特許第6248517号(P6248517)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友電気工業株式会社の特許一覧

特許6248517光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、およびマルチモード光ファイバ
<>
  • 特許6248517-光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、およびマルチモード光ファイバ 図000002
  • 特許6248517-光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、およびマルチモード光ファイバ 図000003
  • 特許6248517-光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、およびマルチモード光ファイバ 図000004
  • 特許6248517-光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、およびマルチモード光ファイバ 図000005
  • 特許6248517-光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、およびマルチモード光ファイバ 図000006
  • 特許6248517-光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、およびマルチモード光ファイバ 図000007
  • 特許6248517-光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、およびマルチモード光ファイバ 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6248517
(24)【登録日】2017年12月1日
(45)【発行日】2017年12月20日
(54)【発明の名称】光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、およびマルチモード光ファイバ
(51)【国際特許分類】
   C03B 37/014 20060101AFI20171211BHJP
   G02B 6/02 20060101ALI20171211BHJP
【FI】
   C03B37/014 Z
   G02B6/02 356A
【請求項の数】5
【全頁数】12
(21)【出願番号】特願2013-206685(P2013-206685)
(22)【出願日】2013年10月1日
(65)【公開番号】特開2015-71500(P2015-71500A)
(43)【公開日】2015年4月16日
【審査請求日】2016年9月15日
(73)【特許権者】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100136722
【弁理士】
【氏名又は名称】▲高▼木 邦夫
(72)【発明者】
【氏名】米沢 和泰
【審査官】 延平 修一
(56)【参考文献】
【文献】 特開昭62−021728(JP,A)
【文献】 特開昭61−091033(JP,A)
【文献】 特開2006−182632(JP,A)
【文献】 特開平03−275528(JP,A)
【文献】 米国特許第04680046(US,A)
【文献】 特開2005−225753(JP,A)
【文献】 特開平06−183768(JP,A)
【文献】 米国特許第06515795(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
C03B 37/00 − 37/16
G02B 6/02
(57)【特許請求の範囲】
【請求項1】
屈折率制御用のドーパントを含んだガラス微粒子を主成分とする、コアとなるべき多孔質ガラス体をOVD法またはVAD法により合成する第1の工程と、
前記多孔質ガラス体に対して物理的に吸着した水分を選択的に除去する工程であって、前記第1の工程により得られた前記多孔質ガラス体が設置される空間の温度を100℃以上かつ800℃以下の第1の温度に一定時間安定させた状態で、前記多孔質ガラス体を加熱する第2の工程と、
前記多孔質ガラス体内にSiOHとして残留するOH基を除去する工程であって、塩素系脱水剤を含む雰囲気中において、前記第2の工程を経た前記多孔質ガラス体を、前記第1の温度よりも高い第2の温度で加熱する第3の工程と、
前記第3の工程を経た前記多孔質ガラス体を前記第2の温度よりも高い第3の温度で加熱することにより、前記第3の工程を経た前記多孔質ガラス体を透明ガラス化する第4の工程と、を備え、
前記第2の工程における加熱時間t[分]は、前記多孔質ガラス体の直径をL[mm]とするとき、
t≧L/1000
なる関係を満たすよう設定されることを特徴とする光ファイバ母材の製造方法。
【請求項2】
前記第1の温度は、200℃以上かつ800℃以下であることを特徴とする請求項1に記載の製造方法。
【請求項3】
前記第2の工程は、前記多孔質ガラス体を、露点温度−80℃以下の雰囲気中で加熱することを特徴とする請求項1または2に記載の製造方法。
【請求項4】
前記第2の工程は、前記多孔質ガラス体を、減圧または真空雰囲気中において加熱することを特徴とする請求項1〜の何れか一項に記載の製造方法。
【請求項5】
前記第3の工程と前記第4の工程の間に行われ、前記第3の工程において脱水剤として使用された塩素成分を前記多孔質ガラス体から除去する工程であって、塩素系脱水剤を含まない雰囲気中において、前記第3の工程を経た前記多孔質ガラス体を、前記第1の温度よりも高く前記第3の温度よりも低い1300℃以下の第4の温度で一定時間加熱する第5の工程を備えることを特徴とする請求項1〜の何れか一項に記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ファイバ母材の製造方法、光ファイバ母材、光ファイバ、およびマルチモード光ファイバに関するものである。
【背景技術】
【0002】
マルチモード光ファイバは、長距離光通信用のシングルモード光ファイバに比べ、コア径やNAが大きいという構造上の理由から、ファイバ間接続が容易である。また、容易にネットワークの構築が可能になることから、LAN(Local Area Network)などの近距離情報通信の用途に広く使用されている。
【0003】
近年、上述の近距離情報通信の信号品質の改善を目的として、上述のマルチモード光ファイバの通信帯域の拡大(広帯域化)が盛んに研究されるようになってきた。
【0004】
なお、上述のマルチモード光ファイバを製造するための母材(以下、光ファイバ母材という)のスス付け方法としては、例えば特許文献1、2に記載されたようなOVD(Outside Vaporphase Deposition)法やVAD(Vapor phase AxialDeposition)法が広く知られている。
【0005】
VAD法やOVD法により屈折率増加剤として知られるGe等のドーパントを含んだガラス微粒子を主成分とする、コアとなるべき多孔質ガラス体が合成された後、下記特許文献1、2のように合成された多孔質ガラス体を塩素や塩素系脱水剤を含む雰囲気中で加熱することにより、OH基を除去する脱水工程が行われる。さらに、脱水工程を経た多孔質ガラス体は、不活性雰囲気中で焼結(透明ガラス化)されることでコアに相当する内側ガラス領域(線引き後にコアとなるコア母材)が得られる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2002−104830号公報
【特許文献2】特公平4−042340号公報
【非特許文献】
【0007】
【非特許文献1】K.E.Collin, V.R.Camargo, A.B.Dimiras, D.T.C.Menezes, P.A.Silva,C.H.Collins, J.Colloids & Interface Sci.,291,353(2005).
【発明の概要】
【発明が解決しようとする課題】
【0008】
発明者は、従来の光ファイバ母材の製造方法について検討した結果、以下のような課題を発見した。
【0009】
すなわち、上記特許文献1、2に記載された従来の脱水工程では、合成された多孔質ガラス体を、脱水剤を含む雰囲気内において加熱することでOH基除去(脱水)が行われていた。しかしながら、塩素を脱水剤として用いた脱水工程では、塩素供給下で加熱が進んだ場合、多孔質ガラス体(シリカガラス)に物理的に吸着した水分(以下、物理吸着水という)の除去、化学吸着水(多孔質ガラス体内にSiOHとして残留するOH基)の除去の順に脱水が進む。この際、塩素が多孔質ガラス体に取り込まれるため、以下の化学反応も進行してしまい、多孔質ガラス体から屈折率制御用のドーパントであるGeが消失していく反応も進行する。
GeO+2Cl → GeCl+O
ここでのGeOの消失量、すなわち屈折率分布の変化は、脱水条件(例えば塩素分圧や炉内温度など)に対し敏感に変化する。また、脱水工程の初期段階で多孔質ガラス体に多量に含まれる物理吸着水の量によっても変化すると考えられる。
【0010】
加えて、VAD法やOVD法による合成環境やガラス微粒子堆積後の保管環境に依存し、製造された多孔質ガラス体ごとにその吸湿量は異なってしまう。
【0011】
具体的には、多孔質ガラス体が室内に放置されていると徐々に吸湿が進行する。長時間放置されて多量の水分(物理吸着水)を吸った多孔質ガラス体と、合成直後の多孔質ガラス体では物理吸着水の量が大きく異なる。そのため、これら多孔質ガラス体に対して同じ条件で脱水工程が実施されても、脱水の進み方、Geの消失量が異なってくると考えられる。
【0012】
なお、多孔質ガラス体への物理的な水分吸着によりガラス質量が経時的に増加する現象については、上記非特許文献1等に詳細に記載されている。
【0013】
本発明は、上述のような課題を解決するためになされたものであり、従来の脱水工程に起因する、光ファイバ母材間の屈折率分布のバラツキを低減するための構造を備えた光ファイバ母材の製造方法、該製造方法により得られた光ファイバ母材、および該光ファイバ母材を線引きすることにより得られる、マルチモード光ファイバ等の光ファイバを提供することを目的としている。
【課題を解決するための手段】
【0014】
上述の課題を解決するため、本実施形態に係る光ファイバ母材の製造方法は、第1の態様として、コアとなるべき多孔質ガラス体を合成する第1の工程(ガラス合成工程)と、多孔質ガラス体に対して物理的に吸着した水分を選択的に除去する第2の工程(物理吸着水除去工程)と、多孔質ガラス体内にSiOHとして残留するOH基(化学吸着水)を除去する第3の工程(化学吸着水除去工程)と、多孔質ガラス体を透明ガラス化する第4の工程(透明ガラス化工程)と、を少なくとも備える。なお、第1の工程において、合成される多孔質ガラス体は、屈折率制御用のドーパントを含んだガラス微粒子を主成分とする。第2の工程において、第1の工程により得られた多孔質ガラス体は、該多孔質ガラス体が設置される空間の温度を100℃以上かつ800℃以下の第1の温度に一定時間安定させた状態で加熱される。すなわち、第2の工程における「一定時間安定させた状態」とは、急激な温度変化を伴うことなく100℃以上かつ800℃以下の第1の温度が一定時間(例えば20分以上)固定された状態を言う。第3の工程において、第2の工程を経た前記多孔質ガラス体は、塩素系脱水剤を含む雰囲気中において、第1の温度よりも高い第2の温度(800℃よりも高い)で加熱される。第4の工程において、第3の工程を経た多孔質ガラス体は、第2の温度よりも高い第3の温度で加熱され、これにより、第3の工程を経た多孔質ガラス体が透明ガラス化される。
【0015】
上記第1の態様に適用可能な第2の態様として、第1の温度は、200℃以上かつ800℃以下であるのが好ましい。
【0016】
上記第1または第2の態様に適用可能な第3の態様として、第2の工程において、多孔質ガラス体は、第1の温度で20分以上加熱されるのが好ましい。
【0017】
上記第1〜第3の態様のうち少なくとも何れかの態様に適用可能な第4の態様として、第2の工程における加熱時間t[分]は、多孔質ガラス体の直径をL[mm]とするとき、
t≧L/1000
なる関係を満たすよう設定されるのが好ましい。
【0018】
上記第1〜第4の態様のうち少なくとも何れかの態様に適用可能な第5の態様として、第2の工程において、多孔質ガラス体は、露点温度−80℃以下の雰囲気中で加熱されるのが好ましい。
【0019】
上記第1〜第5の態様のうち少なくとも何れかの態様に適用可能な第6の態様として、第2の工程において、多孔質ガラス体は、減圧または真空雰囲気中において加熱されてもよい。
【0020】
上記第1〜第6の態様のうち少なくとも何れかの態様に適用可能な第7の態様として、当該光ファイバ母材の製造方法は、第3の工程と第4の工程の間に行われ、第3の工程において脱水剤として使用された塩素成分を多孔質ガラス体から除去する第5の工程(脱塩素工程)を備えるのが好ましい。なお、第5の工程では、塩素系脱水剤を含まない雰囲気中において、第3の工程を経た多孔質ガラス体が、第1の温度よりも高く第3の温度よりも低い1300℃以下の第4の温度で一定時間加熱される。すなわち、第4の温度は、第2の温度よりも高く第3の温度よりも低いのが好ましい。
【0021】
本実施形態の第8の態様は、上記第1〜第6の態様のうち少なくとも何れかの態様に係る製造方法により得られる光ファイバ母材を提供する。
【0022】
本実施形態の第9の態様は、上記第8の態様に係る光ファイバ母材を線引きすることにより得られる光ファイバを提供する。また、本実施形態の第10の態様は、上記第8の態様に係る光ファイバ母材を線引きすることにより得られるGI(Graded Index)型マルチモード光ファイバを提供する。当該マルチモード光ファイバは、構造上、長距離伝送用のシングルモード光ファイバとは明確に区別される。
【0023】
なお、本発明に係る各実施形態は、以下の詳細な説明及び添付図面によりさらに十分に理解可能となる。これら実施例は単に例示のために示されるものであって、本発明を限定するものと考えるべきではない。
【0024】
また、本発明のさらなる応用範囲は、以下の詳細な説明から明らかになる。しかしながら、詳細な説明及び特定の事例はこの発明の好適な実施形態を示すものではあるが、例示のためにのみ示されているものであって、本発明の範囲における様々な変形および改良はこの詳細な説明から当業者には自明であることは明らかである。
【発明の効果】
【0025】
本発明によれば、ガラス合成により製造された多孔質ガラス体に対して行われる物理吸着水除去工程により、どの光ファイバ母材も物理吸着水が十分除去された後に塩素系脱水剤によるOH基除去に進むため、従来の脱水工程に起因する、光ファイバ母材間における屈折率分布のバラツキが効果的に低減される。
【図面の簡単な説明】
【0026】
図1】本実施形態に係る光ファイバ母材の製造方法の一例を説明するための図である。
図2】ガラス合成工程(1回目)を説明するための図である。
図3】物理吸着水除去工程、化学吸着水除去工程、脱塩素工程、および透明ガラス化工程それぞれを説明するための図である。
図4】透明ガラス化工程を経て延伸されたコア母材を示す図である。
図5】ガラス合成工程(2回目以降)を説明するための図である。
図6】線引き工程を説明するための図である。
図7】本実施形態に係るマルチモード光ファイバの代表的な断面構造を示す図およびその屈折率分布である。
【発明を実施するための形態】
【0027】
以下、本発明の各実施形態を添付の図面を用いて詳細に説明する。なお、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
【0028】
図1は、本実施形態に係る光ファイバ母材の製造方法の一例を説明するための図である。なお、本実施形態において、図7に示されたようなマルチモード光ファイバ100を得るための光ファイバ母材600(図6参照)は、OVD法やVAD法により製造可能であるが、以下で説明するように、線引き後にマルチモード光ファイバ100のコア110となる内側ガラス領域610(コア母材)の製造と、内側ガラス領域610の外側に設けられた、線引き後にクラッド120になる外側ガラス領域620の製造を2段階で行う場合は、内側ガラス領域製造時と外側ガラス領域製造時とで、図1のフローチャートに示された一連の工程を2回行うことになる。なお、内側ガラス領域610と外側ガラス領域620を同時に製造する場合は、図1のフローチャートに示された一連の工程を1回行うことになる。
【0029】
本実施形態に係る光ファイバ母材600の製造方法は、多孔質ガラス体を合成するガラス合成工程(ST10)と、多孔質ガラス体に対して物理的に吸着した水分を選択的に除去する物理吸着水除去工程(ST20)と、多孔質ガラス体内にSiOHとして残留するOH基(化学吸着水)を除去する化学吸着水除去工程(ST30)と、化学吸着水除去工程により多孔質ガラス体内に導入された塩素を除去する脱塩素工程(ST40)と、多孔質ガラス体を透明ガラス化する透明ガラス化工程(ST50)と、得られた透明ガラス体を所定の外径になるまで延伸する延伸工程(ST60)と、を少なくとも備える。さらに、本実施形態の例のように、光ファイバ母材600を内側ガラス領域610と外側ガラス領域620の2回に分けて製造する場合は、最終的に光ファイバ母材600が完成したか否かを判断する判定工程(ST70)が行われる。そして、得られたコア母材(内側ガラス領域610)に対して、再度、上述の工程ST10〜ST60が実行されることで、光ファイバ母材600が得られる。
【0030】
図2は、ガラス合成工程(ST10)を説明するための図である。光ファイバ母材600は、まず、OVD法、VAD法などによりGeO(二酸化ゲルマニウム)が添加されたコア母材を製造し、脱水(物理吸着水の除去と化学吸着水の除去を含む)、焼結(透明ガラス化)、延伸などの工程を経た後、さらに、得られたコア母材(内側ガラス領域610)の外周に、例えばVAD法により外側ガラス領域620を製造することで得られる。なお、OVD法、VAD法などにより製造される内側ガラス領域610は、線引き後にα値が1.9〜2.2の屈折率分布を持つコア110となるべきコア母材である。また、VAD法などにより製造される外側ガラス領域620は、線引き後にクラッド120となるべき部分である。
【0031】
以下、コア母材の製造過程を、ガラス合成工程(ST10)において採用可能なOVD法(図2)を例に、説明する。
【0032】
まず、OVD法によるガラス合成では、図2に示されたスス付け装置により多孔質ガラス体510が製造される。このスス付け装置は、中心棒310(又は中空のガラス管でもよい)を矢印S1で示された方向に回転可能な状態で保持する構造を有する。また、スス付け装置は、多孔質ガラス体510を中心棒310に沿って成長させるためのバーナー320と、原料ガスを供給するためのガス供給システム330を備える。バーナー320は、所定の移動機構により、図2中の矢印S2a及びS2bで示された各方向に移動可能である。
【0033】
多孔質ガラス体510の製造中、バーナー320の火炎中では、ガス供給システム330から供給された原料ガスの加水分解反応によりガラス微粒子(SiO微粒子)が生成され、これらガラス微粒子が中心棒310の側面に堆積していく。この間、中心棒310は矢印S1で示された方向に回転する一方、バーナー320は矢印S2a、S2bで示された方向に沿って移動する。この動作により、多孔質ガラス体が中心棒310に沿って成長していき、コア110となるべき多孔質ガラス体510(スス体)が得られる。
【0034】
続いて、上述のように製造された多孔質ガラス体510に対し、物理吸着水除去工程(ST20)が行われる。なお、図3は、物理吸着水除去工程、化学吸着水除去工程、脱塩素工程、および透明ガラス化工程それぞれを説明するための図である。
【0035】
物理吸着水除去工程(ST20)では、図3(a)に示された、ヒータ360を備えた加熱容器350内に多孔質ガラス体510が設置され、多孔質ガラス体510に物理的に吸着した水分が除去される。ここで、加熱容器350にはガス供給用の導入口350aと排気口350bが設けられているが、当該工程では、導入口350aは閉じられている。また、この物理吸着水除去工程中、支持機構340は、多孔質ガラス体510を該多孔質ガラス体510の中心軸を中心に矢印S4で示された方向に回転させながら、さらに、該多孔質ガラス体510全体を矢印S3a、S3bで示された方向に移動させることにより、ヒータ360に対する多孔質ガラス体510の相対位置を変えている。
【0036】
なお、OVD法(図2)の場合は、この物理吸着水除去工程の実施前に、得られた多孔質ガラス体510から中心棒310が抜き取られるが、中心棒310が中空ガラス管の場合は、脱水、焼結工程後に該中空ガラス管内にエッチングガスを流すことにより除去することとしてもよい。このように前処理が施された多孔質ガラス体510が図3(a)に示された加熱容器350内に設置される。
【0037】
より具体的には、物理吸着水除去工程(ST20)では、ガラス合成工程(ST10)により得られた多孔質ガラス体510が、加熱容器350の温度を100℃以上かつ800℃以下の第1の温度に一定時間安定させた状態で加熱される。すなわち、多孔質ガラス体510は、急激な温度変化を伴うことなく100℃以上かつ800℃以下の温度が一定時間(例えば20分以上)固定された状態で加熱される。このように、100℃以上かつ800℃以下の安定した温度環境下において、多孔質ガラス体510を20分以上加熱することで一定の効果があることが確認できた。このように、SiOH基の離脱が発生しない800℃以下の温度で多孔質ガラス体510を加熱することで、該多孔質ガラス体510に物理的に吸着した水分が除去される。この物理吸着水除去工程を経ることにより、それ以前の保管雰囲気や時間により決まる物理に吸着した水分量に関し、多孔質ガラス体間のバラツキが効果的に低減される。一方、物理吸着水を除去しようとする場合、除去効果があるのは100℃以上であるため、この物理吸着水除去工程における加熱容器350の設定温度(ヒーター360の温度)は、100℃以上800℃以下にする。
【0038】
ただし、より好ましくは、加熱容器350の設定温度は、200℃以上かつ800℃以下である。上記非特許文献1によれば、シリカガラスを200℃以上で加熱した際にHOガスが放出され易いことが分かる。したがって、処理時間や処理効率の観点から、物理吸着水除去工程における加熱容器350の下限温度は200℃であるのが好ましい。
【0039】
また、物理吸着水除去工程の実施時間は、経験的には20分以上であるが、多孔質ガラス体510のサイズ、多孔質ガラス体510内における水蒸気拡散距離の時間依存性を考慮して決定するのが好ましい。本実施形態では、物理吸着水除去工程における加熱時間t[分]は、多孔質ガラス体の直径をL[mm]とするとき、
t≧L/1000
なる関係を満たすよう設定される。
【0040】
さらに、物理吸着水除去工程において、多孔質ガラス体510は、露点温度−80℃以下の雰囲気中で加熱されるのが好ましい。露点の高い雰囲気での物理吸着水の除去が実施されると、水蒸気の除去を阻害するからである。または、多孔質ガラス体510は、減圧または真空雰囲気中において加熱されてもよい。真空、減圧雰囲気であると水蒸気の離脱が早くなるからである。
【0041】
物理吸着水除去工程(ST20)が終了すると、物理吸着水が除去された多孔質ガラス体520が得られ、この多孔質ガラス体520に対して化学吸着水除去工程(ST30)が実施される。この化学吸着水除去工程では、塩素系脱水剤を含む雰囲気中において、物理吸着水除去工程の設定温度よりも高い温度(800℃よりも高い)で多孔質ガラス体520が加熱される。
【0042】
具体的には、物理吸着水除去工程(ST20)を経た多孔質ガラス体520は、図3(b)に示された、ヒータ360を備えた加熱容器350内に設置され、塩素を含む雰囲気中で脱水処理が施される。なお、加熱容器350には塩素を含むガスを供給するための導入口350aと排気口350bが設けられている。また、この化学吸着水除去工程中、支持機構340は、多孔質ガラス体520を該多孔質ガラス体520の中心軸を中心に矢印S4で示された方向に回転させながら、さらに、該多孔質ガラス体520全体を矢印S3a、S3bで示された方向に移動させることにより、ヒータ360に対する多孔質ガラス体520の相対位置を変えている。この工程を経て、SiOHとして多孔質ガラス体520内に残留するOH基が除去される。
【0043】
なお、この化学吸着水除去工程(ST30)において、加熱容器350内の温度は1150℃(ヒータ温度)に設定され、導入口350aから濃度4%の塩素ガス(Cl)とHeガスの混合ガスが加熱容器350内に供給され、OH基が除去された多孔質ガラス体530が得られる。
【0044】
化学吸着水除去工程(ST30)が終了すると、化学吸着水除去工程において多孔質ガラス体530内に侵入した塩素を除去する脱塩素工程(ST40)が行われる。この工程(ST40)は、化学吸着水除去工程(ST30)と同じ加熱容器350(図3(b))で行われるが、加熱容器350内の温度は1300℃以下(ヒータ温度)に再設定され、導入口350aからHeガス(塩素ガスを含まない)が加熱容器350内に供給される。
【0045】
上述の脱塩素工程(ST40)を経て得られた多孔質ガラス体540は、引続き加熱容器350内で焼結される(透明ガラス化)。すなわち、この透明ガラス化工程(ST50)では、図3(c)に示されたように、支持機構340によって支持された状態で多孔質ガラス体540が加熱容器350内に収納される。このとき、加熱容器350内の温度(ヒータ温度)は1500℃程度に設定され、導入口350aを介して容器350の内部には塩素ガスを含まないHeガスが供給される。
【0046】
透明ガラス化工程中、支持機構340は、多孔質ガラス体540を該多孔質ガラス体540の中心軸を中心に矢印S4で示された方向に回転させながら、さらに、該多孔質ガラス体540全体を矢印S3aで示された方向に移動させることにより、ヒータ360に対する多孔質ガラス体540の相対位置を変えている。この工程(ST50)を経て、直径D1の透明ガラス体550が得られる。
【0047】
以上のように製造された透明ガラス体550をその長手方向に直径D2(本実施形態では例えば20mm)となるまで延伸することによりコア母材560が得られる(延伸工程ST60)。なお、図4は、上述の透明ガラス化工程(ST50)を経て延伸されたコア母材560(透明ガラス体)を示す図である。
【0048】
延伸工程(ST60)が終了すると、コア母材560が完成したか否かが判定され(ST70)、得られたコア母材560の外周にクラッド120となるべき外側ガラス領域620を形成するため、再度、上述の工程ST10〜ST60が実施される。
【0049】
図5は、コア母材560完成後の2回目以降のガラス合成工程説明するための図である。図5のガラス合成工程では、上述の各工程ST10〜ST60を経て得られたコア母材560の表面に、VAD法によりさらに外側ガラス領域620を形成することで、最終的にマルチモード光ファイバ用の光ファイバ母材600が製造される。
【0050】
具体的に、VAD法による外側ガラス領域620の製造工程では、図5に示されたスス付け装置により多孔質ガラス体570がコア母材560の表面に形成される。このスス付け装置は、少なくとも排気口450bを備えた容器450と、コア母材560を支持するための支持機構440を備えている。すなわち、支持機構440には矢印S6で示された方向に回転可能な支持棒が設けられており、この支持棒の先端には多孔質ガラス体570(スス体)をその表面に成長させるためのコア母材560が取り付けられている。
【0051】
図5のスス付け装置には、コア母材560の表面に多孔質ガラス体570(スス体)を堆積させるためのバーナー460が設けられており、ガス供給システム490からはバーナー460に対して所望の原料ガス(例えばSiCl等)、燃焼ガス(H及びO)、及びArやHe等のキャリアガスが供給される。
【0052】
多孔質ガラス体570の製造中、バーナー460の火炎中では、ガス供給システム490から供給された原料ガスの加水分解反応によりガラス微粒子が生成され、これらガラス微粒子がコア母材560の表面に堆積していく。この間、支持機構440は、一旦、その先端に設けられたコア母材560を矢印S5aで示された方向に移動させた後、矢印S6で示された方向に回転させながら矢印S5bで示された方向(コア母材560の長手方向)に沿ってコア母材560を引き上げる動作を行っている。この動作により、多孔質ガラス体570がコア母材560の表面に、該コア母材560の下方に向かって成長していき、最終的に、該コア母材560の表面においてクラッド120となるべき多孔質ガラス体(スス体)が得られる。
【0053】
以上の工程を経て得られた多孔質ガラス体に対し、再度、図3(a)の物理吸着水除去工程(ST20)、図3(b)の化学吸着水除去工程(ST30)、図3(b)の脱塩素工程(ST40)、図3(c)の透明ガラス化工程(ST50)、図4の延伸工程(ST60)が実施され、マルチモード光ファイバ100を製造するための光ファイバ母材600が得られる。以上の工程を経て得られた光ファイバ母材600は、図6に示されたように、線引き後にコア110となるべき内側ガラス領域610と、クラッド120となるべき外側ガラス領域620を備える。なお、図6は、線引き工程を説明するための図である。
【0054】
光ファイバ母材600は、図6に示されたように、線引き後にコア110となるべき内側ガラス領域610と、クラッド120となるべき外側ガラス領域620を備える。そして、図6に示された線引き工程において、光ファイバ母材600の一端が、ヒータ630により加熱されながら矢印S7で示された方向に線引きされることにより、図7(a)に示された断面構造を有するマルチモード光ファイバ100が得られる。
【0055】
具体的に、図7(a)は、本実施形態に係るマルチモード光ファイバ100の代表的な断面構造を示す図であり、図7(b)は、その屈折率分布150である。特に、本実施形態に係るマルチモード光ファイバ100(図7(a))は、石英ガラスを主材料とするGI(Graded Index)型のマルチモード光ファイバであり、所定軸(光軸AXに一致)に沿って延びたコア110と、コア110の外周に設けられたクラッド120と、を少なくとも備える。また、図7(a)に示されたマルチモード光ファイバ100において、コア110は、屈折率分布の形状を調整するためのGeOが添加されており、直径2aと最大屈折率n2を有する。クラッド120は、コア110よりも低い屈折率n1を有する。
【0056】
さらに、本実施形態に係るマルチモード光ファイバ100は、図7(b)に示された屈折率分布150を有する。なお、図7(b)に示された屈折率分布150は、図7(a)中において、光軸AXと直交する線L(当該マルチモード光ファイバ100の径方向に一致)上の各部の屈折率を示しており、より具体的には、領域151は線Lに沿ったコア110の各部の屈折率、領域152は線Lに沿ったクラッド120の各部の屈折率をそれぞれ示す。
【0057】
特に、図7(b)の屈折率分布150における領域151は、光軸AXに一致するコア110の中心において屈折率が最大となるようドーム形状を有する。したがって、屈折率調整用に添加されるGeOの濃度も、コア110の中心からクラッド120に向かって急激に低下している。一例として、このドーム形状を規定するためのα値は1.9〜2.2である。クラッド120(図7(a)の例では単一層であり、比屈折率差を規定する基準領域となる)に対するコア110の中心の比屈折率差Δは(クラッド120に対するコア110の最大比屈折率差)は、0.8〜1.2%であり、コア110の直径2aは47.5〜52.5μmである。
【0058】
以上の本発明の説明から、本発明を様々に変形しうることは明らかである。そのような変形は、本発明の思想および範囲から逸脱するものとは認めることはできず、すべての当業者にとって自明である改良は、以下の請求の範囲に含まれるものである。
【符号の説明】
【0059】
100…マルチモード光ファイバ、110…コア、120…クラッド、600…光ファイバ母材、610…内側ガラス領域(コア母材)、620…外側ガラス領域、ST10…ガラス合成工程、ST20…物理吸着水除去工程、ST30…化学吸着水除去(OH基除去)工程、ST40…脱塩素工程、ST50…透明ガラス化工程、ST60…延伸工程。
図1
図2
図3
図4
図5
図6
図7