、任意の好適な電気絶縁性の非伝導性材料から構成され、好ましくは、選択される材料は、結果としてもたらされる基板層がチャンバ体積に悪影響を及ぼさないように、十分に小さい熱膨張係数を有する。好適な材料には、例えば、ナイロン基板、ポリカーボネート基板、ポリイミド基板、ポリ塩化ビニル基板、ポリエチレン基板、ポリプロピレン基板、グリコール酸系(glycolated)ポリエステル基板、ポリエステル基板、セラミック、ガラス等、及びこれらの組み合わせが含まれる。基板は、好ましくは、ポリエチレンテレフタレート(「PET」)で形成される。所望により、基板は、物理的特性を制御するために1つ以上の充填物を含有してもよい。頂部基板層は、分析対象の流体でのストリップチャンバの充填をユーザが見ることができるように、好ましくは全体的若しくは部分的に半透明若しくは透明であるか、又は半透明若しくは透明の窓を含む。説明目的のみで、ECM10は、2つの電極を形成する2つの伝導性層、及びその中の1つのチャンバを有するが、ECMは、任意の好適な数の電極、チャンバ、及び伝導性層を含むように設計されてもよい。
【0018】
第1及び第2の伝導性層12及び14は、薄膜堆積、スパッタリング、スプレーコーティング、無電解めっき加工、熱蒸着、スクリーンプリンティングを含むプリンティング方法等、及びこれらの組み合わせを含む、任意の好適な堆積方法によって、基板11上に堆積されてもよい。伝導性層12及び14は、金、パラジウム、白金、酸化スズ、イリジウム、インジウム、及びチタン−パラジウム合金等の金属、並びに電極触媒材料を用いる又は用いない電気的な炭素系材料、グラフェン等を含む、非金属、並びにこれらの組み合わせを含む、任意の好適な導電性材料から形成される。好ましくは、材料は、金属であり、より好ましくは、伝導性層のうちの一方は、パラジウムで形成され、他方は、金で形成され、より好ましくは、試薬が上に堆積される伝導性層は、金であり、他方は、パラジウムであるか、あるいは両方とも金である。これらの材料の好ましい堆積方法は、スパッタリングによるものである。伝導性層は、任意の好適な厚さのものであってもよい。厚膜が所望される場合、厚さは典型的に、約5〜20mmであろう。薄膜が所望される場合、厚さは、約10〜約100ナノメートルであろう。
【0019】
示される試薬24は、伝導性層のうちの一方の上に配設されるが、チャンバの複数の表面上に配設されてもよい。試薬は、任意の所望の寸法の面積を被覆してもよいが、
図1Aに示されるECM 10において、試薬は、約1〜4mm、好ましくは約2.25〜3mmの幅、約2〜約3.5マイクロメートルの長さ、及び約2〜約10マイクロメートルまでの高さを有するであろう。試薬は、所望の分析物分析を行う際に有用な任意の試薬であってもよく、メディエーター、酵素等、及びこれらの組み合わせを含む、種々の材料から形成されてもよい。好ましくは、試薬は、1つ以上の具体的な標的分析物、例えば、流体試料中の生物学的マーカー分子を認識することが可能である配合のものであり、故に、試薬は、レドックス酵素、及び分析物種の酸化又は還元のために補因子を必要とする酵素等の、酵素を含んでもよく、より具体的には、ブドウ糖酸化酵素、ピロロキノン(pyrroloquinone)補因子を含有するブドウ糖脱水素酵素(「GDH」)、ニコチン酸アデニンジヌクレオチド補因子を含有するGDH、又はフラビンアデノシンジヌクレオチドを含有するGDHであってもよい。加えて、試薬は、抗体、及び受容体等の他の結合リガンド、並びにレドックス種、可溶化試薬、緩衝液、塩、界面活性剤等の湿潤剤、並びに他のイオン性及び非イオン性種を含む、分析物の電気化学判定を容易にする種を含んでもよい。好ましい試薬は、ブドウ糖、乳酸、ケトン体、コレステロール等の代謝産物を判定することが可能な試薬を含有するであろう。例示的な試薬配合は、米国特許第7,291,256号に記載されており、参照によりその全体が本明細書に組み込まれる。試薬、並びにスロットコーティング、管の端部からの分与、インクジェットプリンティング、及びスクリーンプリンティングを含む、任意の好都合な、既知の方法によって堆積される。好適な例示的なプロセスは、米国特許第6,749,887号、同第6,676,995号、及び同第6,830,934号に記載されており、全て参照によりそれらの全体が本明細書に組み込まれる。
【0020】
スペーサ15、16及び23は、任意の好適な厚さのものであってもよく、典型的には、厚さが約25〜約200マイクロメートル、より好ましくは約70〜約110マイクロメートルであろう。スペーサは、好適な非伝導性材料から、好ましくはウェブ系製造において使用するのに好適な、ある程度の可撓性を示すような材料から形成されてもよい。好ましい場合がある好適な電気抵抗性材料には、ポリエステル、ポリスチレン、ポリカーボネート、ポリオレフィン、ポリエチレンテレフタレート、ガラス、セラミックス、混合物等の材料、及びこれらの組み合わせが含まれる。好ましくは、使用される材料は、熱活性化接着剤の両面コーティングを用いる、より好ましくは接着剤Researchから入手可能なARCare(商標)90503の両面コーティングを用いる、Du Pontから入手可能なMELINEX(登録商標)である。別個の接着層、好ましくは熱活性化接着剤、より好ましくはARCare(商標)90503を適用して、スペーサを伝導性層に結合してもよい。
【0021】
別の方法としては、スペーサが、スペーサの頂部及び底部表面を伝導性材料層に接着させるための両面接着剤として機能し得る。故に、スペーサは、接着性を有する電気抵抗性材料から形成されてもよい。好適な接着剤には、例えば、熱活性化接着剤、感圧接着剤、熱硬化接着剤、化学硬化接着剤、ホットメルト接着剤、ホットフロー接着剤等が含まれる。好適な接着剤には、米国特許出願第12/570,268号に記載されるものが含まれ、この特許は、参照によりその全体が本明細書に組み込まれる。感圧接着剤は、製作の単純化が所望される、ある特定の実施形態において使用するのに好ましい場合があるが、感圧接着剤のべたつきは、製作ツールのゴム状化又は製品のべたつきをもたらす場合がある。かかる実施形態において、熱又は化学硬化接着剤が、全体的に好ましい。とりわけ好ましいのは、適切な時間に好都合に活性化することができる熱活性化及び熱硬化接着剤である。
【0022】
室温で固体であり、溶解形態で表面に適用されて、それがその融点を下回る温度まで冷却されると表面に接着する、溶剤未使用の熱可塑性材料である、ホットメルト接着剤がまた使用されてもよい。例えば、Bostik Corp.(Middleton,Massachusetts)から入手可能である、好ましいポリエステルホットメルト接着剤は、約65℃から最大約220℃の融点を示し、本来は完全に非晶質から高結晶質までに及ぶ、線形飽和ポリエステルホットメルトである。Bostikから入手可能な、二量体酸及びナイロンタイプのポリアミド接着剤の両方を含む、ポリアミド(ナイロン)ホットメルト接着剤もまた使用され得る。好適なホットメルト接着性化学物質には、エチル酢酸ビニル、ポリエチレン、及びポリプロピレンが含まれる。
【0023】
積層技法をまた使用して、スペーサ層を伝導性層に固着してもよく、好適な積層技法が、米国特許第6,596,112号に記載されており、参照によりその全体が本明細書に組み込まれる。広くは、積層対象の層は、互いに隣接して配置され、熱が適用され、それによって層間の固着が形成される。圧力をまた適用して、固着の形成を補助してもよい。
【0024】
第3のスペーサ23の第3の伝導性層25は、伝導性層12及び14について上に開示される材料から形成されてもよい。第3の伝導性層25は、好ましくは、第2の伝導性層14との、信頼性の高い低抵抗性界面を形成する。そのような界面の形成は、層25と層14との間の導電性接触を提供し、第3の伝導性層として又はこれらの表面の中間をなす層として好適な伝導性接着剤の使用によって遂行され得る。この中間層は、プリンティング又はそれを伝達接着剤として適用することを含む、任意の好適な手段によって適用されてもよい。より好ましくは、伝導性接着剤は、圧力又は温度のいずれかで活性化される。それがプリントされる場合、層は、好ましくは、厚さが約5〜約15μmであり、上に伝達される場合、約25〜約50μm厚である。別の方法としては、伝導性層25と伝導性層14との間の信頼性の高い界面は、熱積層を使用して融合継手を提供することによって、形成される。なおも別の代替形態として、ECMが使用されるメーターは、圧力を基板13の頂部に適用する接点を含む。
【0025】
図3及び3Bを参照すると、本発明の別の実施形態が示される。ECM 40は、第1の伝導性層42が一表面に提供される、第1の基板41を有する。第1の伝導性層42は、2つの部分56及び57から構成され、部分56及び57が、それらの間に実質的に何の電気伝導も生じないように互いから隔離されることを確実にするのに十分である、間隙54がそれらの間にある。間隙54は、任意の好都合な方法によって形成されてもよいが、好ましくは、第1の伝導性層42のレーザーアブレーションによって形成される。第2の基板43もまた、第2の伝導性層44に提供される表面の一表面上に示され、この伝導性層44は、好ましくは、基板43の幅及び長さ全体にわたって延在する。好ましくは、示されるように、第1の伝導性材料42及び第2の伝導性材料44は、対向する関係にある。また、好ましくは、基板−伝導性層アセンブリのうちの一方は、他方の基板−伝導性層アセンブリの幅よりも大きい幅を有し、これらの長さは、実質的に同じである。
【0026】
非伝導性材料から構成される、スペーサ45及び46は、伝導性層42と伝導性層44との間に挿入される。チャンバ47は、スペーサ45とスペーサ46との間に提供され、このチャンバ内には、試薬48がある。示されるように、スペーサ45は、好ましくは、その第1の幅方向端部62が、頂部基板−伝導性層アセンブリ52の第1の幅方向端部63と揃って位置付けられるように、位置付けられる。しかしながら、第2のスペーサ46の幅方向端部64は、間隙がそれと、頂部基板−伝導性層アセンブリ52の幅方向端部65との間に形成されるように、位置付けられる。スペーサ46の幅方向端部64に直ぐ隣接して、伝導性である第3のスペーサ53がある。好ましくは、第3のスペーサ53とスペーサ46との間には実質的に何の間隙も存在しない。
【0027】
スペーサ53は、第2の伝導性層44並びに第1の伝導性層42と導電性で接触している、好適な伝導性材料から構成される。例えば、スペーサ53は、固体、半固体、又はインサイチューで凝固する液体として適用されてもよい。例示的な材料には、3M 9712(125マイクロメートル)等の両面伝導性テープ、アクリル接着剤及び伝導性炭素充填物を含むポリエステルメッシュが含まれる。伝導性スペーサ53は、その幅方向端部66が、頂部基板−伝導性層アセンブリ52の幅方向端部65と実質的に揃うような幅を有する。
【0028】
ECM 40と、メーター等の分析物測定デバイスとの間の電気接触が、第1の伝導性層42の面積55及び49に対して提供される。故に、面積55及び49は、分析物測定デバイスとの所望される信頼性の高い低抵抗接触が作り出され得るような、サイズ及び形状にされる。
図4は、ECM、並びにECM 40の分析物測定接触面積55及び49の電気接触ピン71及び72を図示する。
【0029】
使用時に、分析物測定デバイスは、本発明のECMの2つの電気接触面積に接触して、完全回路を形成する。一実施形態において、測定デバイスに配設される回路は、2つの接触面積の間に試験電位又は電流を適用することができる。流体検出モードにおいて、測定デバイスは、ECMの電極の間に好適なアンペア数の一定電流を適用するであろう。流体試料がECMのチャンバに、チャンバが充填されるまで送達される。参照によりその全体が本明細書に組み込まれる米国特許第6,193,873号に記載されるように、流体試料が、電極間の間隙を架橋するとき、測定デバイスは、分析物の導入をもたらす、既定の閾値を下回る電圧減少を測定するであろう。好適な分析物測定デバイスには、既定の電位を印加するための回路機構を用いるオンボードマイクロプロセッサによって制御される、電池式の、手持ち式メーターが含まれる。
【0030】
本発明のECMの製造は、任意の既知の方法によって遂行されてもよい。好ましくは、連続ウェブプロセスが、ECMの大量生産のために使用される。1つのプロセスが、
図5A〜5Gに示される。金又はパラジウム等の金属が、
図5Aに示されるように、全体的に細長い矩形の構成を有する、PET等の第1の基板材料のウェブの一表面上にスパッタコーティングされて、伝導性膜を提供する。同じ又は異なる材料の複数の試薬ストリップが、
図5Bに示されるように伝導性層の部分上に分与される。剥離ライナによって被覆される接着層を有する又はそれらから構成される、不均一の幅のスペーサが、
図5Cに示されるように、試薬の両側上に積層される。いずれのスペーサの幅方向端部も、基板−金属ウェブの幅方向端部までは延在しない。
図5Dにおいて、第3のスペーサが示され、この第3のスペーサの一表面は、事前に適用され、より小さい幅を有するスペーサに隣接して適用される、金等の好適な伝導性材料でスパッタコーティングされている。第3のスペーサは、パラジウム又は金コーティング基板との何の電気的接続も確立されないように、適用される。
図5Eに見られるような、基板の内側対向面が金でコーティングされている、第2の基板は次いで、スペーサ上に積層される。
図5Eに示されるECMの3つの異なるトラックA、B、及びCを、線I及びIIに沿って縦方向に切断することによって分離して、
図5Fに示されるようなECMの単一の連続トラックを形成してもよい。連続トラックの各々は次いで、横方向に切断されて、
図5Gに示されるような複数の単一化されたECMを形成する。別の方法としては、連続トラックは、ECMの連続リボンを形成するように、横方向に刻み目を付けられるが、切断はされない場合があり、このリボンの各々は、必要とされる場合、使用後の処分のために刻み目の線に沿って断裂又は切断されてもよい。
【0031】
本発明のECMの別の製造プロセスが、
図6A〜6Hに示される。伝導性膜が、
図6Aに示されるように、全体的に細長い矩形の構成を有する、PET等の第1の基板材料上に積層されて、伝導性膜を提供する。伝導性表面の複数の縦方向の面積は、
図6Bに示されるように、ストリップ伝導性膜をそれらの面積から剥離するために、レーザー焼灼される。同じ又は異なる材料の複数の試薬ストリップが、
図6Cに示されるように伝導性層の部分上に分与される。剥離ライナによって被覆される接着層を有する又はそれらから構成される、不均一の幅の非伝導性スペーサが、
図6Dに示されるように、試薬の両側上に積層される。第3の伝導性スペーサは、
図6Eに示されるように、第1の伝導性層の伝導性材料として、第1の伝導性層における焼灼によって形成される間隙の一部分に重ね合わせるように適用されて、ECMの第1の伝導性層と第2の伝導性層との間の電気的接続を確立する。
図6Fに見られる、基板の内側対向表面が導電性コーティングでコーティングされる、第2の基板が次いで、スペーサ上に積層される。
図6Fに示されるECMの、3つの異なるトラックA、B、及びCを、線I及びIIに沿って縦方向に切断することによって分離して、
図6Gに示されるようなECMの単一の連続トラックを形成してもよい。連続トラックの各々は次いで、横方向に切断されて、
図6Hに示されるような複数の単一化されたECMを形成する。
【0032】
好ましくは、本発明のECMは、担体と併用されない。しかしながら、ECMは、追加の構造的一体性を提供し、取扱いを容易にするために、担体と共に組み込まれてもよい。好適な担体は、米国特許出願第13/090,620号に開示され、参照によりその全体が本明細書に組み込まれる。そのような担体は、任意の好適な材料から形成されてもよく、好ましくは、非伝導性でありかつECMと経時的に化学反応することがない、プラスチック又は厚紙等の安価な材料から形成される。