【実施例】
【0038】
以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、以下に示す方法及び条件で作製した線状複合材により形成した平織織布を用いて樹脂成形体を製造し、その性能を評価した。
【0039】
<線状複合材A>
先ず、アイソタクチックポリプロピレン(i−PP)[メルトフローレイト(MFR)=18g/10分(230℃、21.18N)、融点=165℃]からなる繊維状強化材の周囲に、直鎖状低密度ポリエチレン(LLDPE)[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]からなる被覆層を設けた複合繊維を作製した。具体的には、これらの材料を、ホール数が240ホールの細孔を有する鞘芯複合紡糸ノズルを用いて、紡糸温度270℃にて、紡糸ノズルヘッド部に備え付けの溶融樹脂ギヤポンプで所定量の吐出樹脂量に計量しつつ紡糸速度60m/分で紡糸し、鞘と芯の断面積比(鞘/芯比)が35/65で、繊度が24,163dtexの複合繊維を作製した。
【0040】
引き続き、得られた複合繊維(240本)をスピンドロー方式(紡糸延伸直結法)にて、第1延伸ローラー(G1)=60m/分、第1延槽伸温度=95℃(温水)、第2延伸ローラー(G2)速度=405m/分、第2延伸槽温度=153℃(高圧飽和水蒸気)、第3延伸ローラー(G3)速度=805m/分で、第1延伸倍率(G2/G1速度比)=6.75倍、第2延伸倍率(G3/G2速度比)=1.99倍、全延伸倍率(G3/G1速度比)=13.42倍の条件で2段延伸した。この延伸工程により、マトリックス樹脂であるLLDPEが溶融し、繊維状強化材(i−PP)を包埋して一体化した延伸線状複合材Aを得た。
【0041】
この延伸線状複合材Aの物性は、繊度=1828dtex、引張りヤング率=93cN/dtex(室温引張り試験)、13.2cN/dtex(120℃熱間引張り試験)であった。また、得られた延伸線状複合材Aについて、示差走査熱量計(DSC)にて、昇温速度30℃/分の条件で、繊維状強化材(i−PP)の融解熱量を測定し、i−PP樹脂の完全結晶体の融解熱量との対比から結晶化度を算出した。その結果、繊維状強化材(i−PP)の結晶化度は72%であった。
【0042】
<線状複合材B>
ギヤポンプの吐出樹脂量を調整し、紡糸速度を40m/分とし、紡糸繊度を17,809dtexとした以外は、前述した線状複合材Aと同様の方法及び条件で、複合繊維を作製した。その後、第1延伸ローラー(G1)を40m/分、第1延槽伸温度を145℃ (高圧飽和水蒸気)、第2延伸ローラー(G2)速度を400m/分とし、全延伸倍率(G2/G1速度比)=10.00倍の条件で1段延伸した以外は、前述した複合繊維Aと同様の方法及び条件で延伸線状複合材Bを得た。
【0043】
この延伸線状複合材Bの物性は、繊度=1808dtex、引張りヤング率=59cN/dtex(室温引張り試験)、7.1cN/dtex(120℃熱間引張り試験)であった。また、線状複合材Aと同様の方法で測定し、算出した繊維状強化材(i−PP)の結晶化度は60%であった。
【0044】
<線状複合材C>
ギヤポンプの吐出樹脂量を調整し、紡糸繊度を12,544dtexとした以外は、前述した線状複合材Aと同様の方法及び条件で、複合繊維を作製した。その後、第2延伸ローラー(G2)速度を300m/分 、第2延伸槽温度を145℃(高圧飽和水蒸気)、第3延伸ローラー(G3)速度を420m/分とし、第1延伸倍率(G2/G1速度比)を5.00倍、第2延伸倍率(G3/G2速度比)を1.40倍、全延伸倍率(G3/G1速度比)を7.00倍とした以外は、前述した線状複合材Aと同様の方法及び条件で2段延伸し、延伸線状複合材Cを得た。
【0045】
この延伸線状複合材Cの物性は、繊度=1814dtex、引張りヤング率=36cN/dtex(室温引張り試験)、4.9cN/dtex(120℃熱間引張り試験)であった。また、線状複合材Aと同様の方法で測定し、算出した繊維状強化材(i−PP)の結晶化度は52%であった。この線状複合材Cは、熱間引張り試験でのヤング率及び結晶化度において、前述した線状複合材A及び線状複合材Bよりも極めて低い物性を示し、耐熱物性が劣ることが推測された。これは、延伸倍率が実施例の繊維より低いことが原因しているものと推測される。
【0046】
<線状複合材D>
ギヤポンプの吐出樹脂量を調整し、紡糸繊度を25,045dtexとした以外は、前述した線状複合材Aと同様の方法及び条件で、複合繊維を作製した。その後、第2延伸ローラー(G2)速度を600m/分、第3延伸ローラー(G3)速度を838m/分とし、第1延伸倍率(G2/G1速度比)を10.00倍、第2延伸倍率(G3/G2速度比)を1.40倍、全延伸倍率(G3/G1速度比)を13.97倍とした以外は、前述した線状複合材Aと同様の方法及び条件で2段延伸し、延伸線状複合材Dを得た。
【0047】
この延伸線状複合材Dの物性は、繊度=1820dtex、引張りヤング率=82cN/dtex(室温引張り試験)、6.8cN/dtex(120℃熱間引張り試験)であった。また、線状複合材Aと同様の方法で測定し、算出した繊維状強化材(i−PP)の結晶化度は58%であった。この線状複合材Dは、熱間引張り試験でのヤング率及び結晶化度において、前述した線状複合材A及び線状複合材Bよりも低い物性を示し、耐熱物性に劣ることが推測された。このことから、高倍率延伸すれば耐熱性向上を実現できるとは限らず、1段目より高温延伸である2段目の延伸倍率が低いため、1段目の延伸で形成した配向結晶を成長させるのではなく、むしろ破壊していることが推測される。
【0048】
<線状複合材E>
ギヤポンプの吐出樹脂量を調整し、紡糸繊度を24,959dtexとした以外は、前述した線状複合材Bと同様の方法及び条件で、複合繊維を作製した。その後、第2延伸ローラー(G2)速度を560m/分とし 、全延伸倍率(G2/G1速度比)=14.00倍の条件で延伸した以外は、前述した線状複合材Bと同様の方法及び条件で1段延伸し、延伸線状複合材Eを得た。
【0049】
この延伸線状複合材Eの物性は、繊度=1810dtex、引張りヤング率=71cN/dtex(室温引張り試験)、6.5cN/dtex(120℃熱間引張り試験)であった。また、線状複合材Aと同様の方法で測定し、算出した繊維状強化材(i−PP)の結晶化度は57%であった。この線状複合材Eは、熱間引張り試験でのヤング率及び結晶化度において、前述した線状複合材A及び線状複合材Bよりも低い物性を示し、耐熱物性に劣ることが推測された。このことから、前述した線状複合材Dと同様に、高倍率延伸すれば配向の促進及び結晶化度の増大の促進ができる訳ではなく、1段で大きな倍率の延伸を行うと、繊維状強化材(i−PP)のネック(くびれ)変形を伴う延伸が増大し、配向結晶化が抑制されることが推測される。
【0050】
<線状複合材F>
被覆層をエチレン―プロピレンランダム共重合体(co−PP)[メルトフローレイト(MFR)=5g/10分(190℃、21.18N)、融点=125℃]で形成したこと、及びギヤポンプの吐出樹脂量を調整して紡糸繊度を24,100dtexとしたこと以外は、前述した線状複合材Aと同様の方法及び条件で、複合繊維を作製した。その後、前述した線状複合材Aと同様の方法及び条件で2段延伸し、延伸線状複合材Fを得た。
【0051】
この延伸線状複合材Fの物性は、繊度=1820dtex、引張りヤング率=95cN/dtex(室温引張り試験)、95cN/dtex(120℃熱間引張り試験)であった。また、線状複合材Aと同様の方法で測定し、算出した繊維状強化材(i−PP)の結晶化度は71%であった。
【0052】
これら線状複合材A〜Fについて、上記以外の製造条件及び繊維物性を下記表1にまとめて示す。
【0053】
【表1】
【0054】
なお、上記表1に示す「引張り強度」は、以下に示す方法にて測定した値である。
(1)室温
JIS L1013で規定される方法に準じて、試料長100mm、引張り速度100mm/分の条件で、株式会社島津製作所社製 オートグラフAG−100kN ISを用いて、1試料当たり5回の測定を行った。そして、その平均値から、強度(cN/dtex)、伸度(%)、ヤング率(cN/dtex)を求めた。
【0055】
(2)120℃
加熱炉を使用して120℃雰囲気下で1時間調整した後、試料をセットして、3分後(試料の温度が約2分後に120℃に達する)に、JIS L1013で規定される方法に準じて、試料長100mm、引張り速度100mm/分の条件で、株式会社島津製作所社製 オートグラフAG−100kN ISを用いて、1試料当たり5回の測定を行った。そして、その平均値から、強度(cN/dtex)、伸度(%)、ヤング率(cN/dtex)を求めた。
【0056】
(実施例1)
(1)ファブリックの作製
線状複合材Aを2本合糸して3656dtexとし、織機にて、縦横方向の原糸打ち密度をそれぞれ8.33本/25mmとして平織織布を作製した。得られた織布の面密度は244g/m
2であった。
【0057】
(2)シート材の作製
得られた平織織布を、縦横長さ1.5mの大きさに裁断し、これを3枚積層して、加熱平板(縦2m×横2m)ホットプレス機にて熱圧着ファブリックシートを作製した。シート作製の前準備として、縦横長さ1.8m、厚さ1.5mmのアルミニウム板を予めホットプレス機で所定の温度に予熱した。そして、このアルミニウム板に前述した平織織布を載せて、所定条件で熱圧着した。プレス圧解除後にアルミニウム板ごと取り出し、別途準備しておいた冷却用のアルミニウム板をこれに載せてシートを急冷した後、シートのみを取り外すことによって熱圧着ファブリックシートを作製した。その際、ホットプレス条件は、平板温度120℃、加圧1.6MPa、加圧保持時間45秒とした。また、得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度681g/m
2であった。
【0058】
(3)圧縮成形試験
圧縮成形試験では、雄金型には、縦500mm、横700mm、高さ120mm、上部端部曲率R80mm、底部端部曲率R10mmの凸形状を有する金型を使用した。一方、雌金型には、雄金型に対応する凹形状を有する金型を使用し、雄雌金型をプレス機に装着して圧縮成形試験に使用した。なお各金型は、型内通水冷却管に冷水又は温水を通水することにより、金型温度を30℃〜70℃の範囲に維持できる状態で使用した。
【0059】
前述したファブリックシートの上下面を、遠赤外線(IR)ヒーターにより、表面温度が120℃〜130℃になるまで予め加熱した。所定温度に到達後、ファブリックシートを素早く圧縮試験金型に挿入し、雄雌金型のクリアランスが1mmの状態で4秒間圧縮成形した後、60秒間冷間成形を維持した。冷間成形が終了した後、脱型し、箱状成形体を得た。
【0060】
次に、この箱状成形体を、室温で24時間放置後、反り及び変形などの形状を目視観察すると共に、底面に対する側壁面の反りの程度を反り角度α(°)として測定した。
図9A及び
図9Bは反りの評価方法を示す模式図である。反り角度α(°)は、
図9Aに示すように箱状成形体の底部と側壁部とがなす角度θが90°のときをα=0°とし、
図9Bに示すように側壁部が内側に反っている場合を+θ°、底側に反っている場合を−θ°として求めた。その結果、得られた箱状成形体には、反り及び変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0061】
(実施例2)
織布に加えて、面密度200g/m
2のLLDPE樹脂製[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]シートを片面に積層した以外は、前述した実施例1と同様の方法及び条件で、熱圧着ファブリックシート作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度865g/m
2であった。
【0062】
次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0063】
(実施例3)
織布に加えて、面密度200g/m
2のLLDPE樹脂製[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]シートを介してPET樹脂製シートを片面に積層した以外は、前述した実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度865g/m
2であった。
【0064】
次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0065】
(実施例4)
実施例1と同様の方法で作製した織布を、加熱平板ホットプレスは行わずに3枚積層して、732g/m
2相当の面密度とし、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0066】
(実施例5)
線状複合材Bを2本合糸して3616dtexとした以外は、前述した実施例1と同様の方法及び条件で、平織織布を作製した。得られた織布の面密度は241g/m
2であった。この織布を用いて、前述した実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度670g/m
2であった。
【0067】
次に、前述した方法で作製した熱圧着ファブリックシートを用いて、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0068】
(実施例6)
実施例5で作製した平織織布を使用し、実施例2と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度853g/m
2であった。次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0069】
(実施例7)
実施例5と同様の方法で作製した織布を、加熱平板ホットプレスは行わずに3枚積層して、723g/m
2相当の面密度とし、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0070】
(実施例8)
線状複合材Fを2本合糸して3640dtexとした以外は、前述した実施例1と同様の方法及び条件で、平織織布を作製した。得られた織布の面密度は242g/m
2であった。この織布を用いて、前述した実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度681g/m
2であった。
【0071】
次に、前述した方法で作製した熱圧着ファブリックシートを用いて、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0072】
(実施例9)
実施例8で作製した平織織布を使用し、実施例2と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度865g/m
2であった。次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0073】
(実施例10)
実施例8で作製した平織織布を使用し、実施例3と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.4mm、面密度916g/m
2であった。次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0074】
(実施例11)
実施例8と同様の方法で作製した織布を、加熱平板ホットプレスは行わずに3枚積層して、732g/m
2相当の面密度とし、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
【0075】
(比較例1)
線状複合材Cを2本合糸し、3628dtexとした以外は、実施例1と同様の方法及び条件で平織織布を作製した。得られた織布の面密度は、242g/m
2であった。次に、この織布を使用して実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度670g/m
2であった。
【0076】
次に、前述した方法で作製した熱圧着ファブリックシートについて、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、側壁面の内側への反りが認められ、反り角度αは+10°であった。また、比較例1の箱状成形体は、底部がコーナー部を中心に内側へ変形しており、実施例に比べて成形性が劣っていた。この底部の変形は、線状複合材Cは、繊維状強化材の結晶化度が52%と本発明の範囲よりも低かったため、成形時に更に延伸され、その際発生した歪が室温での放置に伴い徐々に緩和されて、特に雄側の金型に接していた繊維シートの収縮により、発生したものと推測される。
【0077】
(比較例2)
織布に加えて、面密度200g/m
2のLLDPE樹脂製[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]シートを片面に積層した以外は、前述した比較例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度856g/m
2であった。
【0078】
次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、側壁面に内側への非常に大きな反りが認められた。その反り角度αは+19°であり、比較例1の箱状成形体よりも更に反りが大きくなっていた。これは、線状複合材Cは、繊維状強化材の結晶化度が52%と本発明の範囲よりも低く、更に、樹脂製シートの融点近傍で成形を行ったため、無配向状態の樹脂製シートと、織布中の繊維状強化材(i−PP)との間に収縮差が発生し、この差により反りが大きくなったものと推察される。加えて、比較例2の箱状成形体は、実施例に比べて成形性が明らかに劣っていた。
【0079】
(比較例3)
線状複合材Dを2本合糸して3640dtexとした以外は、実施例1と同様の方法及び条件で、平織織布を作製した。得られた織布の面密度は243g/m
2であった。次に、この織布を使用して実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度670g/m
2であった。
【0080】
次に、前述した方法で作製した熱圧着ファブリックシートについて、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、少量であるが側壁面の内側への反りが認められ、その反り角度αは+2°であった。また、比較例3の箱状成形体は、底部がコーナー部を中心に内側に反っており、実施例に比べて成形性が劣っていた。この底部の変形の原因としては、線状複合材Dの繊維状強化材の結晶化度が58%と本発明の範囲よりも低かったためであると思われる。
【0081】
(比較例4)
織布に加えて、面密度200g/m
2のLLDPE樹脂製[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]シートを片面に積層した以外は、前述した比較例3と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度855g/m
2であった。
【0082】
次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、側壁面に内側への大きな反りが認められた。その反り角度αは+8°であり、比較例3の箱状成形体よりも更に反りが大きくなっていた。また、比較例4の箱状成形体は、実施例に比べて成形性が明らかに劣るものであった。
【0083】
(比較例5)
線状複合材Eを2本合糸して3620dtexとした以外は、実施例1と同様の方法及び条件で平織織布を作製した。得られた織布の面密度は241g/m
2であった。次に、この織布を使用して実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度669g/m
2であった。
【0084】
次に、前述した方法で作製した熱圧着ファブリックシートについて、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、少量であるが側壁面に内側への反りが認められ、その反り角度αは+4°であった。また、比較例5の箱状成形体は、底部がコーナー部を中心に内側に反っており、実施例に比べて成形性が劣っていた。
【0085】
(比較例6)
織布に加えて、面密度200g/m
2のLLDPE樹脂製[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]シートを片面に積層した以外は、前述した比較例5と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度853g/m
2であった。
【0086】
次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、側壁面に内側への大きな反りが認められた。その反り角度αは+9°であり、比較例5の場合より更に反りが大きくなっていた。また比較例6の箱状成形体は、実施例に比べて成形性が明らかに劣るものであった。
【0087】
以上の結果を、下記表2及び表3にまとめて示す。
【0088】
【表2】
【0089】
【表3】
【0090】
上記表2に示す実施例1〜11の熱圧着ファブリックシートを用いた箱状成形体は、上記表3に示す比較例1〜6の熱圧着ファブリックシートを用いた箱状成形体に比べて、反りの発生がなく、成形性にも優れていた。この結果から、本発明によれば、成形後に反りが発生しにくいファブリック強化樹脂成形体を製造できることが確認された。