【実施例】
【0012】
図1は、本発明が適用される車両10の概略構成を説明する図であると共に、車両10における各種制御の為の制御機能及び制御系統の要部を説明する図である。
図1において、車両10は、走行用の駆動力源としてのエンジン12と、駆動輪14と、エンジン12と駆動輪14との間に設けられた動力伝達装置16とを備えている。動力伝達装置16は、非回転部材としてのハウジング17内において、エンジン12に連結された流体式伝動装置としての公知のトルクコンバータ18、トルクコンバータ18に連結されたタービン軸20、タービン軸20に連結された前後進切替装置22、前後進切替装置22に連結された入力軸24、入力軸24に連結された無段変速機26、無段変速機26に連結された出力軸28、減速歯車装置30、差動歯車装置32等を備えている。このように構成された動力伝達装置16において、エンジン12の動力(特に区別しない場合にはトルクや力も同義)は、トルクコンバータ18、前後進切替装置22、無段変速機26、減速歯車装置30、差動歯車装置32等を順次介して、左右の駆動輪14へ伝達される。
【0013】
トルクコンバータ18は、エンジン12に連結されたポンプ翼車18p、及びタービン軸20に連結されたタービン翼車18tを備えている。ポンプ翼車18pには、無段変速機26を変速制御したり、無段変速機26におけるベルト挟圧力を発生させたり、後述する前進用クラッチC1及び後進用ブレーキB1の各々の作動を切り替えたり、動力伝達装置16の各部に潤滑油を供給したりする為の作動油圧をエンジン12により回転駆動されることにより発生する機械式のオイルポンプ34が連結されている。
【0014】
前後進切替装置22は、ダブルピニオン型の遊星歯車装置22p、前進用クラッチC1、及び後進用ブレーキB1を備えている。遊星歯車装置22pのサンギヤ22sはタービン軸20に連結され、遊星歯車装置22pのキャリア22cは入力軸24に連結され、遊星歯車装置22pのリングギヤ22rは後進用ブレーキB1を介してハウジング17に選択的に連結されている。又、キャリア22cとサンギヤ22sとは前進用クラッチC1を介して選択的に連結される。前進用クラッチC1及び後進用ブレーキB1は、公知の油圧式摩擦係合装置である。このように構成された前後進切替装置22では、前進用クラッチC1が係合されると共に後進用ブレーキB1が解放されると、前進用の動力伝達経路が形成される。又、後進用ブレーキB1が係合されると共に前進用クラッチC1が解放されると、後進用の動力伝達経路が形成される。又、前進用クラッチC1及び後進用ブレーキB1が共に解放されると、前後進切替装置22は動力伝達を遮断するニュートラル状態(動力伝達遮断状態)とされる。
【0015】
無段変速機26は、入力軸24に設けられた有効径が可変のプライマリプーリ36と、出力軸28に設けられた有効径が可変のセカンダリプーリ38と、それら各プーリ36,38の間に巻き掛けられた伝達要素としての伝動ベルト40とを備え、それら各プーリ36,38と伝動ベルト40との間の摩擦力を介してエンジン12の動力を駆動輪14側へ伝達する。
【0016】
プライマリプーリ36は、入力軸24に固定された固定シーブ36aと、入力軸24に対して軸回りの相対回転不能且つ軸方向の移動可能に設けられた可動シーブ36bと、それら各シーブ36a,36bの間のV溝幅を変更する為のプライマリプーリ36におけるプライマリ推力Win(=プライマリ圧Pin×受圧面積Ain)を付与する油圧アクチュエータとしての油圧シリンダ36cとを備えている。又、セカンダリプーリ38は、出力軸28に固定された固定シーブ38aと、出力軸28に対して軸回りの相対回転不能且つ軸方向の移動可能に設けられた可動シーブ38bと、それら各シーブ38a,38bの間のV溝幅を変更する為のセカンダリプーリ38におけるセカンダリ推力Wout(=セカンダリ圧Pout×受圧面積Aout)を付与する油圧アクチュエータとしての油圧シリンダ38cとを備えている。プライマリ圧Pinは油圧シリンダ36cへ供給される油圧であり、セカンダリ圧Poutは油圧シリンダ38cへ供給される油圧である。各油圧Pin,Poutは、各々、可動シーブ36b,38bを固定シーブ側36a,38aへ押圧する推力Win,Woutを付与するプーリ油圧である。
【0017】
無段変速機26では、車両10に備えられた油圧制御回路50によってプライマリ圧Pin及びセカンダリ圧Poutが各々調圧制御されることにより、プライマリ推力Win及びセカンダリ推力Woutが各々制御される。これにより、各プーリ36,38のV溝幅が変化して伝動ベルト40の掛かり径(有効径)が変更され、変速比(ギヤ比)γ(=入力軸回転速度Nin/出力軸回転速度Nout)が変化させられると共に、伝動ベルト40が滑りを生じないように各プーリ36,38と伝動ベルト40との間の摩擦力(すなわち挟圧力;以下ベルト挟圧力という)が制御される。つまり、プライマリ圧Pin(プライマリ推力Winも同意)及びセカンダリ圧Pout(セカンダリ推力Woutも同意)が各々制御されることで、伝動ベルト40の滑りが防止されつつ実変速比γが目標変速比γtgtとされる。
【0018】
車両10は、更に、エンジン12の動力によって作動する補機と、車両10の制御装置としての電子制御装置60とを備えている。上記補機は、例えばベルト等を介してエンジン12に連結されたオルタネータ52、ベルトや電磁クラッチ(不図示)等を介してエンジン12に連結されたエアコン用コンプレッサ54等であり、それぞれエンジン12により駆動される。オルタネータ52が発電している間、エンジン12にはオルタネータ52の作動に伴う負荷が発生する。上記電磁クラッチが係合状態である間、エンジン12にはエアコン用コンプレッサ54の作動に伴う負荷が発生する。
【0019】
電子制御装置60は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置60は、エンジン12の出力制御、無段変速機26のベルト挟圧力制御を含む変速制御等を実行するようになっており、必要に応じてエンジン制御用、油圧制御用等に分けて構成される。
【0020】
電子制御装置60には、車両10が備える各種センサ(例えば各種回転速度センサ70,72,74,76、アクセル開度センサ78、スロットル開度センサ80、電流センサ82、エアコンを駆動する為のエアコンスイッチ84、内気センサ86など)による検出信号に基づく各種実際値(例えばエンジン回転速度Ne、タービン軸20の回転速度であるタービン回転速度Nt、入力軸回転速度Nin、車速Vに対応する出力軸回転速度Nout、アクセル操作部材(例えば公知のアクセルペダル)の操作量であるアクセル開度pap、エンジン12の吸気管に設けられた電子スロットル弁の開き角(又は開き量)であるスロットル開度tap、オルタネータ52の発電電流Igen、エアコン用コンプレッサ54が稼働していることを表すエアコンオン信号A/Con、車室内の気温を表す室温THrなど)が、それぞれ供給される。
【0021】
又、電子制御装置60からは、車両10に設けられた各装置(例えばエンジン12、油圧制御回路50、オルタネータ52、エアコン用コンプレッサ54、電磁クラッチなど)に各種出力信号(例えばエンジン12の出力制御の為のエンジン出力制御指令信号Se、無段変速機26の変速等に関する油圧制御の為の油圧制御指令信号Scvt、前進用クラッチC1や後進用ブレーキB1の係合作動に関する油圧制御の為の油圧制御指令信号Sclt、オルタネータ52の発電状態を制御する為の発電電圧指令信号Sgen、電磁クラッチを係合状態としてエアコン用コンプレッサ54を駆動したり、室温THr等に基づくエアコン用コンプレッサ54の容量を制御する為のエアコン制御指令信号Sacなど)が供給される。
【0022】
アクセル開度papは、運転者が車両10(又はエンジン12)に対して要求する出力(駆動力)を表している。つまり、アクセル開度papは、運転者の車両10(又はエンジン12)に対する出力要求量、すなわち運転者の操作に基づいた出力要求量である。又、スロットル開度tapは、アクセル開度papに対応したエンジン12の出力を実現するときに作動させられる電子スロットル弁56の開き角であり、運転者の操作に基づいた出力要求量と見ることができる。本実施例では、このスロットル開度tapをドライバ要求スロットル開度tapdと称す。又、後述するように、電子制御装置60は、無段変速機26の変速制御に用いる出力要求量(すなわち変速比制御用出力要求量)に基づいて無段変速機26の目標変速比γtgtを算出する。この変速比制御用出力要求量は、演算により求められる擬似的な出力要求量である。本実施例では、出力要求量としてスロットル開度tapを用いるが、アクセル開度papに置換え可能であることは言うまでもない。従って、本実施例では、変速比制御用出力要求量として変速比制御用スロットル開度tapshを例示するが、変速比制御用アクセル開度papshであっても良い。
【0023】
電子制御装置60は、要求駆動力算出手段すなわち要求駆動力算出部62、自動車速制御手段すなわち自動車速制御部64、エンジン出力制御手段すなわちエンジン出力制御部66、及び無段変速機制御手段すなわち無段変速機制御部68を備えている。
【0024】
要求駆動力算出部62は、アクセル開度papをドライバ要求スロットル開度tapdに変換する。要求駆動力算出部62は、例えば
図2に示すような予め実験的に或いは設計的に求められて記憶された(すなわち予め定められた)スロットル開度マップに実際のアクセル開度papを適用することで、ドライバ要求スロットル開度tapdを算出する。
【0025】
要求駆動力算出部62は、ドライバ要求スロットル開度tapdをドライバ要求エンジントルクTedに変換する。要求駆動力算出部62は、例えば
図3に示すような予め定められたエンジントルクマップにドライバ要求スロットル開度tapd及び無段変速機26の目標入力軸回転速度Nintgt(又は目標入力軸回転速度Nintgtから換算したエンジン回転速度Ne)を適用することで、ドライバ要求エンジントルクTedを算出する。上記エンジントルクマップは、エンジントルクTeと入力軸回転速度Nin(又はエンジン回転速度Ne)とスロットル開度tapとの予め定められた関係である。尚、前進走行時には、前進用クラッチC1の係合によりタービン回転速度Ntと入力軸回転速度Ninとは一致するので、エンジン回転速度Neと入力軸回転速度Ninとは、(Ne=Nin÷e;eはトルクコンバータ18の速度比)の関係で表される。従って、エンジン回転速度Neと入力軸回転速度Ninとは置換可能である。又、トルクコンバータ18に設けられたロックアップクラッチの係合時には、タービン回転速度Nt(入力軸回転速度Nin)とエンジン回転速度Neとは一致する。
【0026】
要求駆動力算出部62は、ドライバ要求エンジントルクTedをドライバ要求駆動力Fdemdに変換する。要求駆動力算出部62は、例えば次式(1)を用いて、ドライバ要求駆動力Fdemdを算出する。次式(1)において、tはトルクコンバータ18のトルク比(=タービントルクTt/ポンプトルクTp)であり、γtgtは無段変速機26の目標変速比γtgtであり、iは減速歯車装置30や差動歯車装置32等の減速比であり、rwは駆動輪14のタイヤ有効半径である。このように、要求駆動力算出部62は、アクセル開度pap(又はドライバ要求スロットル開度tapd)に応じた要求駆動力Fdemであるドライバ要求駆動力Fdemdを算出する。尚、トルク比tは、トルクコンバータ18の速度比e(=タービン回転速度Nt/ポンプ回転速度Np(すなわちエンジン回転速度Ne))の関数であり、速度比eとトルク比tとの予め定められた関係(マップ)に実際の速度比eを適用することで算出される。
Fdemd = Ted×t×γtgt×i÷rw …(1)
【0027】
自動車速制御部64は、アクセル開度papに拘わらず実際の車速V(実車速V)を制御する自動車速制御に用いる他システム要求駆動力Fdemvを算出する。自動車速制御部64は、運転者により設定された目標車速Vtgtに基づいて車速Vを制御する他システム要求駆動力Fdemvを算出する。上記自動車速制御は、例えば運転者により設定された目標車速Vtgtへ車速Vを追従させるように駆動力Fを制御する公知のクルーズコントロールである。又、上記自動車速制御は、例えば車速Vが運転者により設定された目標車速Vtgtを超えないように駆動力Fを制御する(すなわち駆動力Fに上限ガードがかかる)公知の自動車速制限制御(ASL(Adjustable Speed Limiter))である。このように、自動車速制御部64は、運転者の運転を支援する自動車速制御による要求駆動力Fdemである他システム要求駆動力Fdemvを算出する。電子制御装置60は、アクセル開度papに拘わらず他システム要求駆動力Fdemvを設定し、他システム要求駆動力Fdemvに基づいて駆動力制御(自動車速制御)を実行する。
【0028】
要求駆動力算出部62は、ドライバ要求駆動力Fdemd及び他システム要求駆動力Fdemvのうちで、何れの要求駆動力Fdemを優先させるかを、予め定められた駆動力調停手順に従って選択し、この選択した要求駆動力Fdemを調停後要求駆動力Fdemaに設定する。上記駆動力調停手順は、例えばドライバ要求駆動力Fdemdとクルーズコントロールによる他システム要求駆動力Fdemvとでは、マックスセレクトするように定められている。又、上記駆動力調停手順は、例えばドライバ要求駆動力FdemdとASLによる他システム要求駆動力Fdemvとでは、ミニマムセレクトするように定められている。
【0029】
エンジン出力制御部66は、調停後要求駆動力Fdemaを実現する為の目標エンジントルクTetgtを例えば次式(2)を用いて算出する。次式(2)において、rw、γtgt、i、tは、前記式(1)と同じである。
Tetgt = (Fdema×rw)÷(γtgt×i×t) …(2)
【0030】
エンジン出力制御部66は、目標エンジントルクTetgtが得られる目標スロットル開度taptgtを算出する。エンジン出力制御部66は、例えば
図3に示すような予め定められたエンジントルクマップに目標エンジントルクTetgt及び無段変速機26の目標入力軸回転速度Nintgt(又は目標入力軸回転速度Nintgtから換算したエンジン回転速度Ne)を適用することで、目標スロットル開度taptgtを算出する。エンジン出力制御部66は、目標エンジントルクTetgtが得られるように、実際のスロットル開度tapを目標スロットル開度taptgtとする為のエンジン出力制御指令信号Seをスロットルアクチュエータへ出力する。加えて、エンジン出力制御部66は、目標エンジントルクTetgtが得られるように、噴射信号や点火時期信号などのエンジン出力制御指令信号Seをそれぞれ燃料噴射装置や点火装置へ出力する。
【0031】
無段変速機制御部68は、変速比制御用スロットル開度tapshに基づいて無段変速機26の目標変速比γtgtを算出する。無段変速機制御部68は、例えば
図4に示すような予め定められた変速マップに、車速V(又は出力軸回転速度Nout)及び変速比制御用スロットル開度tapshを適用することで、目標入力軸回転速度Nintgtを算出する。無段変速機制御部68は、この目標入力軸回転速度Nintgtに基づいて目標変速比γtgt(=Nintgt/Nout)を算出する。
図4の変速マップは、スロットル開度tapをパラメータとした車速V(又は出力軸回転速度Nout)と目標入力軸回転速度Nintgtとの予め定められた関係である。この変速マップは、運転性(動力性能)と燃費性(燃費性能)とを両立させる為の変速条件に相当するものであり、例えばエンジン動作点PEをエンジン12の最適燃費線Lfeに沿わせる目標入力軸回転速度Nintgtが設定されるように予め定められている。従って、無段変速機制御部68は、エンジン動作点PEを最適燃費線Lfeに沿わせるように無段変速機26の変速制御を行う。上記エンジン動作点PEは、エンジン回転速度NeとエンジントルクTeとで定められるエンジン12の動作点(運転点)である。上記最適燃費線Lfeは、目標入力軸回転速度Nintgt(又はエンジン回転速度Ne)とエンジントルクTeとで構成される二次元座標内において、運転性と燃費性とを両立するように予め定められた公知の関係(燃費マップ)である(
図5参照)。
【0032】
無段変速機制御部68は、要求駆動力算出部62による選択結果(すなわち調停結果)がドライバ要求駆動力Fdemdであるときには、ドライバ要求スロットル開度tapdを変速比制御用スロットル開度tapshに設定する。一方で、無段変速機制御部68は、要求駆動力算出部62による選択結果が他システム要求駆動力Fdemvであるときには、目標エンジントルクTetgtが得られる仮想のスロットル開度(仮想スロットル開度)tapiを変速比制御用スロットル開度tapshに設定する。無段変速機制御部68は、例えば
図3に示すような予め定められたエンジントルクマップに目標エンジントルクTetgt及び無段変速機26の目標入力軸回転速度Nintgt(又は目標入力軸回転速度Nintgtから換算したエンジン回転速度Ne)を適用することで、仮想スロットル開度tapiを算出する。このように、無段変速機制御部68は、要求駆動力算出部62による選択結果に基づいてドライバ要求スロットル開度tapd及び仮想スロットル開度tapiのうちの何れかを変速比制御用スロットル開度tapshとして選択(設定)する、スロットル開度調停を実行する。無段変速機制御部68は、要求駆動力算出部62による選択結果がドライバ要求駆動力Fdemdであるときには、ドライバ要求スロットル開度tapdに基づいて無段変速機26の目標変速比γtgtを算出する一方で、要求駆動力算出部62による選択結果が他システム要求駆動力Fdemvであるときには、仮想スロットル開度tapiに基づいて無段変速機26の目標変速比γtgtを算出する。
【0033】
無段変速機制御部68は、例えば無段変速機26のベルト滑りが発生しないようにしつつ無段変速機26の目標変速比γtgtを達成するように、プライマリ圧Pinの目標値(以下、目標プライマリ圧Pintgtという)と、セカンダリ圧Poutの目標値(以下、目標セカンダリ圧Pouttgt)とを決定し、目標プライマリ圧Pintgtと目標セカンダリ圧Pouttgtとに各々対応する油圧制御指令信号Scvtを油圧制御回路50へ出力する。
【0034】
ここで、電子制御装置60は、変速比制御用スロットル開度tapshを前記補機(オルタネータ52、エアコン用コンプレッサ54等)による負荷トルク(補機負荷トルク)Tauxに応じて補正する、スロットル開度補正手段すなわちスロットル開度補正部69を更に備えている。この補機負荷トルクTauxは、調停後要求駆動力Fdemaを実現する為に、目標エンジントルクTetgtに対して上乗せされるエンジントルクTe分である。
【0035】
スロットル開度補正部69は、目標エンジントルクTetgtと補機負荷トルクTauxとに基づいて、変速比制御用スロットル開度tapshの補正量(スロットル開度補正量)Δtapを算出する。つまり、スロットル開度補正部69は、補機負荷トルクTauxに応じたスロットル開度補正量Δtapを算出する。
【0036】
具体的には、スロットル開度補正部69は、例えば予め定められた関係に発電電圧指令信号Sgen及びオルタネータ52の発電電流Igen等を適用することでオルタネータ52による負荷トルクTaltを算出する。スロットル開度補正部69は、例えば予め定められた関係にエアコン制御指令信号Sacを適用することでエアコン用コンプレッサ54の稼働容量を算出し、予め定められた関係にそのエアコン用コンプレッサ54の稼働容量等を適用することでエアコン用コンプレッサ54による負荷トルクTacを算出する。スロットル開度補正部69は、オルタネータ52による負荷トルクTaltやエアコン用コンプレッサ54による負荷トルクTacなどを合算して補機負荷トルクTauxを算出する。スロットル開度補正部69は、目標エンジントルクTetgtと補機負荷トルクTauxとを合算して負荷分加算エンジントルクTea(=Tetgt+Taux)を算出する。スロットル開度補正部69は、例えば
図3に示すような予め定められたエンジントルクマップに目標エンジントルクTetgt及び無段変速機26の目標入力軸回転速度Nintgt(又は目標入力軸回転速度Nintgtから換算したエンジン回転速度Ne)を適用することで、基本のスロットル開度(基本スロットル開度)tapbを算出する。スロットル開度補正部69は、例えば
図3に示すような予め定められたエンジントルクマップに負荷分加算エンジントルクTea及び無段変速機26の目標入力軸回転速度Nintgt(又は目標入力軸回転速度Nintgtから換算したエンジン回転速度Ne)を適用することで、補機負荷トルクTaux分を加えたスロットル開度(負荷分加算スロットル開度)tapeaを算出する。スロットル開度補正部69は、負荷分加算スロットル開度tapeaから基本スロットル開度tapbを減算してスロットル開度補正量Δtap(=tapea−tapb)を算出する。
【0037】
スロットル開度補正部69は、変速比制御用スロットル開度tapsh(ドライバ要求スロットル開度tapd又は仮想スロットル開度tapi)に、スロットル開度補正量Δtapを加えて補正後の変速比制御用スロットル開度(補正後変速比制御用スロットル開度)tapshc(=tapsh+Δtap)を算出する。従って、無段変速機制御部68は、実際には、補正後変速比制御用スロットル開度tapshcに基づいて無段変速機26の目標変速比γtgtを算出する。
【0038】
ところで、スロットル開度補正量Δtapが変化する分、補正後変速比制御用スロットル開度tapshcが変化するので、目標入力軸回転速度Nintgtや目標変速比γtgtが変化してエンジン動作点PEも変化する。そうすると、運転者がアクセルペダルを操作していないにも拘わらずスロットル開度補正量Δtapの変化によってエンジン回転速度Neが変化する可能性があり、運転者に違和感を生じさせるおそれがある。これに対して、本実施例では、スロットル開度補正部69は、スロットル開度補正量Δtapの変化になましをかけるなまし処理を実行する。但し、エンジン回転速度Neが上昇するときの方が違和感を生じ易く、エンジン回転速度Neが低下するときは違和感を生じ難いと考えられる。又、なまし処理によってエンジン動作点PEの最適燃費線Lfe上への移動が遅れる可能性がある。その為、エンジン回転速度Neが上昇するときには、なまし処理を実行して違和感を生じ難くすることが望ましい。反面、エンジン回転速度Neが低下するときには、なまし処理を実行せず、エンジン動作点PEの最適燃費線Lfe上への移動を遅延させないことが望ましい。
【0039】
そこで、スロットル開度補正部69は、補機負荷トルクTauxに応じた補正が補正後変速比制御用スロットル開度tapshcを前回値に対して増加させる場合は(すなわちスロットル開度補正量Δtapが前回値に対して増加する側に変化する場合は)、補正後変速比制御用スロットル開度tapshcの変化のなまし処理(すなわちスロットル開度補正量Δtapの変化のなまし処理)を実行する。一方で、スロットル開度補正部69は、補機負荷トルクTauxに応じた補正が補正後変速比制御用スロットル開度tapshcを前回値に対して減少させる場合は(すなわちスロットル開度補正量Δtapが前回値に対して減少する側に変化する場合は)、上記なまし処理を実行しない。
【0040】
前記なまし処理は、例えばスロットル開度補正量Δtapの変化を遅延するフィルタ処理(例えばローパスフィルタによるフィルタ処理)である。又は、前記なまし処理は、例えばスロットル開度補正量Δtapの変化を所定変化量にて制限するガード処理(すなわちスロットル開度補正量Δtapの前回値からの変化量の上限を所定変化量とするガード処理)である。上記フィルタ処理におけるフィルタ係数や所定変化量は、例えばエンジン回転速度Neの上昇による運転者への違和感を生じ難くすると共にエンジン動作点PEの変化を抑制し過ぎない値として予め定められる。
【0041】
図6は、電子制御装置60の制御作動の要部、すなわち変速比制御用スロットル開度tapshを補機負荷トルクTauxに応じて補正する際に、運転者の違和感を低減し、燃費低下を抑制する為の制御作動を説明するブロック図であって、制御作動を示すフローチャートに相当するものであり、例えば繰り返し実行される。又、
図7は、
図6のフローチャートにおける、スロットル開度補正量Δtapを算出するブロックの内容を説明するサブブロック図である。
【0042】
図6において、要求駆動力算出部62に対応するブロック(以下、ブロックを省略する)B10において、
図2に示すスロットル開度マップを用いてアクセル開度papがドライバ要求スロットル開度tapdに変換される。次いで、要求駆動力算出部62に対応するB20において、
図3に示すエンジントルクマップにドライバ要求スロットル開度tapd及び目標入力軸回転速度Nintgt(又は目標入力軸回転速度Nintgtから換算したエンジン回転速度Ne)が適用されることでドライバ要求エンジントルクTedが算出される。次いで、要求駆動力算出部62に対応するB30において、前記式(1)を用いてドライバ要求エンジントルクTedがドライバ要求駆動力Fdemdに変換される。上記B10−B30の実行に並行して、自動車速制御部64に対応するB40において、運転者により設定された目標車速Vtgtに基づいて車速Vを制御する他システム要求駆動力Fdemvが算出される。上記B30に次いで、及び上記B40に次いで、要求駆動力算出部62に対応するB50において、B30にて算出されたドライバ要求駆動力Fdemd及びB40にて算出された他システム要求駆動力Fdemvのうちで、何れの要求駆動力Fdemを優先させるかが、予め定められた駆動力調停手順に従って選択され、この選択された要求駆動力Fdemが調停後要求駆動力Fdemaに設定される。次いで、エンジン出力制御部66に対応するB60において、調停後要求駆動力Fdemaを実現する為の目標エンジントルクTetgtが前記式(2)を用いて算出される。同じく上記50に次いで、上記B60の実行に並行して、エンジン出力制御部66に対応するB70において、上記B60と同様に、調停後要求駆動力Fdemaを実現する為の目標エンジントルクTetgtが前記式(2)を用いて算出される。次いで、無段変速機制御部68に対応するB80において、例えば
図3に示すエンジントルクマップに目標エンジントルクTetgt及び目標入力軸回転速度Nintgt(又は目標入力軸回転速度Nintgtから換算したエンジン回転速度Ne)が適用されることで仮想スロットル開度tapiが算出される。上記B10に次いで、及び上記B80に次いで、無段変速機制御部68に対応するB90において、上記B50における要求駆動力Fdemの選択結果(調停結果)に基づいて、B10にて算出されたドライバ要求スロットル開度tapd及びB80にて算出された仮想スロットル開度tapiのうちの何れかが変速比制御用スロットル開度tapshとして選択(設定)される。具体的には、上記B50における調停結果がドライバ要求駆動力Fdemdであるときには、ドライバ要求スロットル開度tapdが変速比制御用スロットル開度tapshに設定される。一方で、上記B50における選択結果が他システム要求駆動力Fdemvであるときには、仮想スロットル開度tapiが変速比制御用スロットル開度tapshに設定される。上記B90の実行に並行して、スロットル開度補正部69に対応するB100において、目標エンジントルクTetgt、補機負荷トルクTaux、及び目標入力軸回転速度Nintgt(又は目標入力軸回転速度Nintgtから換算したエンジン回転速度Ne)に基づいて、補機負荷トルクTauxに応じたスロットル開度補正量Δtapが算出される。具体的には、
図7において、上記B100内のB102では、目標エンジントルクTetgtと補機負荷トルクTauxとが合算されて負荷分加算エンジントルクTeaが算出される。又、上記B100内のB104では、例えば
図3に示すエンジントルクマップに目標エンジントルクTetgt及び目標入力軸回転速度Nintgt(又は目標入力軸回転速度Nintgtから換算したエンジン回転速度Ne)が適用されることで基本スロットル開度tapbが算出される。又、上記B100内のB106では、上記B104の実行に並行して、例えば
図3に示すエンジントルクマップに負荷分加算エンジントルクTea及び目標入力軸回転速度Nintgt(又は目標入力軸回転速度Nintgtから換算したエンジン回転速度Ne)が適用されることで負荷分加算スロットル開度tapeaが算出される。又、上記B100内のB108では、負荷分加算スロットル開度tapeaから基本スロットル開度tapbが減算されてスロットル開度補正量Δtapが算出される。又、上記B100内のB109では、スロットル開度補正量Δtapが前回値に対して増加する側に変化する場合はスロットル開度補正量Δtapの変化のなまし処理が実行される。一方で、スロットル開度補正量Δtapが前回値に対して減少する側に変化する場合は上記なまし処理が実行されない。
図6に戻り、上記B90に次いで、及び上記B100に次いで、スロットル開度補正部69に対応するB110において、変速比制御用スロットル開度tapshにスロットル開度補正量Δtapが加えられて補正後変速比制御用スロットル開度tapshcが算出される。上記B110に次いで、無段変速機制御部68に対応するB120において、
図4に示す変速マップに車速V(又は出力軸回転速度Nout)及び補正後変速比制御用スロットル開度tapshcが適用されることで目標入力軸回転速度Nintgtが算出される。又、この目標入力軸回転速度Nintgtに基づいて目標変速比γtgt(=Nintgt/Nout)が算出される。
【0043】
上述のように、本実施例によれば、補機負荷トルクTauxを加味して変速比制御用スロットル開度tapsh(補正後変速比制御用スロットル開度tapshc)を算出することで、補機(例えばオルタネータ52、エアコン用コンプレッサ54等)の駆動時にもエンジン12を燃費の良いエンジン動作点PEにて作動させることができる。
【0044】
また、本実施例によれば、変速比制御用スロットル開度tapshを補機負荷トルクTauxに応じて補正する際に、エンジン回転速度Neが上昇する側となる、補正後変速比制御用スロットル開度tapshcを増加させる補正時は、スロットル開度補正量Δtapの変化(見方を換えれば補正後変速比制御用スロットル開度tapshc変化)のなまし処理によりエンジン回転速度Neが急変しないので、運転者の違和感を低減することができる。又、エンジン回転速度Neが低下する側となる補正は加速感に繋がらず運転者に違和感を生じさせ難いことから、補正後変速比制御用スロットル開度tapshcを減少させる補正時は、上記なまし処理を不実施とすることでエンジン動作点PEを早期に変更することができ、燃費低下を抑制することができる。
【0045】
また、本実施例によれば、前記なまし処理は、スロットル開度補正量Δtapの変化を遅延するフィルタ処理、又は、スロットル開度補正量Δtapの変化を所定変化量にて制限するガード処理であるので、スロットル開度補正量Δtapの変化(見方を換えれば補正後変速比制御用スロットル開度tapshc変化)のなまし処理を適切に実行することができる。
【0046】
また、本実施例によれば、アクセル開度pap(又はドライバ要求スロットル開度tapd)に応じたドライバ要求駆動力Fdemdと自動車速制御に用いる他システム要求駆動力Fdemvとを調停した後の調停後要求駆動力Fdemaに基づいて、エンジントルク制御と変速制御とを行う車両10の制御装置において、自動車速制御に用いる他システム要求駆動力Fdemvが選択される場合、ドライバ要求駆動力Fdemdが選択される場合と同様に、エンジン動作点PEを最適燃費線Lfeに沿わせるように予め定められた変速マップを用いて設定された目標入力軸回転速度Nintgtや目標変速比γtgtを使って仮想スロットル開度tapiが算出されるので、エンジン12を燃費の良いエンジン動作点PEにて作動させることができる。又、補機の駆動時にもエンジン12を燃費の良いエンジン動作点PEにて作動させることができる。その際に、運転者の違和感を低減することができ、又、燃費低下を抑制することができる。
【0047】
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
【0048】
例えば、前述の実施例において、要求駆動力Fdemの調停に用いるドライバ要求駆動力Fdemdは、フィルタ(例えばローパスフィルタ)によってなましを施された後の値を用いても良い。
【0049】
また、前述の実施例では、走行用の駆動力源としてエンジン12を例示したが、この態様に限らない。例えば、エンジン12は、排気タービン式過給機を備えるエンジンや機械式過給機を備えるエンジンであっても良い。又、走行用の駆動力源として、電動機等の他の原動機をエンジン12と組み合わせて採用することもできる。又、エンジン12の動力は、トルクコンバータ18を介して、無段変速機26へ伝達されたが、この態様に限らない。例えば、トルクコンバータ18に替えて、トルク増幅作用のない流体継手(フルードカップリング)などの他の流体式伝動装置が用いられても良い。或いは、この流体式伝動装置は必ずしも設けられなくても良い。
【0050】
また、前述の実施例では、無段変速機26は、ベルト式無段変速機であったが、この態様に限らない。例えば、無段変速機26の伝達要素として伝動ベルト40を例示したが、この伝達要素は伝動チェーンであっても良い。この場合、無段変速機はチェーン式無段変速機となるが、広義には、ベルト式無段変速機の概念にチェーン式無段変速機を含んでも良い。又、無段変速機はトラクション型無段変速機であっても良い。
【0051】
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。