【国等の委託研究の成果に係る記載事項】(出願人による申告)平成24年度独立行政法人新エネルギー・産業技術総合開発機構「次世代高効率・高品質照明の基盤技術開発/有機EL照明の高効率・高品質化に係る基盤技術開発」共同研究産業技術力強化法第19条の適用を受ける特許出願
(58)【調査した分野】(Int.Cl.,DB名)
前記化学式(1)中のMが、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ジルコニウム(Zr)、銀(Ag)、およびインジウム(In)からなる群より選択される少なくとも1種である、請求項1に記載のガスバリア性フィルム。
【発明を実施するための形態】
【0015】
本発明は、基材と、下記化学式(1)で表される化学組成を有し、かつ下記数式1および下記数式2の関係を満足する、シリコン含有膜と、を含む、ガスバリア性フィルムである。
【0018】
前記化学式(1)中、Mは長周期型周期表の第2〜14族の元素からなる群より選択される少なくとも1種(ただし、ケイ素および炭素を除く)(以下、単に「添加元素」とも称する)を示し、xはケイ素に対する酸素の原子比であり、yはケイ素に対する窒素の原子比であり、zはケイ素に対するMの原子比であって0.01〜0.3であり、
前記数式1および前記数式2中、X=x/(1+(az/4))、Y=y/(1+(az/4))(ただし、aは元素Mの価数である)である。
【0019】
より高いガスバリア性を得るためには、ポリシラザン膜を改質する紫外線の光量を増やし、複数のガスバリア層を積層する必要がある。しかしながら、改質の進行度や積層数が増え、膜厚が大きくなるほど、生産性を低下させるとともに、膜中の内部収縮応力が増大し、フレキシブルガスバリア性フィルムとしての特徴である柔軟性(可撓性)が低下し、屈曲等の物理的ストレスに対する耐久性が低下してしまうという問題もあった。
【0020】
これに対し、本発明のガスバリア性フィルムは、基材と、上記化学式(1)で表される化学組成を有し、かつ上記数式1および数式2の関係をともに満足するシリコン含有膜とを有する。かような構成を有する本発明のガスバリア性フィルムは、高いガスバリア性を維持したまま、保存安定性、特に過酷な条件(高温高湿条件)下での保存安定性に優れる。また、本発明のガスバリア性フィルムは、優れた柔軟性(可撓性)を有する。
【0021】
なぜ、本発明のガスバリア性フィルムが保存安定性に優れるのか、詳細な理由は不明であるが、以下のような理由であると考えられる。
【0022】
本発明に係るシリコン含有膜は添加元素(化学式(1)中の元素M)を有することで、膜の規則性が低下し融点が下がり、製膜工程中の熱または光により膜の柔軟性が向上するか、または膜が融解する。この膜の柔軟性の向上または膜の融解により、欠陥が修復され、シリコン含有膜は緻密な膜となり、ガスバリア性が向上するものと考えられる。また、膜の柔軟性の向上または膜の融解により流動性が高くなることで、シリコン含有膜の内部まで酸素が供給され、膜内部まで改質が進んだシリコン含有膜(バリア膜)となり、製膜が済んだ状態では酸化耐性が高いシリコン含有膜(バリア膜)になっているものと考えられる。さらに、添加元素が含まれないバリア膜では、活性エネルギー線を照射していくとダングリングボンドが増加するためか250nm以下の吸光度が増大していき、膜内部まで活性エネルギー線が徐々に侵入しにくくなり、膜表面しか改質されない。これに対し、本発明のシリコン含有膜は、理由は明らかではないが、活性エネルギー線を照射するにつれ低波長側の吸光度が減少することから、シリコン含有膜(バリア膜)の表面から内部まで改質が行われ、高温高湿環境に強い膜になっているものと考えられる。
【0023】
なお、上記のメカニズムは推定によるものであり、本発明は上記メカニズムに何ら限定されるものではない。
【0024】
以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。
【0025】
また、本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味し、「重量」と「質量」、「重量%」と「質量%」および「重量部」と「質量部」は同義語として扱う。また、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で測定する。
【0026】
<ガスバリア性フィルム>
本発明のガスバリア性フィルムは、基材と、シリコン含有膜とを有する。本発明のガスバリア性フィルムは、他の部材をさらに含むものであってもよい。本発明のガスバリア性フィルムは、例えば、基材とシリコン含有膜との間に、シリコン含有膜の上に、またはシリコン含有膜が形成されていない基材の他方の面に、他の部材を有していてもよい。ここで、他の部材としては、特に制限されず、従来のガスバリア性フィルムに使用される部材が同様にしてあるいは適宜修飾して使用できる。具体的には、ケイ素、炭素、および酸素を含むバリア層、平滑層、アンカーコート層、ブリードアウト防止層、ならびに保護層、吸湿層や帯電防止層の機能化層などが挙げられる。
【0027】
なお、本発明において、シリコン含有膜は、単一層として存在してもあるいは2層以上の積層構造を有していてもよい。
【0028】
さらに、本発明では、シリコン含有膜は、基材の少なくとも一方の面に形成されていればよい。このため、本発明のガスバリア性フィルムは、基材の一方の面にシリコン含有膜が形成される形態、および基材の両面にシリコン含有膜が形成される形態双方を包含する。
【0029】
[基材]
本発明に係るガスバリア性フィルムは、通常、基材として、プラスチックフィルムまたはシートが用いられ、無色透明な樹脂からなるフィルムまたはシートが好ましく用いられる。用いられるプラスチックフィルムは、シリコン含有膜等を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸−マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
【0030】
本発明に係るガスバリア性フィルムを有機EL素子等の電子デバイスの基板として使用する場合は、前記基材は耐熱性を有する素材からなることが好ましい。
【0031】
基材のTgや線膨張係数は、添加剤などによって調整することができる。基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001−150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF−PC:特開2000−227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP−PC:特開2000−227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002−80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。
【0032】
本発明に係るガスバリア性フィルムに用いられる基材の厚みは、用途によって適宜選択されるため特に制限がないが、典型的には1〜800μmであり、好ましくは10〜200μmである。これらのプラスチックフィルムは、透明導電層、プライマー層等の機能層を有していても良い。機能層については、上述したもののほか、特開2006−289627号公報の段落番号「0036」〜「0038」に記載されているものを好ましく採用できる。
【0033】
基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくともシリコン含有膜を設ける側を研摩し、平滑性を向上させておいてもよい。
【0034】
また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。
【0035】
本発明で用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。
【0036】
基材の少なくとも本発明に係るシリコン含有膜を設ける側には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理や、後述するプライマー層の積層等を行ってもよく、必要に応じて上記処理を組み合わせて行うことが好ましい。
【0037】
[シリコン含有膜]
本発明に係るシリコン含有膜は、基材の一方の面に形成されるガスバリア性を有する膜(バリア膜)であり、上記化学式(1)で表される化学組成を有する。さらに、該シリコン含有膜は、上記数式1および数式2で表される関係をともに満足する。
【0038】
前記化学式(1)中、xはケイ素に対する酸素の原子比である。該xは好ましくは1.1〜3.1であり、より好ましくは1.2〜2.7であり、最も好ましくは1.3〜2.6であり、シリコン含有膜の厚さ方向の平均値においても、かような範囲であることが好ましい。
【0039】
前記化学式(1)中、yはケイ素に対する窒素の原子比である。該yは好ましくは0.001〜0.51であり、より好ましくは0.01〜0.39であり、最も好ましくは0.03〜0.37であり、シリコン含有膜の厚さ方向の平均値においても、かような範囲であることが好ましい。
【0040】
前記化学式(1)中、Mは、炭素およびケイ素を除く長周期型周期表の第2〜14族元素からなる群より選択される少なくとも1種の元素(添加元素)である。これらの添加元素を含む本発明に係るシリコン含有膜は、膜の規則性が低下し融点が下がり、製膜工程中の熱または光により融解することで、欠陥が修復されより緻密な膜となり、ガスバリア性が向上するものと考えられる。また、融解により流動性が高くなることで、シリコン含有膜の内部まで酸素が供給され、膜内部まで酸化が進んだシリコン含有膜(バリア膜)となり、製膜が済んだ状態では酸化耐性が高いシリコン含有膜(バリア膜)になっているものと考えられる。また、上記の添加元素を添加しない(バリア膜)ではエネルギー線を照射していくと、ダングリングボンドが増大するためか250nm以下の吸光度が増大していき、徐々に活性エネルギー線がシリコン含有膜(バリア膜)の内部まで侵入しにくくなり、シリコン含有膜(バリア膜)の表面しか改質されない。これに対し、本発明のシリコン含有膜は、理由は明らかではないが、活性エネルギー線を照射するにつれ低波長側の吸光度が減少することから、シリコン含有膜(バリア膜)の表面から内部まで改質が行われ、高温高湿環境に強い膜になっているものと考えられる。また、上記添加元素は、ポリシラザンの活性エネルギー線照射による改質における触媒としての機能も有するものと考えられ、添加元素を添加することにより、後述の改質反応がより効率よく進行すると考えられる。
【0041】
シリコン含有膜に含まれる添加元素の例としては、例えば、ベリリウム(Be)、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、インジウム(In)、スズ(Sn)、バリウム(Ba)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロジウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、タリウム(Tl)、鉛(Pb)、ラジウム(Ra)等が挙げられる。
【0042】
これら元素の中でも、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ジルコニウム(Zr)、銀(Ag)、インジウム(In)が好ましく、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、鉄(Fe)、ガリウム(Ga)、インジウム(In)がより好ましく、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)がさらに好ましい。ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)などの第13族元素は3価の原子価となり、ケイ素の原子価である4価と比べて、価数が不足しているため、膜の柔軟性が高くなる。この柔軟性の向上により、欠陥が修復され、シリコン含有膜は緻密な膜となり、ガスバリア性が向上する。また、柔軟性が高くなることで、シリコン含有膜の内部まで酸素が供給され、膜内部まで酸化が進んだシリコン含有膜(バリア膜)となり、製膜が済んだ状態では酸化耐性が高いシリコン含有膜(バリア膜)となる。
【0043】
なお、添加元素は、1種単独でも、または2種以上の混合物の形態で存在してもよい。
【0044】
前記化学式(1)中、zはケイ素に対する
Mの原子比であり、0.01〜0.3である。zが0.01未満であると、添加の効果が発現しにくい。一方、zが0.3を超えると、シリコン含有膜のガスバリア性が低下し、元素の種類によっては、着色の問題も起こる。該zは、好ましくは0.02〜0.25であり、より好ましくは0.03〜0.2である。
【0045】
さらに、本発明に係るシリコン含有膜は、上記数式1および上記数式2の関係を満足する。
【0046】
上記数式1および上記数式2中のX、Yは、いわば、ケイ素および添加元素を主骨格と考え、その主骨格に対するケイ素および酸素原子の比率および窒素原子の比率を表している。よって、上記数式1中のY/(X+Y)は、酸素および窒素の合計量に対する窒素の割合を表しており、シリコン含有膜の酸化安定性、透明性、可撓性などに影響を与える。
【0047】
該Y/(X+Y)は、0.001以上0.25以下の範囲である。Y/(X+Y)が0.001未満であると、可撓性が低下し基材の変形に対応できなくなるためか、高温高湿環境下である時点から急激なバリア性の低下を示す。一方、0.25を超えると、窒素が多く存在するためか高温高湿下で窒素部分が酸化されバリア性が低下していく。高温高湿環境下でより安定であるためには、Y/(X+Y)は、0.001〜0.25であり、好ましくは0.02〜0.20である。
【0048】
また、上記数式2の3Y+2Xは、3.30以上4.80以下の範囲である。3Y+2Xが3.30未満であると、主骨格に対し酸素原子および窒素原子が不足していることを示し、酸素原子や窒素原子が不足した分のケイ素は、不安定なSiラジカルとなって存在していると考えられる。このSiラジカルは水蒸気と反応するため、シリコン含有膜が経時で変化し耐湿熱性が低下する。一方、3Y+2Xが4.80を超えると、酸素原子や窒素原子が過剰であるため、ケイ素および添加元素からなる主骨格において−OH基や−NH
2基などの末端基が多く存在し、分子間ネットワークが密に続かずガスバリア性が低下する。3Y+2Xは、3.30〜4.80であり、好ましくは3.32〜4.40である。
【0049】
なお、XおよびY中の添加元素の価数を表すaは、後述のシリコン含有膜の形成方法において用いられる添加元素を含む化合物(以下、単に添加元素化合物とも称する)における添加元素の価数をそのまま採用するものとする。添加元素が複数存在する場合は、添加元素のモル比に基づいて重み付けした総和を採用するものとする。
【0050】
上記のような組成を有するシリコン含有膜は、温度25℃の0.125重量%フッ酸水溶液に浸漬させた際のエッチング速度が、0.1〜40nm/minであることが好ましく、1〜30nm/minであることがより好ましい。この範囲であれば、ガスバリア性と可撓性とのバランスに優れたシリコン含有膜となる。なお、エッチング速度の測定方法は、特開2009−111029号公報に記載の方法により測定することができ、より具体的には、後述の実施例に記載の方法により測定することができる。
【0051】
上記化学式(1)で表される化学組成、ならびに上記数式1および数式2の関係については、シリコン含有膜を形成する際に用いるケイ素化合物および添加元素化合物の種類および量、ならびにケイ素化合物および添加元素化合物を含む層を改質する際の条件により、制御することができる。以下では、シリコン含有膜の形成方法について説明する。
【0052】
[シリコン含有膜の形成方法]
次に、本発明に係るシリコン含有膜を形成する好ましい方法について説明する。本発明のガスバリア性フィルムは、前記基材の少なくとも一方の表面上にシリコン含有膜を形成することにより製造することができる。本発明に係るシリコン含有膜を前記基材の表面上に形成させる方法としては、特に制限されず、例えば、ケイ素化合物と添加元素化合物とを含む層を加熱して改質する方法、ケイ素化合物と添加元素化合物とを含む層に対して活性エネルギー線を照射して改質する方法等が挙げられる。
【0053】
ケイ素化合物と添加元素化合物とを含む層は、ケイ素化合物を含有する塗布液を塗布して形成される。
【0054】
(ケイ素化合物)
ケイ素化合物としては、ケイ素化合物を含有する塗布液の調製が可能であれば特に限定はされない。具体的には、例えば、パーヒドロポリシラザン、オルガノポリシラザン、シルセスキオキサン、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラメトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、1,1−ジメチル−1−シラシクロブタン、トリメチルビニルシラン、メトキシジメチルビニルシラン、トリメトキシビニルシラン、エチルトリメトキシシラン、ジメチルジビニルシラン、ジメチルエトキシエチニルシラン、ジアセトキシジメチルシラン、ジメトキシメチル−3,3,3−トリフルオロプロピルシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、アリールトリメトキシシラン、エトキシジメチルビニルシラン、アリールアミノトリメトキシシラン、N−メチル−N−トリメチルシリルアセトアミド、3−アミノプロピルトリメトキシシラン、メチルトリビニルシラン、ジアセトキシメチルビニルシラン、メチルトリアセトキシシラン、アリールオキシジメチルビニルシラン、ジエチルビニルシラン、ブチルトリメトキシシラン、3−アミノプロピルジメチルエトキシシラン、テトラビニルシラン、トリアセトキシビニルシラン、テトラアセトキシシラン、3−トリフルオロアセトキシプロピルトリメトキシシラン、ジアリールジメトキシシラン、ブチルジメトキシビニルシラン、トリメチル−3−ビニルチオプロピルシラン、フェニルトリメチルシラン、ジメトキシメチルフェニルシラン、フェニルトリメトキシシラン、3−アクリロキシプロピルジメトキシメチルシラン、3−アクリロキシプロピルトリメトキシシラン、ジメチルイソペンチロキシビニルシラン、2−アリールオキシエチルチオメトキシトリメチルシラン、3−グリシドキシプロピルトリメトキシシラン、3−アリールアミノプロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ジメチルエチキシフェニルシラン、ベンゾイロキシトリメチルシラン、3−メタクリロキシプロピルジメトキシメチルシラン、3−メタクリロキシプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、ジメチルエトキシ−3−グリシドキシプロピルシラン、ジブトキシジメチルシラン、3−ブチルアミノプロピルトリメチルシラン、3−ジメチルアミノプロピルジエトキシメチルシラン、2−(2−アミノエチルチオエチル)トリエトキシシラン、ビス(ブチルアミノ)ジメチルシラン、ジビニルメチルフェニルシラン、ジアセトキシメチルフェニルシラン、ジメチル−p−トリルビニルシラン、p−スチリルトリメトキシシラン、ジエチルメチルフェニルシラン、ベンジルジメチルエトキシシラン、ジエトキシメチルフェニルシラン、デシルメチルジメトキシシラン、ジエトキシ−3−グリシドキシプロピルメチルシラン、オクチロキシトリメチルシラン、フェニルトリビニルシラン、テトラアリールオキシシラン、ドデシルトリメチルシラン、ジアリールメチルフェニルシラン、ジフェニルメチルビニルシラン、ジフェニルエトキシメチルシラン、ジアセトキシジフェニルシラン、ジベンジルジメチルシラン、ジアリールジフェニルシラン、オクタデシルトリメチルシラン、メチルオクタデシルジメチルシラン、ドコシルメチルジメチルシラン、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザン、1,4−ビス(ジメチルビニルシリル)ベンゼン、1,3−ビス(3−アセトキシプロピル)テトラメチルジシロキサン、1,3,5−トリメチル−1,3,5−トリビニルシクロトリシロキサン、1,3,5−トリス(3,3,3−トリフルオロプロピル)−1,3,5−トリメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7−テトラエトキシ−1,3,5,7−テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等を挙げることができる。
【0055】
中でも、成膜性、クラック等の欠陥が少ないこと、残留有機物の少なさの点で、パーヒドロポリシラザン、オルガノポリシラザン等のポリシラザン;シルセスキオキサン等のポリシロキサン等が好ましく、ガスバリア性能が高く、屈曲時および高温高湿条件下であってもバリア性能が維持されることから、ポリシラザンがより好ましく、パーヒドロポリシラザンが特に好ましい。
【0056】
ポリシラザンとは、ケイ素−窒素結合を有するポリマーであり、Si−N、Si−H、N−H等の結合を有するSiO
2、Si
3N
4、および両方の中間固溶体SiO
xN
y等のセラミック前駆体無機ポリマーである。
【0057】
具体的には、ポリシラザンは、好ましくは下記の構造を有する。
【0059】
上記一般式(I)において、R
1、R
2およびR
3は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R
1、R
2およびR
3は、それぞれ、同じであっても異なるものであってもよい。ここで、アルキル基としては、炭素原子数1〜8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6〜30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1〜8のアルコキシ基で置換されたシリル基を有する炭素原子数1〜8のアルキル基が挙げられる。より具体的には、3−(トリエトキシシリル)プロピル基、3−(トリメトキシシリル)プロピル基などが挙げられる。上記R
1〜R
3に場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(−OH)、メルカプト基(−SH)、シアノ基(−CN)、スルホ基(−SO
3H)、カルボキシル基(−COOH)、ニトロ基(−NO
2)などがある。なお、場合によって存在する置換基は、置換するR
1〜R
3と同じとなることはない。例えば、R
1〜R
3がアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R
1、R
2およびR
3は、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、フェニル基、ビニル基、3−(トリエトキシシリル)プロピル基または3−(トリメトキシシリルプロピル)基である。
【0060】
また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。
【0061】
上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R
1、R
2およびR
3のすべてが水素原子であるパーヒドロポリシラザンである。
【0062】
または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。
【0064】
上記一般式(II)において、R
1’、R
2’、R
3’、R
4’、R
5’およびR
6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R
1’、R
2’、R
3’、R
4’、R
5’およびR
6’は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
【0065】
また、上記一般式(II)において、n’およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびpは、同じであってもあるいは異なるものであってもよい。
【0066】
上記一般式(II)のポリシラザンのうち、R
1’、R
3’およびR
6’が各々水素原子を表し、R
2’、R
4’およびR
5’が各々メチル基を表す化合物;R
1’、R
3’およびR
6’が各々水素原子を表し、R
2’、R
4’が各々メチル基を表し、R
5’がビニル基を表す化合物;R
1’、R
3’、R
4’およびR
6’が各々水素原子を表し、R
2’およびR
5’が各々メチル基を表す化合物が好ましい。
【0067】
または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。
【0069】
上記一般式(III)において、R
1”、R
2”、R
3”、R
4”、R
5”、R
6”、R
7”、R
8”およびR
9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R
1”、R
2”、R
3”、R
4”、R
5”、R
6”、R
7”、R
8”およびR
9”は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。
【0070】
また、上記一般式(III)において、n”、p”およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、p”およびqは、同じであってもあるいは異なるものであってもよい。
【0071】
上記一般式(III)のポリシラザンのうち、R
1”、R
3”およびR
6”が各々水素原子を表し、R
2”、R
4”、R
5”およびR
8”が各々メチル基を表し、R
9”が(トリエトキシシリル)プロピル基を表し、R
7”がアルキル基または水素原子を表す化合物が好ましい。
【0072】
一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンとを選択してよく、混合して使用することもできる。
【0073】
パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。
【0074】
ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のアクアミカ(登録商標)NN120−10、NN120−20、NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL120−20、NL150A、NP110、NP140、SP140等が挙げられる。
【0075】
本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。
【0076】
(添加元素化合物)
添加元素化合物の種類は、特に制限されないが、本発明に係るシリコン含有膜をより効率的に形成することができるという観点から、添加元素のアルコキシドが好ましい。ここで、「添加元素のアルコキシド」とは、添加元素に対して結合する少なくとも1つのアルコキシ基を有する化合物を指す。なお、添加元素化合物は、単独でもまたは2種以上混合して用いてもよい。また、添加元素化合物は、市販品を用いてもよいし合成品を用いてもよい。
【0077】
添加元素のアルコキシドの例としては、例えば、ベリリウムアセチルアセトネート、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリn−プロピル、ホウ酸トリイソプロピル、ホウ酸トリn−ブチル、ホウ酸トリtert−ブチル、マグネシウムエトキシド、マグネシウムエトキシエトキシド、マグネシウムメトキシエトキシド、マグネシウムアセチルアセトネート、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリn−プロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリn−ブトキシド、アルミニウムトリsec−ブトキシド、アルミニウムトリtert−ブトキシド、アルミニウムアセチルアセトナート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテートジn−ブチレート、アルミニウムジエチルアセトアセテートモノn−ブチレート、アルミニウムジイソプロピレートモノsec−ブチレート、アルミニウムトリスアセチルアセトネート、アルミニウムトリスエチルアセトアセテート、ビス(エチルアセトアセテート)(2,4−ペンタンジオナト)アルミニウム、アルミニウムアルキルアセトアセテートジイソプロピレート、アルミニウムオキサイドイソプロポキサイドトリマー、アルミニウムオキサイドオクチレートトリマー、カルシウムメトキシド、カルシウムエトキシド、カルシウムイソプロポキシド、カルシウムアセチルアセトネート、スカンジウムアセチルアセトネート、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラノルマルプロポキシド、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトライソブトキシド、チタンジイソプロポキシジノルマルブトキシド、チタンジターシャリーブトキシジイソプロポキシド、チタンテトラtert−ブトキシド、チタンテトライソオクチロキシド、チタンテトラステアリルアルコキシド、バナジウムトリイソブトキシドオキシド、トリス(2,4−ペンタンジオナト)クロム、クロムn−プロポキシド、クロムイソプロポキシド、マンガンメトキシド、トリス(2,4−ペンタンジオナト)マンガン、鉄メトキシド、鉄エトキシド、鉄n−プロポキシド、鉄イソプロポキシド、トリス(2,4−ペンタンジオナト)鉄、コバルトイソプロポキシド、トリス(2,4−ペンタンジオナト)コバルト、ニッケルアセチルアセトネート、銅メトキシド、銅エトキシド、銅イソプロポキシド、銅アセチルアセトネート、亜鉛エトキシド、亜鉛エトキシエトキシド、亜鉛メトキシエトキシド、ガリウムメトキシド、ガリウムエトキシド、ガリウムイソプロポキシド、ガリウムアセチルアセトナート、ゲルマニウムメトキシド、ゲルマニウムエトキシド、ゲルマニウムイソプロポキシド、ゲルマニウムn−ブトキシド、ゲルマニウムtert−ブトキシド、エチルトリエトキシゲルマニウム、ストロンチウムイソプロポキシド、イットリウムn−プロポキシド、イットリウムイソプロポキシド、イットリウムアセチルアセトネート、ジルコニウムエトキシド、ジルコニウムn−プロポキシド、ジルコニウムイソプロポキシド、ジルコニウムブトキシド、ジルコニウムtert−ブトキシド、テトラキス(2,4−ペンタンジオナト)ジルコニウム、ニオブエトキシド、ニオブn−ブトキシド、ニオブtert−ブトキシド、モリブデンエトキシド、モリブデンアセチルアセトネート、パラジウムアセチルアセトネート、銀アセチルアセトネート、カドミウムアセチルアセトネート、トリス(2,4−ペンタンジオナト)インジウム、インジウムイソプロポキシド、インジウムイソプロポキシド、インジウムn−ブトキシド、インジウムメトキシエトキシド、スズn−ブトキシド、スズtert−ブトキシド、スズアセチルアセトネート、バリウムジイソプロポキシド、バリウムtert−ブトキシド、バリウムアセチルアセトネート、ランタンイソプロポキシド、ランタンメトキシエトキシド、ランタンアセチルアセトネート、セリウムn−ブトキシド、セリウムtert−ブトキシド、セリウムアセチルアセトネート、プラセオジムメトキシエトキシド、プラセオジムアセチルアセトネート、ネオジムメトキシエトキシド、ネオジムアセチルアセトネート、ネオジムメトキシエトキシド、サマリウムイソプロポキシド、サマリウムアセチルアセトネート、ユーロピウムアセチルアセトネート、ガドリニウムアセチルアセトネート、テルビウムアセチルアセトネート、ホルミウムアセチルアセトネート、イッテルビウムアセチルアセトネート、ルテチウムアセチルアセトネート、ハフニウムエトキシド、ハフニウムn−ブトキシド、ハフニウムtert−ブトキシド、ハフニウムアセチルアセトネート、タンタルメトキシド、タンタルエトキシド、タンタルn−ブトキシド、タンタルブトキシド、タンタルテトラメトキシドアセチルアセトネート、タングステンエトキシド、イリジウムアセチルアセトネート、イリジウムジカルボニルアセチルアセトネート、タリウムエトキシド、タリウムアセチルアセトネート、鉛アセチルアセトネート等が挙げられる。これら添加元素のアルコキシドの中でも、ホウ酸トリイソプロピル、マグネシウムエトキシド、アルミニウムトリsec−ブトキシド、アルミニウムエチルアセトアセテート・ジイソプロピレート、カルシウムイソプロポキシド、チタンテトライソプロポキシド、ガリウムイソプロポキシド、アルミニウムジイソプロピレートモノsec−ブチレート、アルミニウムエチルアセトアセテートジn−ブチレート、アルミニウムジエチルアセトアセテートモノn−ブチレートが好ましい。
【0078】
本発明に係るシリコン含有膜の形成方法は、特に制限されず、公知の方法が適用できるが、有機溶剤中にケイ素化合物、添加元素を含む化合物、および必要に応じて触媒を含むシリコン含有膜形成用塗布液を公知の湿式塗布方法により塗布し、この溶剤を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。
【0079】
(シリコン含有膜形成用塗布液)
シリコン含有膜形成用塗布液を調製するための溶剤としては、ケイ素化合物および添加元素化合物を溶解できるものであれば特に制限されないが、ケイ素化合物と容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ケイ素化合物に対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ−およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ケイ素化合物および添加元素化合物の溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
【0080】
シリコン含有膜形成用塗布液におけるケイ素化合物の濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは0.1〜30重量%、より好ましくは0.5〜20重量%、さらに好ましくは1〜15重量%である。
【0081】
また、シリコン含有膜形成用塗布液における添加元素化合物の濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは0.01〜20重量%、より好ましくは0.1〜10重量%、さらに好ましくは0.2〜5重量%である。
【0082】
さらに、シリコン含有膜形成用塗布液中におけるケイ素化合物と添加元素化合物との重量比は、ケイ素化合物:添加元素化合物=1:0.05〜1:3.9が好ましく、1:0.12〜1:3.0がより好ましく、1:0.3〜1:2.0がさらに好ましい。この範囲であれば、本発明に係るシリコン含有膜をより効率的に得ることができる。
【0083】
シリコン含有膜形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、N,N,N’,N’−テトラメチル−1,6−ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N−複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1〜10重量%、より好ましくは0.5〜7重量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。
【0084】
シリコン含有膜形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。
【0085】
(シリコン含有膜形成用塗布液を塗布する方法)
シリコン含有膜形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
【0086】
塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが0.01〜1μmであることが好ましく、0.02〜0.6μmであることがより好ましく、0.04〜0.4μmであることがさらに好ましい。膜厚が0.01μm以上であれば十分なバリア性を得ることができ、1μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
【0087】
塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適なシリコン含有膜が得られうる。なお、残存する溶媒は後に除去されうる。
【0088】
塗膜の乾燥温度は、適用する基材によっても異なるが、50〜200℃であることが好ましい。例えば、ガラス転移温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。
【0089】
(改質処理)
本発明における改質処理とは、ケイ素化合物および添加元素化合物が上記化学式(1)で表される化学組成へ転化する反応を指し、また本発明のガスバリア性フィルムが全体としてガスバリア性(水蒸気透過率が、1×10
−3g/m
2・day以下)を発現するに貢献できるレベルの無機薄膜を形成する処理をいう。
【0090】
このような改質処理は、公知の方法で行われ、具体的には、加熱処理、プラズマ処理、活性エネルギー線照射処理等が挙げられる。中でも、低温で改質可能であり基材種の選択の自由度が高いという観点から、活性エネルギー線照射による処理が好ましい。
【0091】
(加熱処理)
加熱処理の方法としては、例えば、ヒートブロック等の発熱体に基板を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより塗膜が載置される環境を加熱する方法、IRヒーターといった赤外領域の光を用いた方法等が挙げられるが、これらに限定されない。加熱処理を行う場合、塗膜の平滑性を維持できる方法を適宜選択すればよい。
【0092】
塗膜を加熱する温度としては、40〜250℃の範囲が好ましく、60〜150℃の範囲がより好ましい。加熱時間としては、10秒〜100時間の範囲が好ましく、30秒〜5分の範囲がより好ましい。
【0093】
(プラズマ処理)
本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等を挙げることが出来る。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、更には通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
【0094】
大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは長周期型周期表の第18族原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
【0095】
(活性エネルギー線照射処理)
活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等が使用可能であるが、電子線または紫外線が好ましく、紫外線がより好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性とをシリコン含有膜を形成することが可能である。
【0096】
紫外線照射処理においては、通常使用されているいずれの紫外線発生装置を使用することも可能である。
【0097】
なお、本発明でいう紫外線とは、一般には、10〜400nmの波長を有する電磁波をいうが、後述する真空紫外線(10〜200nm)処理以外の紫外線照射処理の場合は、好ましくは210〜375nmの紫外線を用いる。
【0098】
このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製や株式会社エム・ディ・コム製)、UV光レーザー等が挙げられるが、特に限定されない。また、発生させた紫外線をシリコン含有膜に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてからシリコン含有膜に当てることが望ましい。
【0099】
紫外線照射に要する時間は、使用する基材やシリコン含有膜の組成、濃度にもよるが、一般に0.1秒〜10分であり、好ましくは0.5秒〜3分である。
【0100】
(真空紫外線照射処理:エキシマ照射処理)
本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100〜200nmの光エネルギーを用い、好ましくは100〜180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。
【0101】
本発明においての放射線源は、100〜180nmの波長の光を発生させるものであれば良いが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、ならびに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。
【0102】
このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
【0103】
また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。
【0104】
紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10〜210,000体積ppmとすることが好ましく、より好ましくは50〜10,000体積ppmであり、最も好ましくは100〜5000体積ppmである。また、転化プロセスの間の水蒸気濃度は、好ましくは1000〜4000体積ppmの範囲である。
【0105】
真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
【0106】
塗膜面における真空紫外線の照射エネルギー量は、200〜10000mJ/cm
2であることが好ましく、500〜5000mJ/cm
2であることがより好ましい。200mJ/cm
2未満では、改質が不十分となる懸念があり、10000mJ/cm
2超えると過剰改質によるクラック発生や、基材の熱変形の懸念が出てくる。
【0107】
また、改質に用いられる真空紫外線は、CO、CO
2およびCH
4の少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、CO
2およびCH
4の少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはH
2を主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。
【0108】
シリコン含有膜の膜組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、シリコン含有膜を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。
【0109】
また、シリコン含有膜の膜密度は、目的に応じて適切に設定され得る。例えば、シリコン含有膜の膜密度は、1.5〜2.6g/cm
3の範囲にあることが好ましい。この範囲内であれば、膜の緻密さが向上しガスバリア性の劣化や、高温高湿条件下での膜の劣化を防止することができる。
【0110】
[バリア層]
本発明のガスバリア性フィルムは、シリコン含有膜とは別途に、ケイ素、酸素、および炭素を含有し、かつ下記条件(i)〜(iii)を満たす層であるバリア層をさらに含むことができる。
【0111】
(i)バリア層の膜厚方向における前記バリア層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記バリア層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C);
(ii)前記炭素分布曲線が少なくとも2つの極値を有する;
(iii)前記炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値(以下、単に「C
max−C
min差」とも称する)が3at%以上である。
【0112】
まず、該バリア層は、(i)前記バリア層の膜厚方向における前記バリア層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記バリア層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C)。前記の条件(i)を満たさない場合、得られるガスバリア性フィルムのガスバリア性や屈曲性が不十分となる。ここで、上記炭素分布曲線において、上記(酸素の原子比)、(ケイ素の原子比)および(炭素の原子比)の関係は、バリア層の膜厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがより好ましい。ここで、バリア層の膜厚の少なくとも90%以上とは、バリア層中で連続していなくてもよく、単に90%以上の部分で上記した関係を満たしていればよい。
【0113】
また、バリア層は、(ii)前記炭素分布曲線が少なくとも2つの極値を有する。該バリア層は、前記炭素分布曲線が少なくとも3つの極値を有することが好ましく、少なくとも4つの極値を有することがより好ましいが、5つ以上有していてもよい。前記炭素分布曲線の極値が1つ以下である場合、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性が不十分となる。なお、炭素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは30以下、より好ましくは25以下である。極値の数は、バリア層の膜厚にも起因するため、一概に規定することはできない。
【0114】
ここで、少なくとも3つの極値を有する場合においては、前記炭素分布曲線の有する1つの極値および該極値に隣接する極値における前記バリア層の膜厚方向における前記バリア層の表面からの距離(L)の差の絶対値(以下、単に「極値間の距離」とも称する)が、いずれも200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。このような極値間の距離であれば、バリア層中に炭素原子比が多い部位(極大値)が適度な周期で存在するため、バリア層に適度な屈曲性を付与し、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。なお、本明細書において「極値」とは、前記バリア層の膜厚方向における前記バリア層の表面からの距離(L)に対する元素の原子比の極大値または極小値のことをいう。また、本明細書において「極大値」とは、バリア層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が増加から減少に変わる点であって、かつその点の元素の原子比の値よりも、該点からバリア層の膜厚方向におけるバリア層の表面からの距離をさらに4〜20nmの範囲で変化させた位置の元素の原子比の値が3at%以上減少する点のことをいう。すなわち、4〜20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上減少していればよい。同様にして、本明細書において「極小値」とは、バリア層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が減少から増加に変わる点であり、かつその点の元素の原子比の値よりも、該点からバリア層の膜厚方向におけるバリア層の表面からの距離をさらに4〜20nm変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。すなわち、4〜20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比が3at%増加していればよい。ここで、少なくとも3つの極値を有する場合の、極値間の距離の下限は、極値間の距離が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されないが、バリア層の屈曲性、クラックの抑制/防止効果、熱膨張性などを考慮すると、10nm以上であることが好ましく、30nm以上であることがより好ましい。
【0115】
さらに、バリア層は、(iii)前記炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値(以下、単に「C
max−C
min差」とも称する)が3at%以上である。前記絶対値が3at%未満では、得られるガスバリア性フィルムを屈曲させた場合に、ガスバリア性が不十分となる。C
max−C
min差は5at%以上であることが好ましく、7at%以上であることがより好ましく、10at%以上であることが特に好ましい。上記C
max−C
min差とすることによって、ガスバリア性をより向上することができる。なお、本明細書において、「最大値」とは、各元素の分布曲線において最大となる各元素の原子比であり、極大値の中で最も高い値である。同様にして、本明細書において、「最小値」とは、各元素の分布曲線において最小となる各元素の原子比であり、極小値の中で最も低い値である。ここで、C
max−C
min差の上限は、特に制限されないが、ガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。
【0116】
本発明において、前記バリア層の前記酸素分布曲線が少なくとも1つの極値を有することが好ましく、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましい。前記酸素分布曲線が極値を少なくとも1つを有する場合、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性がより向上する。なお、酸素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは20以下、より好ましくは10以下である。酸素分布曲線の極値の数においても、バリア層の膜厚に起因する場合があり一概に規定できない。また、少なくとも3つの極値を有する場合においては、前記酸素分布曲線の有する1つの極値および該極値に隣接する極値における前記バリア層の膜厚方向におけるバリア層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。このような極値間の距離であれば、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。ここで、少なくとも3つの極値を有する場合の、極値間の距離の下限は、特に制限されないが、ガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果、熱膨張性などを考慮すると、10nm以上であることが好ましく、30nm以上であることがより好ましい。
【0117】
加えて、本発明において、前記バリア層の前記酸素分布曲線における酸素の原子比の最大値および最小値の差の絶対値(以下、単に「O
max−O
min差」とも称する)が3at%以上であることが好ましく、5at%以上であることがより好ましく、6at%以上であることがさらにより好ましく、7at%以上であることが特に好ましい。前記絶対値が3at%以上であれば、得られるガスバリア性フィルムのフィルムを屈曲させた場合におけるガスバリア性がより向上する。ここで、O
max−O
min差の上限は、特に制限されないが、ガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。
【0118】
本発明において、前記バリア層の前記ケイ素分布曲線におけるケイ素の原子比の最大値および最小値の差の絶対値(以下、単に「Si
max−Si
min差」とも称する)が10at%以下であることが好ましく、7at%以下であることがより好ましく、3at%以下であることがさらに好ましい。前記絶対値が10at%以下である場合、得られるガスバリア性フィルムのガスバリア性がより向上する。ここで、Si
max−Si
min差の下限は、Si
max−Si
min差が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されないが、ガスバリア性などを考慮すると、1at%以上であることが好ましく、2at%以上であることがより好ましい。
【0119】
また、本発明において、バリア層の膜厚方向に対する炭素および酸素原子の合計量はほぼ一定であることが好ましい。これにより、バリア層は適度な屈曲性を発揮し、ガスバリア性フィルムの屈曲時のクラック発生をより有効に抑制・防止されうる。より具体的には、バリア層の膜厚方向における該バリア層の表面からの距離(L)とケイ素原子、酸素原子、および炭素原子の合計量に対する、酸素原子および炭素原子の合計量の比率(酸素および炭素の原子比)との関係を示す酸素炭素分布曲線において、前記酸素炭素分布曲線における酸素および炭素の原子比の合計の最大値および最小値の差の絶対値(以下、単に「OC
max−OC
min差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。前記絶対値が5at%未満であれば、得られるガスバリア性フィルムのガスバリア性がより向上する。なお、OC
max−OC
min差の下限は、OC
max−OC
min差が小さいほど好ましいため、0at%であるが、0.1at%以上であれば十分である。
【0120】
前記ケイ素分布曲線、前記酸素分布曲線、前記炭素分布曲線、および前記酸素炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記バリア層の膜厚方向における前記バリア層の表面からの距離(L)に概ね相関することから、「バリア層の膜厚方向におけるバリア層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるバリア層の表面からの距離を採用することができる。なお、ケイ素分布曲線、酸素分布曲線、炭素分布曲線および酸素炭素分布曲線は、下記測定条件にて作成することができる。
【0121】
(測定条件)
エッチングイオン種:アルゴン(Ar
+);
エッチング速度(SiO
2熱酸化膜換算値):0.05nm/sec;
エッチング間隔(SiO
2換算値):10nm;
X線光電子分光装置:Thermo Fisher Scientific社製、機種名"VG Theta Probe";
照射X線:単結晶分光AlKα
X線のスポットおよびそのサイズ:800×400μmの楕円形。
【0122】
本発明において、バリア層の厚み(乾燥膜厚)は、上記(i)〜(iii)を満たす限り、特に制限されない。バリア層の厚みは、20〜3000nmであることが好ましく、50〜2500nmであることがより好ましく、100〜1000nmであることが特に好ましい。このような厚みであれば、ガスバリア性フィルムは、優れたガスバリア性および屈曲時のクラック発生抑制/防止効果を発揮できる。なお、バリア層が2層以上から構成される場合には、各バリア層が上記したような厚みを有することが好ましい。また、バリア層が2層以上から構成される場合のバリア層全体の厚みは特に制限されないが、バリア層全体の厚み(乾燥膜厚)が1000〜2000nm程度であることが好ましい。このような厚みであれば、ガスバリア性フィルムは、優れたガスバリア性および屈曲時のクラック発生抑制/防止効果を発揮できる。
【0123】
本発明において、膜面全体において均一でかつ優れたガスバリア性を有するバリア層を形成するという観点から、前記バリア層が膜面方向(バリア層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、バリア層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定によりバリア層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線および前記酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。
【0124】
さらに、本発明においては、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される前記バリア層のうちの少なくとも1層の膜厚方向における該バリア層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式3で表される条件を満たすことをいう。
【0126】
本発明に係るガスバリア性フィルムにおいて、上記条件(i)〜(iii)を全て満たすバリア層は、1層のみを備えていてもよいし2層以上を備えていてもよい。さらに、このようなバリア層を2層以上備える場合には、複数のバリア層の材質は、同一であってもよいし異なっていてもよい。
【0127】
前記ケイ素分布曲線、前記酸素分布曲線、および前記炭素分布曲線において、ケイ素の原子比、酸素の原子比、および炭素の原子比が、該バリア層の膜厚の90%以上の領域において前記(i)で表される条件を満たす場合には、前記バリア層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の含有量の原子比率は、20〜45at%であることが好ましく、25〜40at%であることがより好ましい。また、前記バリア層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の含有量の原子比率は、45〜75at%であることが好ましく、50〜70at%であることがより好ましい。さらに、前記バリア層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の含有量の原子比率は、0.5〜25at%であることが好ましく、1〜20at%であることがより好ましい。
【0128】
本発明では、バリア層の形成方法は特に制限されず、従来と方法を同様にしてあるいは適宜修飾して適用できる。バリア層は、好ましくは化学気相成長(CVD)法、特に、プラズマ化学気相成長法(プラズマCVD、PECVD(plasma-enhanced chemical vapor deposition)、以下、単に「プラズマCVD法」とも称する)により形成され、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により形成されることがより好ましい。
【0129】
また、該バリア層の配置は、特に制限されないが、基材上に配置されればよい。
【0130】
以下では、本発明で好ましく使用されるプラズマCVD法を利用して、基材上にバリア層を形成する方法を以下に説明する。
【0131】
[バリア層の形成方法]
本発明に係るバリア層は、前記基材の表面上に形成させることが好ましい。本発明に係るバリア層を前記基材の表面上に形成させる方法としては、ガスバリア性の観点から、プラズマCVD法を採用することが好ましい。なお、前記プラズマCVD法はペニング放電プラズマ方式のプラズマCVD法であってもよい。
【0132】
また、プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに前記基材を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、通常のローラーを使用しないプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、略同一の構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)〜(iii)を全て満たす層を形成することが可能となる。
【0133】
また、このようにして一対の成膜ローラー間に放電する際には、前記一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、本発明のガスバリア性フィルムにおいては、前記バリア層が連続的な成膜プロセスにより形成された層であることが好ましい。
【0134】
また、本発明に係るガスバリア性フィルムは、生産性の観点から、ロールツーロール方式で前記基材の表面上に前記バリア層を形成させることが好ましい。また、このようなプラズマCVD法によりバリア層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、
図1に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールツーロール方式で製造することも可能となる。
【0135】
以下、
図1を参照しながら、本発明に係るバリア層の形成方法について、より詳細に説明する。なお、
図1は、本発明に係るバリア層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。
【0136】
図1に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39および40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置31において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。
【0137】
このような製造装置においては、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源42に接続されている。そのため、このような製造装置31においては、プラズマ発生用電源42により電力を供給することにより、成膜ローラー39と成膜ローラー40との間の空間に放電することが可能であり、これにより成膜ローラー39と成膜ローラー40との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー39と成膜ローラー40とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー39および40)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー39および40)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により基材2の表面上にバリア層3を形成することが可能であり、成膜ローラー39上において基材2の表面上にバリア層成分を堆積させつつ、さらに成膜ローラー40上においても基材2の表面上にバリア層成分を堆積させることもできるため、基材2の表面上にバリア層を効率よく形成することができる。
【0138】
成膜ローラー39および成膜ローラー40の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置43および44がそれぞれ設けられている。
【0139】
成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生装置43および44は、一方の成膜ローラー39に設けられた磁場発生装置43と他方の成膜ローラー40に設けられた磁場発生装置44との間で磁力線がまたがらず、それぞれの磁場発生装置43、44がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、各成膜ローラー39、40の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。
【0140】
また、成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生装置43および44は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置43と他方の磁場発生装置44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、それぞれの磁場発生装置43、44について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材2を用いて効率的に蒸着膜であるバリア層3を形成することができる点で優れている。
【0141】
成膜ローラー39および成膜ローラー40としては適宜公知のローラーを用いることができる。このような成膜ローラー39および40としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー39および40の直径としては、放電条件、チャンバのスペース等の観点から、直径が300〜1000mmφの範囲、特に300〜700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材2にかかることを回避できることから、基材2へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。
【0142】
このような製造装置31においては、基材2の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)上に、基材2が配置されている。このようにして基材2を配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する基材2のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー39上にて基材2の表面上にバリア層成分を堆積させ、さらに成膜ローラー40上にてバリア層成分を堆積させることができるため、基材2の表面上にバリア層を効率よく形成することが可能となる。
【0143】
このような製造装置に用いる送り出しローラー32および搬送ローラー33、34、35、36としては適宜公知のローラーを用いることができる。また、巻取りローラー45としても、基材2上にバリア層3を形成したガスバリア性フィルム1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。
【0144】
また、ガス供給管41および真空ポンプとしては、原料ガス等を所定の速度で供給または排出することが可能なものを適宜用いることができる。
【0145】
また、ガス供給手段であるガス供給管41は、成膜ローラー39と成膜ローラー40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管41と、真空排気手段である真空ポンプを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。
【0146】
さらに、プラズマ発生用電源42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源42は、これに接続された成膜ローラー39と成膜ローラー40とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W〜10kWとすることができ、かつ交流の周波数を50Hz〜500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置43、44としては適宜公知の磁場発生装置を用いることができる。さらに、基材2としては、本発明で用いられる基材の他に、バリア層3を予め形成させたものを用いることができる。このように、基材2としてバリア層3を予め形成させたものを用いることにより、バリア層3の厚みを厚くすることも可能である。
【0147】
このような
図1に示す製造装置31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバ内の圧力、成膜ローラーの直径、ならびにフィルム(基材)の搬送速度を適宜調整することにより、本発明に係るバリア層を製造することができる。すなわち、
図1に示す製造装置31を用いて、成膜ガス(原料ガス等)を真空チャンバ内に供給しつつ、一対の成膜ローラー(成膜ローラー39および40)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー39上の基材2の表面上および成膜ローラー40上の基材2の表面上に、バリア層3がプラズマCVD法により形成される。この際、成膜ローラー39、40のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。このため、基材2が、
図1中の成膜ローラー39のAおよび成膜ローラー40のB地点を通過する際に、バリア層で炭素分布曲線の極大値が形成される。これに対して、基材2が、
図1中の成膜ローラー39のC1およびC2地点、ならびに成膜ローラー40のC3およびC4地点を通過する際に、バリア層で炭素分布曲線の極小値が形成される。このため、2つの成膜ローラーに対して、通常、5つの極値が生成する。また、バリア層の極値間の距離(炭素分布曲線の有する1つの極値および該極値に隣接する極値におけるバリア層の膜厚方向におけるバリア層の表面からの距離(L)の差の絶対値)は、成膜ローラー39、40の回転速度(基材の搬送速度)によって調節できる。なお、このような成膜に際しては、基材2が送り出しローラー32や成膜ローラー39等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより基材2の表面上にバリア層3が形成される。
【0148】
前記ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。バリア層3の形成に用いる前記成膜ガス中の原料ガスとしては、形成するバリア層3の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3−テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性および得られるバリア層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3−テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でもまたは2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、バリア層3の種類に応じて適切な原料ガスが選択される。
【0149】
また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でもまたは2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。
【0150】
前記成膜ガスとしては、前記原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。
【0151】
このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成されるバリア層3によって、優れたバリア性や耐屈曲性を得ることができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
【0152】
以下、前記成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、HMDSO、(CH
3)
6Si
2O)と、反応ガスとしての酸素(O
2)を含有するものとを用い、ケイ素−酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。
【0153】
原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CH
3)
6Si
2O)と、反応ガスとしての酸素(O
2)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素−酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式1で表されるような反応が起こり、二酸化ケイ素が生成する。
【0155】
このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない)ため、上記条件(i)〜(iii)を全て満たすバリア層を形成することができなくなってしまう。そのため、本発明において、バリア層を形成する際には、上記反応式1の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。なお、実際のプラズマCVDチャンバ内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサンおよび酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がバリア層中に取り込まれ、上記条件(i)〜(iii)を全て満たすバリア層を形成することが可能となって、得られるガスバリア性フィルムにおいて優れたガスバリア性および耐屈曲性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
【0156】
また、真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa〜50Paの範囲とすることが好ましい。
【0157】
また、このようなプラズマCVD法において、成膜ローラー39と成膜ローラー40との間に放電するために、プラズマ発生用電源42に接続された電極ドラム(本実施形態においては、成膜ローラー39および40に設置されている)に印加する電力は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1〜10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。
【0158】
基材2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.25〜100m/minの範囲とすることが好ましく、0.5〜20m/minの範囲とすることがより好ましい。ライン速度が0.25m/min以上であれば、基材に熱に起因する皺の発生を効果的に抑制することができる。他方、100m/min以下であれば、生産性を損なうことなく、バリア層として十分な厚みを確保することができる点で優れている。
【0159】
上記したように、本実施形態のより好ましい態様としては、本発明に係るバリア層を、
図1に示す対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いたプラズマCVD法によって成膜することを特徴とするものである。これは、対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロールツーロールでの搬送時の耐久性と、バリア性能とが両立するバリア層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。
【0160】
[平滑層(下地層、プライマー層)]
本発明のガスバリア性フィルムは、基材のバリア層を有する面、好ましくは基材とシリコン含有膜との間に平滑層(下地層、プライマー層)を有していてもよい。平滑層は突起等が存在する基材の粗面を平坦化するために、あるいは、基材に存在する突起により、バリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、いずれの材料で形成されてもよいが、炭素含有ポリマーを含むことが好ましく、炭素含有ポリマーから構成されることがより好ましい。すなわち、本発明のガスバリア性フィルムは、基材とバリア層との間に、炭素含有ポリマーを含む平滑層をさらに有することが好ましい。
【0161】
また、平滑層は、炭素含有ポリマー、好ましくは硬化性樹脂を含む。前記硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でもまたは2種以上組み合わせて用いてもよい。
【0162】
平滑層の形成に用いられる活性エネルギー線硬化性材料としては、例えば、アクリレート化合物を含有する組成物、アクリレート化合物とチオール基を含有するメルカプト化合物とを含有する組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを含有する組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)を用いることができる。また、上記のような組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している活性エネルギー線硬化性材料であれば特に制限はない。
【0163】
光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレート、n−デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2−エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサジオールジアクリレート、1,3−プロパンジオールアクリレート、1,4−シクロヘキサンジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピレンオキサイド変性ペンタエリスリトールトリアクリレート、プロピレンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4−ブタンジオールトリアクリレート、2,2,4−トリメチル−1,3−ペンタジオールジアクリレート、ジアリルフマレート、1,10−デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、および、上記のアクリレートをメタクリレートに換えたもの、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいはその他の化合物との混合物として使用することができる。
【0164】
活性エネルギー線硬化性材料を含む組成物は、光重合開始剤を含有することが好ましい。
【0165】
光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノ・アセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−tert−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。
【0166】
熱硬化性材料としては、具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V−8000シリーズ、EPICLON(登録商標) EXA−4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製のシリコン樹脂 X−12−2400(商品名)、日東紡績株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ポリアミドアミン−エピクロルヒドリン樹脂等が挙げられる。
【0167】
平滑層の形成方法は、特に制限はないが、硬化性材料を含む塗布液をスピンコーティング法、スプレー法、ブレードコーティング法、ディップ法、グラビア印刷法等のウエットコーティング法、または蒸着法等のドライコーティング法により塗布し塗膜を形成した後、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線等の活性エネルギー線の照射および/または加熱により、前記塗膜を硬化させて形成する方法が好ましい。活性エネルギー線を照射する方法としては、例えば超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等を用い好ましくは100〜400nm、より好ましくは200〜400nmの波長領域の紫外線を照射する、または、走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射する方法が挙げられる。
【0168】
硬化性材料を溶媒に溶解または分散させた塗布液を用いて平滑層を形成する際に使用する溶媒としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、α−もしくはβ−テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3−エトキシプロピオン酸エチル、安息香酸メチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等を挙げることができる。
【0169】
平滑層は、上述の材料に加えて、必要に応じて、熱可塑性樹脂や酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を含有することができる。また、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂、アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
【0170】
平滑層の平滑性は、JIS B 0601:2001年で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。
【0171】
表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
【0172】
平滑層の厚さとしては、特に制限されないが、0.1〜10μmの範囲が好ましい。
【0173】
[アンカーコート層]
本発明に係る基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1種または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化型ポリマー溶液(信越化学工業株式会社製、「X−12−2400」の3%イソプロピルアルコール溶液)を用いることができる。
【0174】
これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1〜5g/m
2(乾燥状態)程度が好ましい。なお、市販の易接着層付き基材を用いてもよい。
【0175】
または、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008−142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。
【0176】
また、アンカーコート層の厚さは、特に制限されないが、0.5〜10.0μm程度が好ましい。
【0177】
[ブリードアウト防止層]
本発明のガスバリア性フィルムは、ブリードアウト防止層をさらに有することができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、フィルム基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。
【0178】
ブリードアウト防止層に含ませることが可能な化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等のハードコート剤を挙げることができる。
【0179】
ここで、多価不飽和有機化合物としては、例え、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
【0180】
また、単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2−メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
【0181】
その他の添加剤として、マット剤を含有してもよい。マット剤としては、平均粒子径が0.1〜5μm程度の無機粒子が好ましい。
【0182】
このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種または2種以上を併せて使用することができる。
【0183】
ここで、無機粒子からなるマット剤は、ハードコート剤の固形分100重量部に対して2重量部以上、好ましくは4重量部以上、より好ましくは6重量部以上、20重量部以下、好ましくは18重量部以下、より好ましくは16重量部以下の割合で混合されていることが望ましい。
【0184】
また、ブリードアウト防止層には、ハードコート剤およびマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。
【0185】
このような熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
【0186】
また、熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。
【0187】
また、電離放射線硬化性樹脂としては、光重合性プレポリマーもしくは光重合性モノマー等の1種または2種以上を混合した電離放射線硬化塗料に、電離放射線(紫外線または電子線)を照射することで硬化するものを使用することができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記に記載した多価不飽和有機化合物等が使用できる。
【0188】
また、光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−(4−モルフォリニル)−1−プロパン、α−アシロキシムエステル、チオキサンソン類等が挙げられる。
【0189】
以上のようなブリードアウト防止層は、ハードコート剤、および必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、塗布液を基材フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100〜400nm、好ましくは200〜400nmの波長領域の紫外線を照射する、または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
【0190】
ブリードアウト防止層の厚さとしては、1〜10μm、好ましくは2〜7μmであることが望ましい。1μm以上にすることにより、フィルムとしての耐熱性を十分なものにし易くなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、平滑層を透明高分子フィルムの一方の面に設けた場合におけるバリアフィルムのカールを抑え易くすることができるようになる。
【0191】
本発明のガスバリア性フィルムは上述したもののほか、特開2006−289627号公報の段落番号「0036」〜「0038」に記載されているものを好ましく採用できる。
【0192】
<電子デバイス>
本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく用いることができる。前記デバイスの例としては、例えば、有機EL素子、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等の電子デバイスを挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子または太陽電池に好ましく用いられ、有機EL素子に特に好ましく用いられる。
【0193】
本発明のガスバリア性フィルムは、また、デバイスの膜封止に用いることができる。すなわち、デバイス自体を支持体として、その表面に本発明のガスバリア性フィルムを設ける方法である。ガスバリア性フィルムを設ける前にデバイスを保護層で覆ってもよい。
【0194】
本発明のガスバリア性フィルムは、デバイスの基板や固体封止法による封止のためのフィルムとしても用いることができる。固体封止法とはデバイスの上に保護層を形成した後、接着剤層、ガスバリア性フィルムを重ねて硬化する方法である。接着剤は特に制限はないが、熱硬化性エポキシ樹脂、光硬化性アクリレート樹脂等が例示される。
【0195】
(有機EL素子)
ガスバリア性フィルムを用いた有機EL素子の例は、特開2007−30387号公報に詳しく記載されている。
【0196】
(液晶表示素子)
反射型液晶表示装置は、下から順に、下基板、反射電極、下配向膜、液晶層、上配向膜、透明電極、上基板、λ/4板、そして偏光膜からなる構成を有する。本発明におけるガスバリア性フィルムは、前記透明電極基板および上基板として使用することができる。カラー表示の場合には、さらにカラーフィルター層を反射電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。透過型液晶表示装置は、下から順に、バックライト、偏光板、λ/4板、下透明電極、下配向膜、液晶層、上配向膜、上透明電極、上基板、λ/4板および偏光膜からなる構成を有する。カラー表示の場合には、さらにカラーフィルター層を下透明電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。液晶セルの種類は特に限定されないが、より好ましくはTN型(Twisted Nematic)、STN型(Super Twisted Nematic)またはHAN型(Hybrid Aligned Nematic)、VA型(Vertically Alignment)、ECB型(Electrically Controlled Birefringence)、OCB型(Optically Compensated Bend)、IPS型(In−Plane Switching)、CPA型(Continuous Pinwheel Alignment)であることが好ましい。
【0197】
(太陽電池)
本発明のガスバリア性フィルムは、太陽電池素子の封止フィルムとしても用いることができる。ここで、本発明のガスバリア性フィルムは、バリア層が太陽電池素子に近い側となるように封止することが好ましい。本発明のガスバリア性フィルムが好ましく用いられる太陽電池素子としては、特に制限はないが、例えば、単結晶シリコン系太陽電池素子、多結晶シリコン系太陽電池素子、シングル接合型、またはタンデム構造型等で構成されるアモルファスシリコン系太陽電池素子、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII−V族化合物半導体太陽電池素子、カドミウムテルル(CdTe)等のII−VI族化合物半導体太陽電池素子、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI−III−VI族化合物半導体太陽電池素子、色素増感型太陽電池素子、有機太陽電池素子等が挙げられる。中でも、本発明においては、上記太陽電池素子が、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI−III−VI族化合物半導体太陽電池素子であることが好ましい。
【0198】
(その他)
その他の適用例としては、特表平10−512104号公報に記載の薄膜トランジスタ、特開平5−127822号公報、特開2002−48913号公報等に記載のタッチパネル、特開2000−98326号公報に記載の電子ペーパー等が挙げられる。
【0199】
<光学部材>
本発明のガスバリア性フィルムは、光学部材としても用いることができる。光学部材の例としては円偏光板等が挙げられる。
【0200】
(円偏光板)
本発明におけるガスバリア性フィルムを基板としλ/4板と偏光板とを積層し、円偏光板を作製することができる。この場合、λ/4板の遅相軸と偏光板の吸収軸とのなす角が45°になるように積層する。このような偏光板は、長手方向(MD)に対し45°の方向に延伸されているものを用いることが好ましく、例えば、特開2002−865554号公報に記載のものを好適に用いることができる。
【実施例】
【0201】
本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「重量部」あるいは「重量%」を表す。また、下記操作において、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で行う。
【0202】
<基材1の作製>
基材として、両面に易接着加工された厚さ125μmのポリエステルフィルムである極低熱収PET Q83(帝人デュポンフィルム株式会社製)を用いた。
【0203】
上記基材の一方の面に、感光性樹脂であるUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標) Z7535(JSR株式会社製)を、乾燥後の膜厚が4.0μmとなるように塗布した。得られた塗膜を高圧水銀ランプで照射し、硬化させることでブリードアウト防止層を形成した。なお、照射は、空気雰囲気下、照射エネルギー量1.0J/cm
2で、80℃の温度で、3分間行った。
【0204】
上記基材の前記ブリードアウト防止層とは反対の面に、感光性樹脂であるUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)Z7501(JSR株式会社製)を、乾燥後の膜厚が4.0μmとなるように塗布した。得られた塗膜を高圧水銀ランプで照射し、硬化させることで平滑層を形成した。なお、照射は、空気雰囲気下、照射エネルギー量1.0J/cm
2で80℃、3分間行った。
【0205】
このようにして得られた中間層(ブリードアウト防止層および平滑層)を有する基材1の平滑層について、10点平均表面粗さ(Rz)および中心線平均粗さ(Ra)を測定した。前記RzおよびRaは、JIS B 0601:2001で規定される方法に準拠して測定した。具体的には、装置としてAFM(原子間力顕微鏡)SPI3800N DFM(エスアイアイ・ナノテクノロジー株式会社製)を用いて、1回の測定範囲を80μm×80μmと設定し、測定箇所を変えて3回測定を行った。その結果、Rzは20nmであり、Raは1nmであった。
【0206】
<ガスバリア性フィルムの製造>
(比較例1−1)
20質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(アクアミカ(登録商標) NN120−20:AZエレクトロニックマテリアルズ株式会社製)と、1質量%のアミン触媒(N,N,N’,N’−テトラメチル−1,6−ジアミノヘキサン)および19質量%パーヒドロポリシラザンを含むジブチルエーテル溶液(アクアミカ(登録商標) NAX120−20:AZエレクトロニックマテリアルズ株式会社製)とを4:1の比率で混合し、第1の塗布液を調製した。
【0207】
基材1上に、上記で調製した第1の塗布液ジブチルエーテルで希釈し、スピンコーターを用いて、乾燥後の膜厚が200nmとなるように塗布し、100℃で2分間乾燥させて、塗膜を得た。得られた塗膜に真空紫外線(株式会社エム・ディ・コム製エキシマ照射装置MODEL:MECL−M−1−200、波長172nm、ステージ温度100℃、積算光量3J/cm
2、酸素濃度0.1体積%)を照射してガスバリア性フィルムを製造した。
【0208】
(比較例1−2)
アルミニウムトリsec−ブトキシド(和光純薬工業株式会社製)0.176gにジブチルエーテル16mlを添加後、第1の塗布液2.97gを添加し、第2の塗布液を調製した。
【0209】
第1の塗布液の代わりに上記で調製した第2の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0210】
(比較例1−3)
アルミニウムトリsec−ブトキシド(和光純薬工業株式会社製)0.576gにジブチルエーテル18.1mlを添加後、第1の塗布液0.97gを添加し、第3の塗布液を調製した。
【0211】
第1の塗布液の代わりに上記で調製した第3の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0212】
(比較例1−4)
アルミニウムトリsec−ブトキシド(和光純薬工業株式会社製)0.287gにジブチルエーテル16.6mlを添加後、第1の塗布液2.4gを添加し、第4の塗布液を調製した。
【0213】
第1の塗布液の代わりに上記で調製した第4の塗布液を用い、さらに積算光量を1J/cm
2としたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0214】
(比較例1−5)
トリメチルアミンボラン(関東化学株式会社製)0.3gにジブチルエーテル24.6mlを添加後、第1の塗布液4.2gを添加し、第5の塗布液を調製した。
【0215】
第1の塗布液の代わりに上記で調製した第5の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0216】
(比較例1−6)
2,4,6−トリフェニルボラジン(SIGMA-ALDRICH株式会社製)0.69gにジブチルエーテル26mlを添加後、第1の塗布液2.3gを添加し、第6の塗布液を調製した。
【0217】
第1の塗布液の代わりに上記で調製した第6の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0218】
(比較例1−7)
トリス(ジブチルスルフィド)ロジウムトリクロライド(Gelest,Inc.製)0.002gに脱水キシレン51.9mlを添加後、ポリシラザン/キシレン溶液(NN110A−20、AZエレクトロニックマテリアルズ株式会社製)10gを加え、60℃で1時間攪拌し第7の塗布液を調製した。
【0219】
基材1上に、スピンコーターを用いて、乾燥後の膜厚が300nmとなるように上記第7の塗布液を塗布し、80℃で10分間乾燥させて、塗膜を得た。得られた塗膜に真空紫外線(株式会社エム・ディ・コム製エキシマ照射装置MODEL:MECL−M−1−200、波長172nm、ステージ温度100℃、積算光量3J/cm
2、酸素濃度0.1体積%)を照射してガスバリア性フィルムを製造した。
【0220】
(実施例1−1)
アルミニウムトリsec−ブトキシド(和光純薬工業株式会社製)0.176gにジブチルエーテル16mlを添加後、第1の塗布液2.97gを添加し、第8の塗布液を調製した。
【0221】
第1の塗布液の代わりに上記で調製した第8の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0222】
(実施例1−2)
アルミニウムトリsec−ブトキシド(和光純薬工業株式会社製)0.287gにジブチルエーテル16.6mlを添加後、第1の塗布液2.42gを添加し、第9の塗布液を調製した。
【0223】
第1の塗布液の代わりに上記で調製した第9の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0224】
(実施例1−3)
アルミニウムトリsec−ブトキシド(和光純薬工業株式会社製)0.418gにジブチルエーテル17.3mlを添加後、第1の塗布液1.76gを添加し、第10の塗布液を調製した。
【0225】
第1の塗布液の代わりに上記で調製した第10の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0226】
(実施例1−4)
アルミニウムトリsec−ブトキシド(和光純薬工業株式会社製)0.74gにジブチルエーテル26.3mlを添加後、第1の塗布液2.07gを添加し、第11の塗布液を調製した。
【0227】
第1の塗布液の代わりに上記で調製した第11の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0228】
(実施例1−5)
ガリウムイソプロポキシド(和光純薬工業株式会社製)0.287gにジブチルエーテル16.6mlを添加後、第1の塗布液2.41gを添加し、第12の塗布液を調製した。
【0229】
第1の塗布液の代わりに上記で調製した第12の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0230】
(実施例1−6)
インジウムイソプロポキシド(和光純薬工業株式会社製)0.318gにジブチルエーテル16.8mlを添加後、第1の塗布液2.26gを添加し、第13の塗布液を調製した。
【0231】
第1の塗布液の代わりに上記で調製した第13の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0232】
(実施例1−7)
マグネシウムエトキシド(和光純薬工業株式会社製)0.166gにジブチルエーテル15.9mlを添加後、第1の塗布液3.02gを添加し、第14の塗布液を調製した。
【0233】
第1の塗布液の代わりに上記で調製した第14の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0234】
(実施例1−8)
カルシウムイソプロポキシド(SIGMA-ALDRICH製)0.213gにジブチルエーテル16.2mlを添加後、第1の塗布液2.79gを添加し、第15の塗布液を調製した。
【0235】
第1の塗布液の代わりに上記で調製した第15の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0236】
(実施例1−9)
ホウ酸トリイソプロピル(和光純薬工業株式会社製)0.240gにジブチルエーテル16.3mlを添加後、第1の塗布液2.65gを添加し、第16の塗布液を調製した。
【0237】
第1の塗布液の代わりに上記で調製した第16の塗布液を用いたこと以外は、比較例1−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0238】
(実施例1−10)
アルミニウムsec−ブトキシド0.418gにジブチルエーテル17.3mlを添加後、第1の塗布液1.76gを添加し、60℃で1時間攪拌して、第17の塗布液を調製した。
【0239】
第1の塗布液の代わりに上記で調製した第17の塗布液を用い、その後、100℃で72時間加熱して製膜を行い、ガスバリア性フィルムを製造した。
【0240】
(XPS分析)
得られたガスバリア性フィルムについて、ガスバリア層の組成をXPS分析により測定した。XPS分析の条件を下記に示す。
【0241】
・装置:QUANTERASXM(アルバック・ファイ株式会社製)
・X線源:単色化Al−Kα
・測定領域:Si2p、C1s、N1s、O1s
・スパッタイオン:Ar(2keV)
・デプスプロファイル:1分間のスパッタ後に測定を繰り返す
・データ処理:MultiPak(アルバック・ファイ株式会社製)
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。
【0242】
XPS分析における領域の厚さ方向の長さについては、以下の補正を行った。すなわち、はじめにXPS分析によりSiO
2換算のエッチングレートからガスバリア層の厚さ方向の組成および厚さ方向の長さを求める。他方、同一試料についてTEM分析を行い、断面画像からガスバリア層の厚さを求める。そして、TEMの断面画像をXPS分析から求めたガスバリア層の厚さ方向の組成分布と対比して、厚さ方向の組成分布を特定した。x、y、およびzはシリコン含有膜内の厚さ方向の平均値にて算出した。
【0243】
《評価1:水蒸気バリア性の評価》
(水蒸気バリア性評価試料の作製装置)
蒸着装置:日本電子株式会社製、真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
(原材料)
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)。
【0244】
(水蒸気バリア性評価試料の作製)
真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE−400)を用い、作製したガスバリア性フィルムのシリコン含有膜(バリア層)表面に、マスクを通して12mm×12mmのサイズで金属カルシウムを蒸着させた。
【0245】
その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムを蒸着させて仮封止をした。次いで、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下に移して、アルミニウム蒸着面に封止用紫外線硬化樹脂(ナガセケムテックス株式会社製)を介して厚さ0.2mmの石英ガラスを張り合わせ、紫外線を照射して樹脂を硬化接着させて本封止することで、水蒸気バリア性評価試料を作製した。
【0246】
得られた試料(評価用セル)を60℃、90%RHの高温高湿下で保存し、特開2005−283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。水蒸気バリア性の評価は、下記の基準に従って行った。
【0247】
5:水蒸気透過率が5×10
−5g/(m
2・day)未満
4:水蒸気透過率が5×10
−5g/(m
2・day)以上、5×10
−4g/(m
2・day)未満
3:水蒸気透過率が5×10
−4g/(m
2・day)以上、5×10
−3g/(m
2・day)未満
2:水蒸気透過率が5×10
−3g/(m
2・day)以上、5×10
−2g/(m
2・day)未満
1:水蒸気透過率が5×10
−2g/(m
2・day)以上、5×10
−1g/(m
2・day)未満。
【0248】
《評価2:耐湿熱性評価》
作製したガスバリア性フィルムを85℃、85%RHの高温高湿条件下に100時間投入後、上記水蒸気バリア性評価試料を作製し、水蒸気バリア性を評価した。耐湿熱性は、(高温高湿暴露後の水蒸気透過率)/(高温高湿暴露前の水蒸気透過率)を算出し、これを耐湿熱性とした。上記式による数値が1に近いほど、耐湿熱性が良好であることを示している。
【0249】
《評価3:フッ酸エッチング評価》
基材をシリコンウエハに変え、上記比較例1−1〜1−4、および上記実施例1−1〜1−8と同様にシリコン含有膜(バリア層)を作製した。0.125重量%のフッ酸に、0分、1分、2分、3分浸漬したサンプルを用意し、膜厚をエリプソメーターにて測定した。3分間でエッチングされた膜厚よりエッチングレートを求めた。3分以内に膜が全てエッチングされてしまうサンプルに関しては、エッチングされてしまう直前の1分のエッチング速度から3分経過時のエッチング膜厚を換算し、エッチング速度を計算した。
【0250】
評価結果を下記表1に示す。
【0251】
【表1】
【0252】
上記表1から明らかなように、本発明のガスバリア性フィルムは、優れた水蒸気バリア性、および優れた耐湿熱性を有することがわかった。
【0253】
<基材2の作製>
(樹脂基材の準備)
2軸延伸のポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム株式会社製、商品名「テオネックス(登録商標)Q65FA」)を、樹脂基材として用いた。
【0254】
(アンカーコート層の形成)
上記樹脂基材の易接着面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)Z7501を乾燥後の層厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件として、80℃で3分間の乾燥を行った後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cm
2で硬化を行い、アンカーコート層を形成した。
【0255】
(バリア層の形成:ローラーCVD法)
図1に記載の磁場を印加したローラー間放電プラズマCVD装置(以下、この方法をローラーCVD法と称す。)を用い、樹脂基材のアンカーコート層を形成した面とは反対側の面が成膜ローラーと接触するようにして、樹脂基材を装置に装着し、下記の成膜条件(プラズマCVD条件)により、アンカーコート層上にバリア層を、厚さが300nmとなる条件で成膜した。
【0256】
〈プラズマCVD条件〉
原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
酸素ガス(O
2)の供給量:500sccm
真空チャンバ内の真空度:3Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
樹脂基材の搬送速度:2m/min。
【0257】
〈元素分布プロファイルの測定〉
上記形成したバリア層について、下記条件にてXPSデプスプロファイル測定を行い、層厚方向の薄膜層の表面からの距離における、ケイ素元素分布、酸素元素分布、炭素元素分布および酸素炭素分布を得た。
【0258】
エッチングイオン種:アルゴン(Ar
+)
エッチングレート(SiO
2熱酸化膜換算値):0.05nm/sec
エッチング間隔(SiO
2換算値):10nm
X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
照射X線:単結晶分光AlKα
X線のスポットおよびそのサイズ:800×400μmの楕円形。
【0259】
以上のようにして測定したバリア層全層領域におけるケイ素元素分布、酸素元素分布、炭素元素分布および酸素炭素分布より、膜組成における連続変化領域の有無、極値の有無、炭素の原子比率の最大値と最小値の差、全層厚の90%以上の領域において、ケイ素原子、酸素原子、および炭素原子の平均原子比率を求めた。
【0260】
その結果、膜組成における連続変化領域、および極値が存在し、ケイ素原子、酸素原子、および炭素原子の平均原子比率が、全層厚の90%以上の領域で、(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)の関係を満たしていることを確認した。
【0261】
(比較例2−1)
20質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(アクアミカ(登録商標)NN120−20:AZエレクトロニックマテリアルズ株式会社製)と、1質量%のアミン触媒(N,N,N’,N’−テトラメチル−1,6−ジアミノヘキサン)および19質量%パーヒドロポリシラザンを含むジブチルエーテル溶液(アクアミカ(登録商標)NAX120−20:AZエレクトロニックマテリアルズ株式会社製)とを4:1の比率で混合し、第18の塗布液を調製した。
【0262】
基材2上に、上記で調製した第13の塗布液をジブチルエーテルで希釈し、スピンコーターを用いて、乾燥後の膜厚が200nmとなるように塗布し、100℃で2分間乾燥させて、塗膜を得た。得られた塗膜に真空紫外線(株式会社エム・ディ・コム製エキシマ照射装置MODEL:MECL−M−1−200、波長172nm、ステージ温度100℃、積算光量3J/cm
2、酸素濃度0.1%)を照射してガスバリア性フィルムを製造した。
【0263】
(比較例2−2)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.025gにジブチルエーテル15.1mlを添加後、第18の塗布液3.73gを添加し、第19の塗布液を調製した。
【0264】
第18の塗布液の代わりに上記で調製した第19の塗布液を用いたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0265】
(比較例2−3)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.591gにジブチルエーテル18.3mlを添加後、第18の塗布液0.89gを添加し、第20の塗布液を調製した。
【0266】
第18の塗布液の代わりに上記で調製した第20の塗布液を用いたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0267】
(比較例2−4)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.306gにジブチルエーテル16.7mlを添加後、第18の塗布液2.32gを添加し、第21の塗布液を調製した。
【0268】
第18の塗布液の代わりに上記で調製した第16の塗布液を用い、さらに積算光量を1J/cm
2としたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0269】
(実施例2−1)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.191gにジブチルエーテル16.1mlを添加後、第18の塗布液2.89gを添加し、第22の塗布液を調製した。
【0270】
第18の塗布液の代わりに上記で調製した第22の塗布液を用いたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0271】
(実施例2−2)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.306gにジブチルエーテル16.7mlを添加後、第18の塗布液2.32gを添加し、第23の塗布液を調製した。
【0272】
第18の塗布液の代わりに上記で調製した第23の塗布液を用いたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0273】
(実施例2−3)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.438gにジブチルエーテル17.4mlを添加後、第18の塗布液1.66gを添加し、第24の塗布液を調製した。
【0274】
第18の塗布液の代わりに上記で調製した第24の塗布液を用いたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0275】
(実施例2−4)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.01gにジブチルエーテル19.9mlを添加後、第18の塗布液0.08gを添加し、第25の塗布液を調製した。
【0276】
第18の塗布液の代わりに上記で調製した第25の塗布液を用いたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0277】
(実施例2−5)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.08gにジブチルエーテル19.1mlを添加後、第18の塗布液0.62gを添加し、第26の塗布液を調製した。
【0278】
第18の塗布液の代わりに上記で調製した第26の塗布液を用いたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0279】
(実施例2−6)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.613gにジブチルエーテル13.4mlを添加後、第18の塗布液4.64gを添加し、第27の塗布液を調製した。
【0280】
第18の塗布液の代わりに上記で調製した第27の塗布液を用いたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0281】
(実施例2−7)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)1.22gにジブチルエーテル6.77mlを添加後、第18の塗布液9.27gを添加し、第28の塗布液を調製した。
【0282】
第18の塗布液の代わりに上記で調製した第28の塗布液を用いたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0283】
(実施例2−8)
ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート)0.487g、およびチタンテトライソプロポキシド0.304gにジブチルエーテル12.4mlを添加後、第18の塗布液4.93gを添加し、第29の塗布液を調製した。
【0284】
第18の塗布液の代わりに上記で調製した第29の塗布液を用いたこと以外は、比較例2−1と同様に製膜を行い、ガスバリア性フィルムを製造した。
【0285】
<有機EL素子の作製>
比較例2−1〜2−4および実施例2−1〜2−8で製造したガスバリア性フィルムを用いて、以下の方法で有機EL素子を作製した。
【0286】
第1電極層の形成
実施例1で製造したガスバリアフィルムのガスバリア層上に、厚さ150nmのITO(インジウムチンオキシド)をスパッタ法により成膜した。次いで、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターニングは発光面積が50mm平方となるように行った。
【0287】
正孔輸送層の形成
ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS:Baytron(登録商標) P AI 4083、Bayer社製)を純水65%およびメタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
【0288】
ガスバリア性フィルムの第1電極層が形成された面とは反対の面を洗浄表面改質処理した。当該洗浄表面改質処理には低圧水銀ランプ(波長:184.9nm、照射強度15mW/cm
2)を使用し、ガスバリア性フィルムとの距離が10mmとなる条件で行った。なお、帯電除去処理には、微弱X線による除電器を使用した。
【0289】
上記で形成した第1電極層上に、上記準備した正孔輸送層形成用塗布液を、大気中、25℃、相対湿度(RH)50%の条件で、乾燥後の厚みが50nmとなるように押出し塗布機を用いて塗布した。得られた塗膜について、吐出風速1m/s、幅手の風速分布5%、温度100℃の条件で、成膜面から高さ100mmの距離で送風することにより溶媒を除去し、次いで加熱処理装置により温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
【0290】
発光層の形成
ホスト材のH−Aを1.0gと、ドーパント材のD−Aを100mgと、ドーパント材のD−Bを0.2mgと、ドーパント材のD−Cを0.2mgと、を100gのトルエンに溶解し、白色発光層形成用塗布液として準備した。
【0291】
【化7】
【0292】
上記で形成した正孔輸送層上に、上記で準備した白色発光層形成用塗布液を窒素ガス濃度99%以上の雰囲気下、塗布温度25℃、塗布速度1m/minの条件で、乾燥後の厚みが40nmとなるように押出し塗布機を用いて塗布した。得られた塗膜について、吐出風速1m/s、幅手の風速分布5%、温度60℃の条件で、成膜面から高さ100mmの距離で送風することにより溶媒を除去し、次いで加熱処理装置により温度130℃で裏面伝熱方式の熱処理を行い、発光層を形成した。
【0293】
電子輸送層の形成
下記E−Aを、0.5質量%溶液となるように2,2,3,3−テトラフルオロ−1−プロパノール中に溶解し、電子輸送層形成用塗布液を準備した。
【0294】
【化8】
【0295】
上記で形成した発光層上に、上記で準備した電子輸送層形成用塗布液を窒素ガス濃度99%以上の雰囲気下、塗布温度25℃、塗布速度1m/minの条件で、乾燥後の厚みが30nmとなるように押出し塗布機を用いて塗布した。得られた塗膜について、吐出風速1m/s、幅手の風速分布5%、温度60℃の条件で、成膜面から高さ100mmの距離で送風することにより溶媒を除去し、次いで加熱処理装置により温度200℃で裏面伝熱方式の熱処理を行い、電子輸送層を形成した。
【0296】
電子注入層の形成
上記で形成した電子輸送層上に、電子注入層を形成した。より詳細には、第1電極層、正孔輸送層、発光層、および電子輸送層を備えるガスバリア性フィルムを減圧チャンバに投入し、5×10
−4Paまで減圧した。減圧チャンバ内に予め準備していたタンタル製蒸着ボートのフッ化セシウムを加熱することで、厚さ3nmの電子注入層を形成した。
【0297】
第2電極の形成
第1電極上に取り出し電極になる部分を除き、上記で形成した電子注入層上に第2電極を形成した。より詳細には、第1電極層、正孔輸送層、発光層、電子輸送層、および電子注入層を備えるガスバリア性フィルムを減圧チャンバに投入し、5×10
−4Paまで減圧した。第2電極形成材料としてアルミニウム用いて、取り出し電極を有し、かつ、発光面積が50mm×50mmとなるように蒸着法でマスクパターン成膜して、第2電極を形成した。なお、第2電極の厚さは100nmであった。
【0298】
裁断
第2電極まで形成したガスバリア性フィルムを、窒素雰囲気に移動させて、紫外線レーザーを用いて規定の大きさに裁断した。
【0299】
電極リード接続
裁断したガスバリア性フィルムに、異方性導電フィルムDP3232S9(ソニーケミカル&インフォメーションデバイス株式会社製)を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。この際、温度170℃(別途熱電対を用いて測定したACF温度140℃)、圧力2MPaで10秒間圧着を行うことで接続を行った。
【0300】
封止
電極リード(フレキシブルプリント基板)を接続したガスバリア性フィルムを、市販のロールラミネート装置を用いて封止部材を接着することで、有機EL素子1を作製した。より詳細には、封止部材には、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を介してラミネートしたもの(接着剤層の厚み1.5μm)を用いた。封止部材を接着するための接着剤としては、エポキシ系接着剤であるビスフェノールAジグリシジルエーテル(DGEBA)、ジシアンジアミド(DICY)、およびエポキシアダクト系硬化促進剤を含む熱硬化性接着剤を用いた。ディスペンサを使用して、アルミニウム面にアルミ箔の接着面(つや面)に沿って厚み20μmで熱硬化性接着剤を均一に塗布した。次いで、封止部材を、取り出し電極および電極リードの接合部を覆うようにして密着・配置し、圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minの条件で圧着ロールにより密着封止した。
【0301】
<湿熱前ダークスポット(DS)評価>
作製した有機EL素子に電圧をかけ発光させた際に、発光すべき領域内における発光しない点(ダークスポット、DS)の面積を測定し、下記基準により評価した。
【0302】
◎:発光すべき領域内におけるDSの面積が0.05%未満である
○:発光すべき領域内におけるDSの面積が0.05%以上1%未満である
△:発光すべき領域内におけるDSの面積が1%以上5%未満である
×:発光すべき領域内におけるDSの面積が5%以上である。
【0303】
<湿熱後ダークスポット(DS)評価>
85℃、85%RHに100時間曝した比較例2−1〜2−4、および実施例2−1〜2−8のガスバリア性フィルムを用いたこと以外は、上記と同様にして、有機EL素子を作製し、上記と同様の方法によりダークスポット(DS)の評価を行った。
【0304】
評価結果を下記表2に示す。
【0305】
【表2】
【0306】
上記表2から明らかなように、本発明のガスバリア性フィルムを用いた有機EL素子は、優れた耐湿熱性を有することが分かった。
【0307】
なお、本出願は、2013年1月11日に出願された日本特許出願第2013−003640号、および2013年2月14日に出願された日本特許出願第2013−026892号に基づいており、その開示内容は、参照により全体として引用されている。