(58)【調査した分野】(Int.Cl.,DB名)
前記非水電解溶媒において、前記環状カーボネート(CC)、前記スルホン化合物(SF)、前記フッ素化リン酸エステル(FP)、前記フッ素化エーテル(FE)の体積比率が、CC:SF:FP:FE=5〜20:10〜30:10〜40:30〜60(体積%)の範囲にあることを特徴とする請求項3に記載のリチウムイオン二次電池。
前記非水電解溶媒において、前記環状カーボネート(CC)、前記スルホン化合物(SF)、前記フッ素化リン酸エステル(FP)、前記フッ素化エーテル(FE)の体積比率が、CC:SF:FP:FE=5〜15:15〜25:10〜30:40〜60(体積%)の範囲にあることを特徴とする請求項3または4に記載のリチウムイオン二次電池。
前記環状カーボネートは、エチレンカーボネート(EC)およびプロピレンカーボネート(PC)のうち少なくとも一方を含むことを特徴とする請求項3〜6のいずれか一項に記載のリチウムイオン二次電池。
前記環状カーボネートにおいて、エチレンカーボネート(EC)およびプロピレンカーボネート(PC)の体積比率(体積%)が、EC:PC=100:0〜50:50の範囲にあることを特徴とする請求項3〜7のいずれか一項に記載のリチウムイオン二次電池。
前記添加剤が、1,3−プロパンスルトン、メチレンメタンジスルホン酸エステル、リチウムビス(フルオロスルホニル)イミド(LiFSI)、およびフルオロエチレンカーボネート(FEC)から選択される一種以上を含むことを特徴とする請求項9または10に記載のリチウムイオン二次電池。
【発明を実施するための形態】
【0019】
本実施形態のリチウムイオン二次電池は、
正極と、非水電解溶媒を含む非水電解液と、を備えるリチウムイオン二次電池であって、
前記正極は、リチウム金属に対して4.5V以上に動作電位を有する正極活物質を含み、
前記非水電解溶媒は、
下記式(1)で表されるフッ素化リン酸エステルと、
下記式(2)で表されるスルホン化合物および下記式(3)で表されるスルホン化合物からなる群から選ばれる少なくとも1種と、
を含み、
前記スルホン化合物を非水電解溶媒中5体積%以上含む。
【0020】
【化4】
(式(1)において、R
1、R
2、R
3は、それぞれ独立に、アルキル基またはフッ化アルキル基を示し、これらのうち少なくとも1つがフッ化アルキル基である。)、
【0021】
【化5】
(式(2)中、R
1及びR
2は、それぞれ独立に、置換または無置換のアルキル基を示す。)、
【0022】
【化6】
(式(3)中、R
3は、置換または無置換のアルキレン基を示す。)。
【0023】
(非水電解液)
本実施形態のリチウムイオン二次電池が備える非水電解液は、非水電解溶媒として、式(1)で表されるフッ素化リン酸エステルと、式(2)で表されるスルホン化合物および式(3)で表されるスルホン化合物からなる群から選ばれる少なくとも1種と、を含む。なお、本明細書においては、「非水電解溶媒」のことを、「非水溶媒」、または「溶媒」と記載することもある。また、非水電解溶媒として用いられるフッ素を含有する化合物のことを、「フッ素化溶媒」または「フッ化溶媒」と記載することもある。
【0024】
本実施形態において、非水溶媒は、下記式(1)で表されるフッ素化リン酸エステル(以下、単に「フッ素化リン酸エステル」と記載することもある。)を含む。
【0025】
【化7】
(式(1)において、R
1、R
2、R
3は、それぞれ独立に、アルキル基またはフッ化アルキル基を示し、これらのうち少なくとも1つがフッ化アルキル基である。)。
【0026】
式(1)において、フッ化アルキル基とは、少なくとも1つのフッ素原子を有するアルキル基である。式(1)において、R
1、R
2およびR
3の炭素数は、それぞれ独立に、1〜3であることが好ましい。R
1、R
2およびR
3のうち少なくとも1つは、対応する無置換のアルキル基が有する水素原子の50%以上がフッ素原子に置換されたフッ化アルキル基であることが好ましい。また、R
1,R
2およびR
3の全てがフッ化アルキル基であり、該R
1,R
2およびR
3が対応する無置換のアルキル基の水素原子の50%以上がフッ素原子に置換されたフッ化アルキル基であることがより好ましい。フッ素原子の含有率が多いと、耐電圧性がより向上し、リチウムに対して4.5V以上の電位で動作する正極活物質を用いた場合でも、サイクル後における電池容量の劣化をより低減することできるからである。また、フッ化アルキル基における水素原子とフッ素原子の数の合計に対するフッ素原子の数の比率は55%以上がより好ましい。
【0027】
フッ素化リン酸エステルとしては、特に限定されないが、例えば、リン酸トリス(トリフルオロメチル)[Tris(trifluoromethyl)phosphate]、リン酸トリス(ペンタフルオロエチル)[Tris(pentafluoroethyl)phosphate]、リン酸トリス(2,2,2−トリフルオロエチル)[Tris(2,2,2−trifluoroethyl)phosphate(TTFP)]、リン酸トリス(2,2,3,3−テトラフルオロプロピル)[Tris(2,2,3,3−tetrafluoropropyl)phosphate]、リン酸トリス(3,3,3−トリフルオロプロピル)[Tris(3,3,3−trifluoropropyl)phosphate]、リン酸トリス(2,2,3,3,3−ペンタフルオロプロピル)[Tris(2,2,3,3,3−pentafluoropropyl)phosphate]等のフッ素化アルキルリン酸エステル化合物が挙げられる。中でも、フッ素化リン酸エステル化合物として、Tris(2,2,2−trifluoroethyl)phosphate(TTFP)が好ましい。フッ素化リン酸エステルは、一種を単独で、または二種以上を組み合わせて使用することができる。
【0028】
非水電解溶媒に含まれるフッ素化リン酸エステルの含有率が高いほど非水電解溶媒の耐酸化性は向上して高温下でのガス発生は抑えられる。一方、フッ素化リン酸エステルの含有量が多すぎると、電解液の粘度の増加や誘電率の低下によりイオン伝導度が低下するためセルの内部抵抗が大きくなってしまい、室温(約20℃)での充放電サイクル特性の悪化を招いてしまう場合がある。したがって、非水電解溶媒中のフッ素化リン酸エステルの含有率は5体積%以上が好ましく、10体積%以上70体積%以下が好ましく、10体積%以上40体積%以下がより好ましく、10体積以上30体積%以下がより好ましく、また、13体積%以上60体積%以下がより好ましく、16体積%以上50体積%以下がさらに好ましい。
【0029】
本実施形態において、非水電解溶媒は、下記式(2)で表されるスルホン化合物および下記式(3)で表されるスルホン化合物からなる群から選ばれる少なくとも一種(以下、単に「スルホン化合物」と記載することもある。)を含む。
【0030】
【化8】
(式(2)中、R
1及びR
2は、それぞれ独立に、置換または無置換のアルキル基を示す。)
【0031】
式(2)で表されるスルホン化合物において、R
1の炭素数n
1、R
2の炭素数n
2はそれぞれ1≦n
1≦12、1≦n
2≦12であることが好ましく、1≦n
1≦6、1≦n
2≦6であることがより好ましく、1≦n
1≦3、1≦n
2≦3であることが更に好ましい。また、アルキル基は、直鎖状、分岐鎖状、又は環状のものを含む。
【0032】
R
1及びR
2は、置換基を有してもよく、置換基としては、例えば、炭素数1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基)、炭素数6〜10のアリール基(例えば、フェニル基、ナフチル基)、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子)等が挙げられ、炭素数1〜6のアルキル基または炭素数6〜10のアリール基がより好ましい。
【0033】
式(2)で表されるスルホン化合物としては、例えば、エチルメチルスルホン、エチルイソプロピルスルホン、エチルイソブチルスルホン、ジメチルスルホン、ジエチルスルホン等が挙げられる。これらのうち、ジメチルスルホン、エチルメチルスルホン、エチルイソプロピルスルホン、エチルイソブチルスルホンが好ましく、ジメチルスルホンがより好ましい。
【0034】
【化9】
(式(3)中、R
3は、置換または無置換のアルキレン基を示す。)。
【0035】
R
3において、アルキレン基の炭素数は4〜9であることが好ましく、4〜6であることが更に好ましい。
【0036】
R
3において、置換基としては、例えば、炭素数1〜6のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基)、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子)等が挙げられ、炭素数1〜6のアルキル基がより好ましい。
【0037】
式(3)で表されるスルホン化合物のうち、下記式(3−1)で表される環状スルホン化合物が好ましい。
【0038】
【化10】
(式(3−1)中、mは1〜6の整数である。)。
【0039】
式(3−1)において、mは、1〜6の整数であり、1〜3の整数であることが好ましい。
【0040】
式(3)で表される環状スルホン化合物としては、例えば、テトラメチレンスルホン(スルホラン)、ペンタメチレンスルホン、ヘキサメチレンスルホン等が好ましく挙げられ、スルホランがより好ましい。また、置換基を有する環状スルホン化合物として、3−メチルスルホラン、2,4−ジメチルスルホランなどが好ましく挙げられる。
【0041】
環状スルホン化合物は、耐酸化性に優れるため、高温サイクルにおけるガス発生をより抑制することができる。鎖状スルホン化合物は、溶媒としての粘度が低いため室温サイクル特性をより向上させることができる。
【0042】
スルホン化合物は、フッ素化リン酸エステルと相溶性を持つと共に、比較的高い誘電率を有するため、リチウム塩の溶解/解離作用にも優れるという利点がある。フッ素化リン酸エステルとスルホン化合物とを混合させることで、高温におけるガス発生を抑えつつ、室温におけるサイクル特性を向上させることができる。一方、エチレンカーボネート(EC)やプロピレンカーボネート(PC)のような環状カーボネートは、スルホン化合物より誘電率が高く、フッ素化リン酸エステルとの相溶性を有するが、これら環状カーボネートとフッ素化リン酸エステルのみの組合せでは、室温サイクル特性は低い。このフッ素化リン酸エステルとスルホン化合物の混合による相乗効果は、リチウムイオンの溶媒和や負極のSEI皮膜の構造変化によるものと推定しているが、詳細は不明である。
【0043】
スルホン化合物は、1種を単独で又は2種以上を混合して用いることができる。本実施形態においてスルホン化合物の含有量は、非水電解溶媒中5体積%以上であり、5体積%以上40体積%以下であることが好ましく、10体積%以上30体積%以下であることがより好ましく、10体積以上25体積%以下がより好ましく、15体積%以上25体積%以下であることがさらに好ましい。スルホン化合物の含有率が少なすぎると、電解液としての誘電率が低下してリチウム塩が解離しにくくなる一方、スルホン化合物の含有率が多すぎると電解液の粘度が高くなってしまい、いずれも室温のサイクル特性の悪化を招いてしまう場合がある。
【0044】
本実施形態において、非水電解溶媒は、フッ素化リン酸エステルおよびスルホン化合物に加え、環状カーボネートおよび/または式(4)で表されるフッ素化エーテル(以下、単に「フッ素化エーテル」と記載することもある。)を含むことがより好ましい。以下、各化合物について説明する。
【0045】
本実施形態において、電解液は、非水電解溶媒として、環状カーボネートを含むことが好ましい。環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などが挙げられる。環状カーボネートは一種を単独でまたは二種以上を混合して用いることができる。ECやPCは誘電率が高く電解質の溶解性に優れるため、少なくともECを含むことが好ましく、さらにPCを含むことができる。PCは黒鉛負極との反応性が高いために多量に加えると高温下でのガス発生が増えたりサイクル特性が低下したりする場合があるので、注意が必要な場合がある。本実施形態において、非水電解溶媒に含まれる環状カーボネートは、ECとPCを主体として(環状カーボネートのうち、ECとPCの合計含有量が80体積%以上)含むことが好ましく、これらの体積比が、EC:PC=100:0〜40:60であることが好ましく、EC:PC=100:0〜50:50であることがより好ましい。なお、本明細書において、単に「環状カーボネート」と記載したときは、フッ素化環状カーボネートとは異なるものとする。
【0046】
環状カーボネートの全非水電解溶媒中の含有率は、40体積%以下が好ましく、1〜30体積%であることが好ましく、5〜20体積%であることがより好ましく、5〜15体積%であることが好ましく、8〜15体積%であることがさらに好ましい。環状カーボネートの含有量が少なすぎると電解液の導電性が低下し、室温のサイクル特性が悪化する場合がある。一方、環状カーボネートの含有量が多すぎると、環状カーボネートは、高電位では分解し易いことから、5V級の正極活物質を含むリチウムイオン二次電池においてはガス発生が起こりやすくなる。
【0047】
本実施形態において、非水電解溶媒は下記式(4)で表されるフッ素化エーテルを含むことが好ましい。本明細書においては、式(4)で表されるフッ素化エーテルのことを、単に「フッ素化エーテル」と記載することもある。
【0048】
【化11】
(式(4)において、R
101及びR
102は、それぞれ独立に、アルキル基又はフッ化アルキル基を示し、R
101及びR
102の少なくとも一つはフッ化アルキル基である)。
【0049】
R
101およびR
102の炭素数の合計が10以下であることが好ましい。式(4)において、アルキル基およびフッ化アルキル基は、直鎖状または分岐鎖状のものを含む。
【0050】
フッ化アルキル基とは、少なくとも1つのフッ素原子を有するアルキル基である。式(4)中、フッ化アルキル基におけるフッ素原子の含有率はフッ素原子と水素原子の合計に対して50%以上であることが好ましく、60%以上であることがより好ましい。フッ素原子の含有率が多いと、耐電圧性がより向上し、リチウムに対して4.5V以上の電位で動作する正極活物質を用いた場合でもサイクル後における電池容量の劣化をより有効に低減することが可能である。
【0051】
前記フッ素化エーテルのうち、下記式(4−1)で表されるフッ素化エーテルがより好ましい。
【0052】
X
1−(CX
2X
3)
n−O−(CX
4X
5)
m−X
6 (4−1)
(式(4−1)中、n、mは、それぞれ独立に1〜8である。X
1〜X
6は、それぞれ独立に、フッ素原子または水素原子である。ただし、X
1〜X
6の少なくとも1つはフッ素原子である。また、nが2以上のとき、複数個存在するX
2およびX
3は互いに独立であり、mが2以上のとき、複数個存在するX
4およびX
5は互いに独立である。)。
【0053】
フッ素化エーテルは、耐電圧性と他の電解質との相溶性の観点から、下記式(4−2)で表される化合物であることがより好ましい。
【0054】
X
1−(CX
2X
3)
n−CH
2O−CX
4X
5−CX
6X
7−X
8 (4−2)
(式(4−2)中、nは1〜7であり、X
1〜X
8は、それぞれ独立に、フッ素原子または水素原子である。ただし、X
1〜X
3の少なくとも1つはフッ素原子であり、X
4〜X
8の少なくとも1つはフッ素原子である。)。
【0055】
式(4−2)において、nが2以上のとき、複数個存在するX
2は互いに同一であっても異なっていてもよく、複数個存在するX
3は互いに同一であっても異なっていてもよい。
【0056】
また、さらに、耐電圧性と他の電解質との相溶性の観点から、フッ素化エーテル化合物は、下記式(4−3)で表されることがさらに好ましい。
【0057】
H−(CY
1Y
2−CY
3Y
4)
n−CH
2O−CY
5Y
6−CY
7Y
8−H (4−3)
【0058】
式(4−3)において、nは1、2、3または4である。Y
1〜Y
8は、それぞれ独立に、フッ素原子または水素原子である。ただし、Y
1〜Y
4の少なくとも1つはフッ素原子であり、Y
5〜Y
8の少なくとも1つはフッ素原子である。
【0059】
式(4−3)において、nが2以上のとき、複数個存在するY
1〜Y
4は互いに同一であっても異なっていてもよい。
【0060】
フッ素化エーテルとして、具体的には、例えば、CF
3OCH
3、CF
3OC
2H
5、F(CF
2)
2OCH
3、F(CF
2)
2OC
2H
5、CF
3(CF
2)CH
2O(CF
2)CF
3、F(CF
2)
3OCH
3、F(CF
2)
3OC
2H
5、F(CF
2)
4OCH
3、F(CF
2)
4OC
2H
5、F(CF
2)
5OCH
3、F(CF
2)
5OC
2H
5、F(CF
2)
8OCH
3、F(CF
2)
8OC
2H
5、F(CF
2)
9OCH
3、CF
3CH
2OCH
3、CF
3CH
2OCHF
2、CF
3CF
2CH
2OCH
3、CF
3CF
2CH
2OCHF
2、CF
3CF
2CH
2O(CF
2)
2H、CF
3CF
2CH
2O(CF
2)
2F、HCF
2CH
2OCH
3、(CF
3)(CF
2)CH
2O(CF
2)
2H、H(CF
2)
2OCH
2CH
3、H(CF
2)
2OCH
2CF
3,H(CF
2)
2CH
2OCHF
2、H(CF
2)
2CH
2O(CF
2)
2H、H(CF
2)
2CH
2O(CF
2)
3H、H(CF
2)
3CH
2O(CF
2)
2H、H(CHF)
2CH
2O(CF
2)
2H、(CF
3)
2CHOCH
3、(CF
3)
2CHCF
2OCH
3、CF
3CHFCF
2OCH
3、CF
3CHFCF
2OCH
2CH
3、CF
3CHFCF
2CH
2OCHF
2、CF
3CHFCF
2OCH
2(CF
2)
2F、CF
3CHFCF
2OCH
2CF
2CF
2H、H(CF
2)
4CH
2O(CF
2)
2H、CH
3CH
2O(CF
2)
4F、F(CF
2)
4CH
2O(CF
2)
2Hなどが挙げられる。中でも、フッ素化エーテル化合物として、H(CF
2)
2CH
2O(CF
2)
2Hが好ましい。フッ素化エーテル化合物は、一種を単独で、または二種以上を組み合わせて使用してもよい。
【0061】
式(4)で表されるフッ素化エーテル化合物の含有量は、非水電解溶媒中0体積%であってもよく、20体積%以上70体積%以下であることが好ましく、30体積%以上60体積%以下であることが好ましく、40体積%以上60体積%以下であることがより好ましい。フッ素化エーテルを含むことにより電解液の耐酸化性が高く、粘度が低くなるというメリットがある半面、誘電率が低いためにリチウム塩の解離性が十分でなかったり、他の非水溶媒との相溶性が劣るという問題が生じたりする場合がある。一方、フッ素化リン酸エステルおよびスルホン化合物を含んだ溶媒は誘電率や他の非水溶媒との相溶性には優れるが粘度が高い場合があるので、式(4)で表されるフッ素化エーテルを加えることで低粘度化でき、混合溶媒の特性のバランスを高めることができる。さらに、フッ素化リン酸エステルとスルホン化合物とフッ素化エーテルからなる混合溶媒に、高温におけるガス発生量に大きな悪影響を与えない範囲で誘電率がより高い環状カーボネートを加えると、イオン伝導度をより高くすることができるため好ましい。このように、フッ素化リン酸エステルとスルホン化合物に加え、好ましくはフッ素化エーテルおよび/または環状カーボネートを含む非水溶媒を用いることにより、高温サイクル時のガス発生が少なく、室温サイクルおよび高温サイクルいずれにおいても容量維持率が高いリチウムイオン二次電池を提供することができる。
【0062】
上記のとおり、本実施形態の一において、非水溶媒は、フッ素化リン酸エステルと、スルホン化合物と、環状カーボネートと、フッ素化エーテルとをすべて含む非水溶媒を含む電解液を、5V級正極を有するリチウムイオン二次電池に用いると、電解液の耐酸化性、粘度、リチウム塩の解離性のバランスに優れ、リチウムイオン二次電池用電解液として特に優れた性能を発揮することができる。
【0063】
本実施形態においては、特に、環状カーボネート(CC)、スルホン化合物(SF)、フッ素化リン酸エステル(FP)、フッ素化エーテル(FE)の体積比率が、CC:SF:FP:FE=5〜20:10〜30:10〜40:30〜60(体積%)の範囲にある電解液が好ましく、CC:SF:FP:FE=5〜15:15〜25:10〜30:40〜60(体積%)の範囲にある電解液がさらに好ましい。
【0064】
本実施形態において、非水電解溶媒はさらに鎖状カーボネートを含んでもよい。鎖状カーボネートを混合することにより電解液の粘度を低減させることができる。鎖状カーボネートとしては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等が挙げられる。しかしながら、鎖状カーボネートは環状カーボネートよりもガスが発生しやすい傾向があるため、電解液中の濃度は10体積%以下が好ましく、5体積%以下がより好ましく、実質的に含まない方がさらに好ましい。なお、本明細書において、単に「鎖状カーボネート」と記載したときは、「フッ素化鎖状カーボネート」とは異なるものとする。
【0065】
本実施形態において、非水電解溶媒は、脂肪族カルボン酸エステル、γ−ラクトン、環状エーテル、上記式(4)以外の鎖状エーテル等を含んでもよい。脂肪族カルボン酸エステルとしては、例えば、ギ酸メチル、酢酸メチル、プロピオン酸エチル、およびこれらの誘導体(フッ素化物を含む)が挙げられる。γ−ラクトンとしては、例えば、γ−ブチロラクトンおよびその誘導体(フッ素化物を含む)が挙げられる。環状エーテルとしては、例えば、テトラヒドロフラン、2−メチルテトラヒドロフランおよびその誘導体(フッ素化物を含む)が挙げられる。鎖状エーテルとしては、例えば、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)、およびこれらの誘導体(フッ素化物を含む)、ならびにジエチルエーテルが挙げられる。これらは一種を単独で、または二種以上を混合して用いることができる。
【0066】
その他、非水電解溶媒として、例えば、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルオニトリル、ニトロメタン、エチルモノグライム、トリメトキシメタン、ジオキソラン誘導体、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、アニソール、N−メチルピロリドン、およびこれらの誘導体(フッ素化物を含む)、ならびにリン酸トリエステルから選ばれる一種を単独で、または二種以上を混合して用いることができる。
【0067】
電解液には、さらに添加剤を加えることができる。添加剤としては、活物質にSEI(Solid Electrolyte Interface)皮膜を形成できる添加剤が好ましい。5V級正極を用いた場合には、電解液が正極上で酸化分解したり、それによって生じる副生成物が電解液中に溶け出して負極と反応したり、正極活物質から溶出したMnやNiなどの遷移金属イオンが負極上に析出したりすることが電池性能を低下させる原因となりやすい。SEI皮膜は、このような活物質と電解液との副反応等を抑制し、サイクル特性を向上させる働きをする。
【0068】
本実施形態における添加剤としては、環状モノスルホン酸エステルおよび環状ジスルホン酸エステル等の環状スルホン酸エステル、N(SO
2F)
2アニオン(FSIアニオン)を含む化合物、フッ素化カーボネートから選ばれる少なくとも1種以上を含むことが好ましく、2種以上を含むことがより好ましい。添加剤の還元側、酸化側での反応性の違いにより、2種類以上の添加剤を併用することで負極および正極両方に良質なSEI皮膜を形成することができる。従来の4V級正極では酸化側での電解液の分解は少ないため、このような添加剤の組合せ効果は比較的少ないが、5V級正極では正極側での電解液の分解の影響が大きいため、添加剤の併用効果が非常に大きいものとなる。
【0069】
本実施形態における電解液の添加剤としては、下記式(5)で表される環状スルホン酸エステルを用いることができる。環状スルホン酸エステルは主に負極に皮膜を形成し、一部は正極にも皮膜を形成すると考えられる。
【0070】
【化12】
(式(5)中、A及びBは、それぞれ独立に、アルキレン基又はフッ化アルキレン基を示す。Xは、単結合又は−OSO
2−基を示す。)
【0071】
式(5)において、アルキレン基の炭素数は、例えば1〜8であり、好ましくは1〜6であり、より好ましくは1〜4である。
【0072】
フッ化アルキレン基とは、無置換アルキレン基のうちの少なくとも一つの水素原子がフッ素原子で置換された構造を有する置換アルキレン基を表す。式(5)において、フッ化アルキレン基の炭素数は、例えば1〜8であり、好ましくは1〜6であり、より好ましくは1〜4である。
【0073】
なお、−OSO
2−基は、どちらの向きであってもよい。
【0074】
式(5)において、Xが単結合の場合、環状スルホン酸エステルは環状モノスルホン酸エステルとなり、環状モノスルホン酸エステルは下記式(5−1)で表される化合物であることが好ましい。
【0075】
【化13】
(式(5−1)中、R
101及びR
102は、それぞれ独立に、水素原子、フッ素原子、又は炭素数1〜4のアルキル基を示す。nは0、1、2、3、又は4である。)。
【0076】
式(5)において、Xが−OSO
2−基の場合、環状スルホン酸エステルは環状ジスルホン酸エステルとなり、環状ジスルホン酸エステルは下記式(5−2)で表される化合物であることが好ましい。
【0077】
【化14】
(式(5−2)中、R
201乃至R
204は、それぞれ独立に、水素原子、フッ素原子、又は炭素数1〜4のアルキル基を示す。nは1、2、3、又は4である。また、nが2以上の場合、複数個存在するR
203は互いに同一であっても異なっていてもよく、複数個存在するR
204は、互いに同一であっても異なっていてもよい。)。
【0078】
環状スルホン酸エステルとしては、例えば、1,3−プロパンスルトン、1,2−プロパンスルトン、1,4−ブタンスルトン、1,2−ブタンスルトン、1,3−ブタンスルトン、2,4−ブタンスルトン、1,3−ペンタンスルトン等のモノスルホン酸エステル(式(5)中のXが単結合の場合)、メチレンメタンジスルホン酸エステル、エチレンメタンジスルホン酸エステル等のジスルホン酸エステル(式(5)中のXが−OSO
2−基の場合)などが挙げられる。これらの中でも、被膜形成効果、入手容易性、コストの点から、1,3−プロパンスルトン(PS)、1,4−ブタンスルトン(BS)、メチレンメタンジスルホン酸エステル(MMDS)が好ましい。特に、環状ジスルホン酸エステルは負極に良質な皮膜を形成しやすいという特徴がある。
【0079】
環状スルホン酸エステルの電解液中の含有量は、0.1〜5質量%であることが好ましく、0.1〜3質量%であることがより好ましく、0.2〜3質量%であることがより好ましく、0.3〜2質量%であることがさらに好ましい。含有量が低すぎると皮膜としての効果が十分得られず、高すぎると内部抵抗が増大したり、余分な添加剤が正極と反応してガス発生源になったり場合がある。
【0080】
本実施形態における電解液の添加剤としては、N(SO
2F)
2アニオン(FSIアニオン)を含む化合物を用いることができる。FSIアニオンは負極にも正極にも皮膜を形成することができる。FSIアニオンは、FSIアニオンを含む化合物が非水電解液中に溶解することにより生じる。FSIアニオンを含む化合物としては、FSIアニオンとアルカリ金属との塩が好ましく、例えば、LiFSI、NaFSI、KFSIなどが挙げられる。これらのうち、LiFSIは、リチウムイオン電池の電解質としても働き、電解液のイオン伝導性の向上が図れるので、より好ましい。なお、本明細書において、LiFSIを例に記載しているところがあるが、リチウム塩以外でもFSIアニオンの皮膜は形成されるのでLiFSIに限定されるものではない。
【0081】
LiFSIの電解液中の含有量は、0.1〜5質量%であることが好ましく、0.2〜3質量%であることがより好ましく、0.3〜2質量%であることがさらに好ましい。含有量が低すぎると皮膜としての効果が十分得られず、余分な添加剤が正極で反応してガス発生源になる場合がある。
【0082】
本実施形態における電解液の添加剤としては、フッ素化カーボネートを用いることができる。フッ素化カーボネートは、環状または鎖状のカーボネートの水素の一部又は全部がフッ素で置換された化合物である。フッ素化カーボネートは主に負極に皮膜を形成することができる。このようなフッ素化カーボネートとしては、環状のフッ素化カーボネートが負極に皮膜を形成しやすく、フルオロエチレンカーボネート、フルオロプロピレンカーボネートが特に好ましい。非水電解液中フッ素化カーボネートの含有量は、5質量%以下が好ましく、3質量%以下が好ましく、0.1〜3質量%がより好ましい。フッ素化カーボネートは負極に皮膜を形成しやすい。フッ素化カーボネートの含有量が多すぎると抵抗が大きくなってしまう場合がある。
【0083】
本実施形態においては、電解液への添加剤として、環状モノスルホン酸エステル、環状ジスルホン酸エステル、LiFSI、およびフッ素化カーボネートのうち、2種以上組み合わせて用いることができ、例えば、環状ジスルホン酸エステルと環状モノスルホン酸エステル、環状スルホン酸エステル(環状モノスルホン酸エステルおよび/または環状ジスルホン酸エステル)とLiFSI、フッ素化カーボネートとLiFSIの組合せが特に好ましい。これは、負極にも正極にもバランスよく良質な皮膜が形成されるためであると考えられる。
【0084】
本実施形態において、非水電解液は、非水電解溶媒にリチウム塩からなる電解質が溶解されたものである。リチウム塩としては、特に制限されるものではないが、例えば、リチウムイミド塩(FSIアニオン含む化合物を除く)、LiPF
6、LiAsF
6、LiAlCl
4、LiClO
4、LiBF
4、LiSbF
6等が挙げられる。これらのなかでも、LiPF
6が好ましい。リチウムイミド塩としては、例えば、LiN(C
kF
2k+1SO
2)(C
mF
2m+1SO
2)(kおよびmは、それぞれ独立して1または2である)が挙げられる。リチウム塩は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。リチウム塩の電解液中の濃度は、0.5〜1.5mol/Lであることが好ましく、0.7〜1.2mol/Lであることがより好ましい。リチウム塩の濃度をこの範囲とすることにより、密度や粘度、電気伝導率等を適切な範囲に調整し易い。
【0085】
(正極活物質)
本実施形態における正極は、リチウム金属に対して4.5V以上に動作電位を有する正極活物質(5V級正極活物質)を含む。すなわち、本実施形態で用いる正極活物質は、リチウム金属に対して4.5V以上に充放電領域を有する。なお、本明細書において、リチウム金属に対して4.5V以上に動作電位を有する正極活物質(5V級正極活物質)を含む正極のことを「5V級正極」と記載することもある。
【0086】
リチウムに対して4.5V以上の電位で動作する正極活物質は、例えば、以下のような方法によって選択することができる。まず、正極活物質を含む正極とLi金属とをセパレータを挟んで対向させた状態で電池内に配置させ、電解液を注液し、電池を作製する。そして、正極内の正極活物質質量あたり例えば5mAh/gとなる定電流で充放電を行った場合に、活物質質量あたり10mAh/g以上の充放電容量をリチウムに対して4.5V以上の電位で持つものを、リチウムに対して4.5V以上の電位で動作する正極活物質とすることができる。また、正極内の正極活物質質量あたり5mAh/gとなる定電流で充放電を行った場合に、リチウムに対して4.5V以上の電位における活物質質量あたりの充放電容量が20mAh/g以上であることが好ましく、50mAh/g以上であることがより好ましく、100mAh/g以上であることがさらに好ましい。電池の形状としては例えばコイン型とすることができる。
【0087】
5V級正極に含まれる正極活物質としてはとしては、リチウム含有複合酸化物であることが好ましい。リチウム含有複合酸化物の5V級正極活物質としては、例えば、スピネル型リチウムマンガン複合酸化物、オリビン型リチウムマンガン含有複合酸化物、逆スピネル型リチウムマンガン含有複合酸化物、Li
2MnO
3系固溶体等が挙げられる。
【0088】
特に、正極活物質としては、下記式(6)で表されるリチウムマンガン複合酸化物を用いることが好ましい。
【0089】
Li
a(M
xMn
2−x−yA
y)(O
4−wZ
w) (6)
(式(6)中、0.4≦x≦1.2、0≦y、x+y<2、0≦a≦1.2、0≦w≦1であり、Mは、Co、Ni、Fe、CrおよびCuからなる群から選択される少なくとも一種であり、Aは、Li、B、Na、Mg、Al、Ti、Si、KおよびCaからなる群から選択される少なくとも一種であり、Zは、FおよびClのうちの少なくとも一種である。)。
【0090】
式(6)において、Mとしては、Niのみ、あるいはNiを主成分としてCo及びFeのうち一種以上を含むことがより好ましい。Aとしては、B、Mg、Al、及びTiのうち一種以上であることがより好ましい。Zとしては、Fであることがより好ましい。このような置換元素は結晶構造を安定化させ、活物質の劣化を抑制する働きをする。
【0091】
5V級正極活物質としては、リチウム金属に対して4.5V(vs.Li/Li
+)以上の充放電領域がある正極活物質であれば、上記式(6)以外の正極活物質であってもよい。電解液や添加剤の反応性は活物質の構造よりも電位に主に支配されるため、本実施形態における電解液は、活物質の組成による直接的な影響は受けにくいと考えられる。
【0092】
5V級正極活物質のほかの例としては、例えば、Li
xMPO
4F
y(0≦x≦2、0≦y≦1、Mは、少なくともCo及びNiのうちの少なくとも一種である。)で表されるオリビン系の複合酸化物;Li
xMSiO
4(0≦x≦2,M:Mn、Fe及びCoのうちの少なくとも一種である。)で表されるSi含有複合酸化物;Li
x[Li
aM
bMn
1−a−b]O
2(0≦x≦1、0.02≦a≦0.3、0.1<b<0.7、Mは、少なくともNi,Co、Fe及びCrのうちの少なくとも一種である。)で表される層状系複合酸化物;等を使用することができる。正極活物質は、一種類を単独で、または、二種類以上を組み合わせて用いてもよい。また、上記5V級正極活物質に加え、4V級正極活物質を含んでもよい。
【0093】
オリビン型の正極活物質としては、例えば、LiCoPO
4、LiNiPO
4等が挙げられる。
【0094】
正極活物質の平均粒径(D
50)は、1〜50μmであることが好ましく、5〜25μmであることがより好ましい。なお、正極活物質の平均粒径(D
50)は、レーザー回折散乱法(マイクロトラック法)により測定することができる。
【0095】
(負極活物質)
負極活物質としては、特に制限されるものではないが、例えば、黒鉛や非晶質炭素等の炭素材料を用いることができる。負極活物質としては、エネルギー密度の観点から、黒鉛を用いることが好ましい。黒鉛は人造黒鉛、天然黒鉛、非晶質炭素を被覆した黒鉛などを用いることができる。負極活物質として、炭素材料以外にも、例えば、Si、Sn、Al等のLiと合金を形成する材料、Si酸化物、SiとSi以外の他金属元素を含むSi複合酸化物、Sn酸化物、SnとSn以外の他金属元素を含むSn複合酸化物、Li
4Ti
5O
12、これらの材料にカーボンを被覆した複合材料等を用いることもできる。負極活物質は、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。
【0096】
(電極)
正極は、例えば、正極集電体の少なくとも一方の面に正極活物質層が形成される。正極活物質層は、例えば、主材である正極活物質と、結着剤(バインダー)と、導電助剤とによって構成される。負極は、例えば、負極集電体の少なくとも一方の面に負極活物質層が形成されてなる。負極活物質層は、例えば、主材である負極活物質と、結着剤(バインダー)と、導電助剤とによって構成される。
【0097】
正極で用いる結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、アクリル系ポリマー等が挙げられる。これらはNMPなどの溶剤に溶解させて用いることができる。本明細書においては、NMPなどの溶剤に溶解させることができる結着材のことを、「溶剤系バインダー」と記載することもある。負極で用いる結着剤としては、前記溶剤系バインダー以外に、例えば、スチレンブタジエンゴム(SBR)やアクリレート系ポリマー等が水に分散されたエマルジョンを用いることができる。これらは水系バインダーとも称され、通常、カルボキシメチルセルロース(CMC)等の増粘剤と併用して電極スラリーを調製する。
【0098】
本実施形態では、負極の製造において、水系バインダーを用いることがより好ましい。水系バインダーは電極合剤中のバインダー濃度を1〜2質量%に低減することができ、リチウムイオンの移動を邪魔しにくく、イオン伝導度が低下しやすいフッ素化溶媒を用いた電解液とともに用いるのにより適している。また、水系バインダーと併用するCMCが負極活物質を被覆することで、フッ素化溶媒と負極との反応性を抑制し、サイクル特性を向上させる働きもある。負極合剤中(負極活物質層を形成する負極活物質と負極バインダーと導電助材の合計質量中)のバインダー濃度は、溶剤系バインダーの場合は、1〜10質量%が好ましく、2〜8質量%がより好ましい。水系バインダーの場合、バインダー濃度は、負極合剤中、0.5〜5質量%が好ましく、1〜3質量%がより好ましい。水系バインダーと併用されるCMCは、CMCの誘導体であってもよく、通常はナトリウム塩が使用され、負極合剤中0.2〜3質量%が好ましく、0.5〜2質量%がより好ましい。
【0099】
また、正極バインダーの濃度は、特に限定はされないが、正極合剤中(正極活物質層を形成する正極活物質と正極バインダーと導電助材の合計質量中)、1〜10質量%が好ましく、2〜8質量%がより好ましい。
【0100】
導電助剤としては、正極および負極とも、例えば、カーボンブラック、粒状黒鉛、燐片状黒鉛、炭素繊維などの炭素材料を用いることができる。特に、正極においては、結晶性の低いカーボンブラックを用いることが好ましい。
【0101】
正極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。負極集電体としては、例えば、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができる。
【0102】
電極は、例えば、活物質と、結着剤(バインダー)と、導電助剤とを、所定の配合量でN−メチル−2−ピロリドン(NMP)や水等の溶媒中に分散混練し、得られたスラリーを集電体に塗布して活物質層を形成することで得ることができる。得られた電極は、ロールプレス等の方法により圧縮して、適当な密度に調整することもできる。
【0103】
(セパレータ)
セパレータとしては、特に限定されるものではないが、例えば、ポリプロピレン、ポリエチレン等のポリオレフィンやフッ素樹脂等からなる多孔性フィルム、セルロースやガラスなどからなる無機セパレータ等を用いることができる。
【0104】
(外装体)
外装体としては、例えば、コイン型、角型、円筒型等の缶や、ラミネート外装体を用いることができるが、軽量化が可能であり電池エネルギー密度の向上を図る観点から、合成樹脂と金属箔との積層体からなる可撓性フィルムを用いたラミネート外装体が好ましい。ラミネート型電池は、放熱性にも優れているため、電気自動車などの車載用電池として好適である。
【0105】
ラミネート型の二次電池の場合、外装体としては、例えば、アルミニウムラミネートフィルム、SUS製ラミネートフィルム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムなどを用いることができる。特に、体積膨張を抑制する観点やコストの観点から、アルミニウムラミネートフィルムを用いることが好ましい。
【0106】
(二次電池)
本実施形態に係るリチウムイオン二次電池の構成は、特に制限されるものではなく、例えば、正極および負極が対向配置された電極素子と、電解液とが外装体に内包されている構成とすることができる。二次電池の形状は、特に制限されるものではないが、例えば、円筒型、扁平捲回角型、積層角型、コイン型、扁平捲回ラミネート型、又は積層ラミネート型が挙げられる。
【0107】
図1に本実施形態に係る二次電池の一例として、ラミネート型二次電池を示す。
図1に示す二次電池は、正極活物質と正極バインダーを含む正極活物質層1と正極集電体3とからなる正極と、リチウムを吸蔵放出し得る負極活物質を含む負極活物質層2と負極集電体4とからなる負極との間に、セパレータ5が挟まれている。正極集電体3は正極タブ8と接続され、負極集電体4は負極タブ7と接続されている。外装体にはラミネート外装体6が用いられ、二次電池内部は本実施形態に係る非水電解液で満たされている。
【0108】
(二次電池の製造方法)
本実施形態に係る二次電池の製造方法は特に限定されないが、例えば、以下に示す方法が挙げられる。本実施形態に係る二次電池用正極および前記負極にそれぞれ正極集電体及び負極集電体を介して正極タブ、負極タブを接続する。前記正極と前記負極とを前記セパレータを挟んで対向配置させ、積層させた電極積層体を作製する。該電極積層体を外装体内に収容し、電解液に浸す。正極タブ、負極タブの一部を外部に突出するようにして外装体を封止することで、二次電池を作製する。
【実施例】
【0109】
以下、本実施形態の実施例について詳細に説明するが、本実施形態は以下の実施例のみに限定されるものではない。
【0110】
以下の例(実施例1〜38および比較例1〜9)で使用した化合物の略号について説明する。
EC:エチレンカーボネート
PC:プロピレンカーボネート
DMC:ジメチルカーボネート
FE1:H(CF
2)
2CH
2OCF
2CF
2H
FE2:CH
3CH
2O(CF
2)
4F
FE3:CF
3CHFCF
2OCH
2(CF
2)
2F
FP1:O=P(OCH
2CF
3)
3
FP2:リン酸トリス(2,2,3,3−テトラフルオロプロピル)
FP3:リン酸トリス(2,2,3,3,3―ペンタフルオロプロピル)
SL:C
4H
8SO
2で表されるスルホラン
DMS:ジメチルスルホン
EMS:エチルメチルスルホン
【0111】
(実施例1)
(負極の作製)
負極活物質としての天然黒鉛粉末(平均粒径(D
50):20μm、比表面積:1m
2/g)と、結着剤としてのPVDFとを、質量比95:5でNMP中に均一に分散させて、負極スラリーを作製した。この負極スラリーを負極集電体となる厚み15μmの銅箔の両面に塗布して125℃にて10分間乾燥させてNMPを蒸発させることにより、負極活物質層を形成し、さらにプレスすることによって負極を作製した。なお、乾燥後の単位面積当たりの負極活物質層の重量を0.013g/cm
2とした。
【0112】
(正極の作製)
正極活物質としてのLiNi
0.5Mn
1.5O
4粉末(平均粒径(D
50):10μm、比表面積:0.5m
2/g)を用意した。正極活物質と、結着剤としてのPVDFと、導電助剤としてのカーボンブラックとを、質量比93:4:3でNMP中に均一に分散させて、正極スラリーを作製した。この正極スラリーを正極集電体となる厚み20μmのアルミニウム箔の両面に塗布後、125℃にて10分間乾燥させてNMPを蒸発させることにより、正極を作製した。なお、乾燥後の単位面積当たりの正極活物質層の重量を0.035g/cm
2とした。
【0113】
(非水電解液)
ECと、スルホラン(SL)と、O=P(OCH
2CF
3)
3で表されるフッ素化リン酸エステルであるリン酸トリス(2,2,2−トリフルオロエチル)(以下、「FP1」と記載)とを、EC:SL:FP1=30:5:65(体積比)の比率で混合して非水溶媒を調製した。電解質として1.0mol/Lの濃度でLiPF
6を溶解させた。
【0114】
(ラミネート型電池の作製)
上記の正極と負極を1.5cm×3cmに切り出した。得られた正極の4層と負極の5層を、セパレータとしてのポリプロピレン多孔質フィルムを挟みつつ交互に重ねた。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接し、更にその溶接箇所にアルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面的な積層構造を有する電極素子を得た。上記電極素子を外装体としてのアルミニウムラミネートフィルムで包み、内部に電解液を注液した後、減圧しつつ封止することで二次電池を作製した。
【0115】
(初回充放電)
上記のように作製したラミネート型電池を、20℃にて5時間率(0.2C)相当の16mAの定電流で4.75Vまで充電した後、合計で8時間の4.75V定電圧充電を行ってから、1時間率(1C)相当の80mAで3.0Vまで定電流放電した。
【0116】
(サイクル試験)
初回充放電が終了したラミネート型電池を、1Cで4.75Vまで充電した後、合計で2.5時間の4.75V定電圧充電を行ってから、1Cで3.0Vまで定電流放電するという充放電サイクルを、20℃または45℃で250回繰り返した。初回放電容量に対する250サイクル後の放電容量の比率を容量維持率(%)として算出した。また、初回充放電後と45℃250サイクル後のセル体積を求め、初回放電後と250サイクル後のセル体積の差から体積増加量(cc)を求めた。体積は水中と空気中での重量差からアルキメデス法を用いて測定した。体積増加量は電池内部でのガス発生量を反映しており、小さいほど良い。なお、20℃サイクルではガス発生は非常に少ないため測定は行わなかった。
【0117】
(実施例2)
ECとSLとFP1とを、EC:SL:FP1=30:10:60(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0118】
(実施例3)
ECとSLとFP1とを、EC:SL:FP1=30:20:50(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0119】
(実施例4)
ECとSLとFP1とを、EC:SL:FP1=30:30:40(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0120】
(実施例5)
ECとSLとFP1とを、EC:SL:FP1=30:40:30(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0121】
(比較例1)
実施例1の非水溶媒に代えて、ECとFP1とをEC:FP1=30:70(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0122】
(比較例2)
実施例1の非水溶媒に代えて、ECとSLとをEC:SL=30:70(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0123】
【表1】
【0124】
表1に比較例1〜2、実施例1〜5の電池特性の評価結果を示した。溶媒が環状カーボネート(EC)とフッ素化リン酸エステル(FP1)からなる比較例1は45℃のサイクル特性は良好であったが、20℃のサイクル特性の容量維持率が低かった。溶媒がECとスルホン化合物(SL)からなる比較例2では、20℃、45℃におけるいずれの特性も低かった。一方、ECとSLとFP1を含んだ実施例1〜5は、45℃の体積増加量は比較例1よりも若干増えたものの、45℃における容量維持率は良好であり、20℃サイクルの容量維持率も比較例1および2に比べて改善した。このことから、スルホン化合物とフッ素化リン酸エステルの両方を含むことによって室温、高温の電池特性のバランスが良くなり、電池の実用性が大きく向上することがわかった。これは、フッ素化リン酸エステルの一部をスルホン化合物に置き換えることで、フッ素化溶媒の耐酸化性を大きく損なわず、イオン伝導度を高めることができたためと考えられる。また、スルホン化合物の含有量は、非水溶媒中、10〜30体積%であると特に好ましいことが示された。
【0125】
(比較例3)
実施例1の非水溶媒に代えて、ECとH(CF
2)
2CH
2OCF
2CF
2Hで表されるフッ素化エーテル(FE1)とを、EC:FE1=20:80(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0126】
(比較例4)
実施例1の非水溶媒に代えて、ECとFP1とFE1とを、EC:FP1:FE1=20:30:50(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0127】
(比較例5)
実施例1の非水溶媒に代えて、ECとSLとFE1とを、EC:SL:FE1=20:20:60(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0128】
(実施例6)
実施例1の非水溶媒に代えて、ECとSLとFP1とFE1とを、EC:SL:FP1:FE1=25:5:30:40(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0129】
(実施例7)
実施例1の非水溶媒に代えて、ECとSLとFP1とFE1とを、EC:SL:FP1:FE1=20:10:30:40(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0130】
(実施例8)
実施例1の非水溶媒に代えて、ECとSLとFP1とFE1とを、EC:SL:FP1:FE1=10:20:30:40(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0131】
(実施例9)
実施例1の非水溶媒に代えて、ECとSLとFP1とFE1とを、EC:SL:FP1:FE1=5:25:30:40(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0132】
【表2】
【0133】
比較例3〜5および実施例6〜9の電池特性の評価結果を表2に示した。非水電解溶媒が、ECとフッ素化エーテル(FE1)からなる比較例3は、相溶性が低く均一な溶液が得られなかったため評価不可と判断した。非水電解溶媒が、ECとフッ素化リン酸エステルとフッ素化エーテルからなる比較例4は、45℃の特性は良好であったが、20℃サイクルの容量維持率が低かった。非水電解溶媒が、ECとスルホン化合物(SL)とフッ素化エーテル(FE1)からなる比較例5については、20℃サイクルの容量維持率は比較的良好であったものの体積増加量がやや多かった。一方、ECとスルホン化合物(SL)とフッ素化リン酸エステル(FP1)とフッ素化エーテル(FE1)とをすべて含んだ実施例6〜9は20℃、45℃いずれの電池特性も高く、温度特性のバランスに優れた電池が得られた。また、環状カーボネート(EC)は5〜20体積%、スルホン化合物(SL)は10〜25体積%の範囲がより好ましいことが示された。
【0134】
上記の結果より、スルホン化合物とフッ素化リン酸エステルにフッ素化エーテルを加えることによって、電解液の耐酸化性を高く維持したまま粘度が低減され、耐酸化性、イオン伝導度、粘度といった電解液としての特性バランスがさらに向上したものと考えられる。スルホン化合物とフッ素化エーテルと環状カーボネートとからなる比較例5よりも実施例6〜9の方が電池特性が優れている理由は、フッ素化溶媒としてフッ素化リン酸エステルを含まずフッ素化エーテルのみの場合は、リチウム塩の解離性や負極の皮膜の質が低下してしまうことが考えられるが、詳細は不明である。
【0135】
(実施例10)
ECとSLとFP1とFE1とを、EC:SL:FP1:FE1=10:20:5:65(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0136】
(実施例11)
ECとSLとFP1とFE1とを、EC:SL:FP1:FE1=10:20:10:60(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0137】
(実施例12)
ECとSLとFP1とFE1とを、EC:SL:FP1:FE1=10:20:20:50(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0138】
(実施例13)
ECとSLとFP1とFE1とを、EC:SL:FP1:FE1=10:20:30:40(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0139】
(実施例14)
ECとSLとFP1とFE1とを、EC:SL:FP1:FE1=10:20:40:30(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0140】
(実施例15)
ECとSLとFP1とFE1とを、EC:SL:FP1:FE1=10:20:50:20(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0141】
【表3】
【0142】
実施例10〜15の電池特性の評価結果を表3に示す。いずれも、20℃、45℃の電池特性は良好な値を示した。フッ素化リン酸エステル(FP1)は、非水電解溶媒中、10〜40体積%がより好ましく、10〜30体積%がさらに好ましいことが示唆された。フッ素化エーテル(FE1)は、非水電解溶媒中、30〜60体積%がより好ましく、40〜60体積%がより好ましいことが示唆された。
【0143】
(実施例16)
環状カーボネートとしてECとプロピレンカーボネート(PC)と、SLとFP1とFE1とを、EC:PC:SL:FP1:FE1=15:0:20:20:45(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0144】
(実施例17)
ECとPCとSLとFP1とFE1とを、EC:PC:SL:FP1:FE1=12:3:20:20:45(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0145】
(実施例18)
ECとPCとSLとFP1とFE1とを、EC:PC:SL:FP1:FE1=9:6:20:20:45(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0146】
(実施例19)
ECとPCとSLとFP1とFE1とを、EC:PC:SL:FP1:FE1=6:9:20:20:45(体積比)の比率で混合した非水溶媒を用いた以外は実施例1と同様の方法で二次電池を作製し、評価した。
【0147】
【表4】
【0148】
実施例16〜19の電池特性の評価結果を表4に示した。いずれも、20℃と45℃の電池特性は良好な値を示した。環状カーボネートのECとPCの比率はEC:PC=100:0〜50:50の範囲が好ましいことが示された。
【0149】
(実施例20)
添加剤として、全電解液質量に対して1質量%の1,3−プロパンスルトン(PS)を加えた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0150】
(実施例21)
添加剤として、全電解液質量に対して1質量%のメチレンメタンジスルホン酸エステル(MMDS)を加えた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0151】
(実施例22)
添加剤として、全電解液質量に対して1質量%のLiFSIを加えた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0152】
(実施例23)
添加剤として、全電解液質量に対して1質量%のモノフルオロエチレンカーボネート(FEC)を加えた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0153】
(実施例24)
添加剤として、全電解液質量に対して0.5質量%のPSと0.5質量%のMMDSを加えた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0154】
(実施例25)
添加剤として、全電解液質量に対して0.5質量%のPSと0.5質量%のLiFSIを加えた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0155】
(実施例26)
添加剤として、全電解液質量に対して0.5質量%のPSと0.5質量%のFECを加えた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0156】
(実施例27)
添加剤として、全電解液質量に対して0.5質量%のMMDSと0.5質量%のLiFSIを加えた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0157】
(実施例28)
添加剤として、全電解液質量に対して0.5質量%のMMDSと0.5質量%のFECを加えた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0158】
(実施例29)
添加剤として、全電解液質量に対して0.5質量%のLiFSIと0.5質量%のFECを加えた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0159】
【表5】
【0160】
実施例20〜29の電池特性の評価結果を表5に示した。実施例20〜29のいずれの場合も、実施例12より45℃における電池特性が高くなった。また、実施例20〜29のいずれの場合も、20℃における電池特性は良好であった。添加剤が一種類の場合は、環状ジスルホン酸エステル(MMDS)、またはLiFSIを用いた場合が特に良かった。添加剤は1種よりも2種加えた方が電池特性を大きく向上させる傾向が見られ、特に環状モノスルホン酸エステル(PS)と環状ジスルホン酸エステル(MMDS)、環状スルホン酸エステル(PSまたはMMDS)とLiFSI、LiFSIとFECの組合せが良かった。この理由としては、負極にも正極にも良質な皮膜が形成されたことが考えられる。
【0161】
(比較例6)
非水電解溶媒として、環状カーボネートのECと鎖状カーボネートのジメチルカーボネート(DMC)とフッ素化リン酸エステル(FP1)とフッ素化エーテル(FE1)とを、EC:DMC:FP1:FE1=30:10:40:20(体積比)の比率で混合し、全電解液質量に対して0.67質量%のMMDSを加えた以外は、実施例1と同様の方法で二次電池を作製し、評価した。その結果、20℃容量維持率が90%、45℃容量維持率が63%、45℃体積増加量が0.302ccであり、20℃サイクル特性は高かったが、45℃サイクルの体積増加量が多かった。スルホン化合物を鎖状カーボネートに置き換えると、添加剤(環状ジスルホン酸エステル)を含んでいたとしても、ガス発生が顕著に増加することがわかった。このことから、溶媒としてスルホン化合物を含むことが好ましく、鎖状カーボネートは実質的に含まないことが好ましいことがわかった。
【0162】
(比較例7)
非水電解溶媒として、ECとFP1とFE1とを、EC:FP1:FE1=30:50:20(体積比)の比率で混合し、全電解液質量に対して3質量%のPSを加えた以外は、実施例1と同様の方法で二次電池を作製し、20℃サイクル特性を評価した。その結果、20℃容量維持率が35%と、環状スルホン酸エステル(PS)を3質量%添加しても、スルホン化合物を含んでいない場合は、20℃のサイクル特性が低かった。
【0163】
(実施例30)
フッ素化リン酸エステルとして、FP1に代えてリン酸トリス(2,2,3,3−テトラフルオロプロピル)(FP2)を用いた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0164】
(実施例31)
フッ素化リン酸エステルとして、FP1に変えてリン酸トリス(2,2,3,3,3―ペンタフルオロプロピル)(FP3)を用いた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0165】
(実施例32)
フッ素化エーテルとして、FE1に代えてCH
3CH
2O(CF
2)
4F(FE2)を用いた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0166】
(実施例33)
フッ素化エーテルとして、FE1に代えてCF
3CHFCF
2OCH
2(CF
2)
2F(FE3)を用いた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0167】
(実施例34)
スルホン化合物として、SLに代えてジメチルスルホン(DMS)を用いた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0168】
(実施例35)
スルホン化合物として、SLに代えてエチルメチルスルホン(EMS)を用いた以外は、実施例12と同様の方法で二次電池を作製し、評価した。
【0169】
【表6】
【0170】
実施例30〜35の電池特性の評価結果を表6に示した。スルホン化合物、フッ素化リン酸エステル、フッ素化エーテルの種類を変えても、20℃、45℃の電池特性は比較的良好であった。これらの中では、実施例12のSLとFP1とFE1の組合せが最も良かった。
【0171】
(比較例8)
正極活物質としてのLiNi
0.5Mn
1.5O
4に代えてLiCoPO
4を用い、上限電圧を5.1Vとし、20℃で100サイクル後の容量維持率を評価した以外は比較例4と同様の方法で二次電池を作製し、評価した。
【0172】
(実施例36)
正極活物質としてのLiNi
0.5Mn
1.5O
4に代えてLiCoPO
4を用い、上限電圧を5.1Vとし、20℃で100サイクル後の容量維持率を評価した以外は実施例12と同様の方法で二次電池を作製し、評価した。
【0173】
(比較例9)
正極活物質としてのLiCoPO
4に代えてLi(Li
0.15Ni
0.2Mn
0.65)O
2を用い、単位面積当たりの正極活物質層の重量を0.025g/cm
2とし、上限電圧を4.7V、下限電圧を2.5Vとした以外は比較例8と同様の方法で二次電池を作製し、評価した。
【0174】
(実施例37)
正極活物質としてのLiCoPO
4に代えてLi(Li
0.15Ni
0.2Mn
0.65)O
2を用い、単位面積当たりの正極活物質層の重量を0.025g/cm
2とし、上限電圧を4.7V、下限電圧を2.5Vとした以外は実施例36と同様の方法で二次電池を作製し、評価した。
【0175】
【表7】
【0176】
表7に、比較例8、9および実施例36、37の20℃における100サイクル後の容量維持率を示す。正極活物質がオリビン型のLiCoPO
4または層状構造のLi(Li
0.15Ni
0.2Mn
0.65)O
2においても、スルホン化合物(SL)とフッ素化リン酸エステル(FP1)両方を含む実施例の方が20℃サイクル特性が優れていることを確認した。したがって、活物質の組成によらず、Li金属に対して4.5V以上の高電圧を有する正極に対して本願発明は同様に効果を示すと考えられる。
【0177】
(実施例38)
負極バインダーとしてスチレンブタジエンゴム(SBR)の微粒子が水に乳化分散されたSBRエ系マルジョンと、増粘剤としてカルボキシメチルセルロースナトリウム塩(CMC)とを用意した。黒鉛とSBRとCMCの固形分比が、97.5:1.5:1(質量%)となるように、水とともに分散混合して電極スラリーを調整し、集電体に塗布して50℃で10分間乾燥させた後、100℃で10分乾燥させることによって得た負極を用いた以外は実施例12と同様の方法で二次電池を作製し、評価した。
【0178】
その結果、20℃容量維持率が90%、45℃容量維持率が69%、45℃体積増加量が0.0932ccであった。負極バインダーにPVDFを用いた実施例12よりも、水系バインダーの方が電池特性は高かった。この理由としては、電極中のバインダー濃度がPVDFよりも低くできるためリチウムイオンの移動がしやすいことや、CMCが黒鉛を被覆することで黒鉛と電解液および正極から発生した副生成物との反応が抑えられたことが考えられる。
【0179】
さらに、本実施形態の具体例を以下に記載する。
【0180】
以下、例39〜51において使用した化合物の略号は下記のとおりである。
EC:エチレンカーボネート
DMC:ジメチルカーボネート
FE1:H(CF
2)
2CH
2OCF
2CF
2H
FE2:CH
3CH
2O(CF
2)
4F
FP:O=P(OCH
2CF
3)
3
SL:C
4H
8SO
2で表されるスルホラン
DMS:ジメチルスルホン
EMS:エチルメチルスルホン
EiPS:エチルイソプロピルスルホン
【0181】
(例39)
(負極の作製)
負極活物質としての天然黒鉛粉末(平均粒径(D
50):20μm、比表面積:1m
2/g)と、結着剤としてのPVDFとを、質量比95:5でNMP中に均一に分散させて、負極スラリーを作製した。この負極スラリーを負極集電体となる厚み15μmの銅箔の両面に塗布して125℃にて10分間乾燥させてNMPを蒸発させることにより、負極活物質層を形成し、さらにプレスすることによって負極を作製した。なお、乾燥後の単位面積当たりの負極活物質層の重量を0.015g/cm
2とした。
【0182】
(正極の作製)
正極活物質としてのLiNi
0.5Mn
1.5O
4粉末(平均粒径(D
50):10μm、比表面積:0.5m
2/g)を用意した。正極活物質と、結着剤としてのPVDFと、導電助剤としてのカーボンブラックとを、質量比93:4:3でNMP中に均一に分散させて、正極スラリーを作製した。この正極スラリーを正極集電体となる厚み20μmのアルミニウム箔の両面に塗布後、125℃にて10分間乾燥させてNMPを蒸発させることにより、正極を作製した。なお、乾燥後の単位面積当たりの正極活物質層の重量を0.040g/cm
2とした。
【0183】
(非水電解液)
ECと、PC(プロピレンカーボネート)と、H(CF
2)
2CH
2OCF
2CF
2Hで表されるフッ素化エーテルFE1と、O=P(OCH
2CF
3)
3で表されるFPと、C
4H
8SO
2で表される環状スルホン化合物(スルホラン、SL)とを、EC:PC:SL:FE1:FP=10:10:10:40:30(体積比)の比率で混合した非水溶媒を調製した。電解質として0.8mol/Lの濃度でLiPF
6を溶解させた。この電解溶液に、添加剤としてLiFSIを、非水電解液の全質量に対し1質量%溶解させ、非水電解液を調製した。
【0184】
(ラミネート型電池の作製)
上記の正極と負極を1.5cm×3cmに切り出した。得られた正極の5層と負極の6層を、セパレータとしてのポリプロピレン多孔質フィルムを挟みつつ交互に重ねた。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接し、更にその溶接箇所にアルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面的な積層構造を有する電極素子を得た。上記電極素子を外装体としてのアルミニウムラミネートフィルムで包み、内部に電解液を注液した後、減圧しつつ封止することで二次電池を作製した。
【0185】
(初回充放電)
上記のように作製したラミネート型電池を、20℃にて5時間率(0.2C)相当の16mAの定電流で4.75Vまで充電した後、合計で8時間の4.75V定電圧充電を行ってから、1時間率(1C)相当の80mAで3.0Vまで定電流放電した。
【0186】
(サイクル試験)
初回充放電が終了したラミネート型電池を、1Cで4.75Vまで充電した後、合計で2.5時間の4.75V定電圧充電を行ってから、1Cで3.0Vまで定電流放電するという充放電サイクルを、45℃で300回繰り返した。初回放電容量に対する300サイクル後の放電容量の比率を容量維持率(%)として算出した。また、初回充放電後と300サイクル後のセル体積を求め、初回放電後に対する300サイクル後のセルの体積増加率(%)を算出した。体積は水中と空気中での重量差からアルキメデス法を用いて測定した。
【0187】
(例40)
LiFSIを添加しなかった以外は例39と同様の方法で二次電池を作製し、評価した。
【0188】
(例41)
例39のLiFSIに代えて、添加剤としてメチレンメタンジスルホン酸エステル(MMDS)を非水電解液の全質量中1質量%添加した以外は例39と同様の方法で二次電池を作製し、評価した。
【0189】
(例42)
例39の添加剤に代えて、添加剤として、LiFSIを非水電解液の全質量中0.5質量%とMMDSを非水電解液の全質量中0.5質量%とを添加した以外は実施例39と同様の方法で二次電池を作製し、評価した。
【0190】
(例43)
実施例42の非水溶媒に代えて、ECと、FE1と、FPと、SLとを、EC:SL:FE1:FP=10:20:40:30の体積比率で混合した非水溶媒を用いた以外は例42と同様の方法で二次電池を作製し、評価した。
【0191】
表8に例39〜43の結果を示す。
【0192】
【表8】
【0193】
(例44)
フッ素化エーテルとして、FE1に代えて、CH
3CH
2O(CF
2)
4F(FE2)を用いた以外は例42と同様の方法で二次電池を作製し、評価した。
【0194】
(例45)
フッ素化エーテルとして、FE1に代えて、H(CF
2)
4CH
2O(CF
2)
2Hを用いた以外は例42と同様の方法で二次電池を作製し、評価した。
【0195】
(例46)
フッ素化エーテルとして、FE1に代えて、CF
3CHFCF
2OCH
2(CF
2)
2Fを用いた以外は例42と同様の方法で二次電池を作製し、評価した。
【0196】
(例47)
スルホン化合物として、SLに代えて、ジメチルスルホン(DMS)を用いた以外は例42と同様の方法で二次電池を作製し、評価した。
【0197】
(例48)
スルホン化合物として、SLに代えて、エチルメチルスルホン(EMS)を用いた以外は例42と同様の方法で二次電池を作製し、評価した。
【0198】
(例49)
スルホン化合物として、SLに代えて、エチルイソプロピルスルホン(EiPS)を用いた以外は例42と同様の方法で二次電池を作製し、評価した。
【0199】
表9に例44〜49の結果を示す。
【0200】
【表9】
【0201】
(例50)
環状スルホン酸エステルとして、MMDSに代えて1,3―プロパンスルトン(PS)を用いた以外は例42と同様の方法で二次電池を作製し、評価した。
【0202】
(例51)
環状スルホン酸エステルとして、MMDSに代えて1,4−ブタンスルトン(BS)を用いた以外は例42と同様の方法で二次電池を作製し、評価した。
【0203】
表10に例50および51の結果を示す。
【0204】
【表10】